Datos de Contacto
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...
dc.contributor.advisor | Acevedo Caballero, Nathalie | |
dc.contributor.author | Escamilla Gil, José Miguel | |
dc.date.accessioned | 2021-08-18T15:30:09Z | |
dc.date.available | 2021-08-18T15:30:09Z | |
dc.date.issued | 2021 | |
dc.description | Tesis (Magíster en Inmunología). -- Universidad de Cartagena, Instituto de Investigaciones Inmunológicas, 2021 | es |
dc.description.abstract | Se estima que una de cada cinco personas con enfermedad pulmonar obstructiva crónica (EPOC) o asma tiene superposición asma-EPOC (ACO) (1). El ACO representa un reto diagnóstico al confundirse con el asma y con la EPOC (2-4). Los pacientes con esta entidad clínica representan un problema de salud pública, ya que, en comparación con pacientes con asma o EPOC, presentan síntomas respiratorios más severos, peor calidad de vida, una pérdida acelerada de la función pulmonar, riesgo de exacerbaciones frecuentes e ingresos hospitalarios y en general un peor pronóstico (5-9). El diagnóstico de ACO no se puede asegurar realizando exámenes paraclínicos convencionales (10) y es por esto que hay un gran interés en identificar biomarcadores de ACO que ayuden a un diagnóstico más preciso y temprano (11, 12). En este estudio comparamos los niveles de biomarcadores entre pacientes con asma, EPOC, ACO y sujetos sanos para identificar aquellos asociados con el fenotipo ACO. Analizamos a 397 participantes adultos (de 40 a 90 años) reclutados en dos ciudades colombianas (Cartagena y Bogotá): 123 con asma, 100 con EPOC, 74 con ACO y 100 sujetos sanos. Los niveles de eosinófilos fueron analizados por hemocitometría. Los niveles totales y específicos de IgE (d1, d201, p1) fueron determinados por ImmunoCAP, los niveles de periostina se midieron mediante ELISA cuantitativa (Periostin/OSF-2 DuoSet ELISA, R&D). El FeNO se midió utilizando el equipo NOBreath (Bedfont Scientific Ltd., UK). Los niveles de otras proteínas plasmáticas inflamatorias se midieron mediante el ensayo de extensión por proximidad de Olink Proteomics. Los análisis estadísticos se realizaron en SPSS, GraphPad Prism y R. No hubo diferencia en los recuentos de eosinofílicos, los niveles de periostina y los niveles de FeNO en pacientes con ACO en comparación con pacientes con asma o EPOC. Los niveles de IgE total y especifica contra alergenos fueron más altos en pacientes con ACO en comparación con los pacientes con EPOC. En los pacientes con ACO, los niveles de FeNO se correlacionaron directamente con los niveles de IgE total (rho 0,4, p=0,007) y con el puntaje ACQ-5 (rho 0,62, p<0.0001). Diez proteínas plasmáticas mostraron diferencias significativas entre los pacientes con ACO y los sujetos control (p<0.05, fold change >0.2). De los biomarcadores característicos de la inflamación tipo 2, únicamente la IgE total y la IgE específica podrían ayudar a la diferenciación del fenotipo ACO de la EPOC, especialmente si se combinan con otros biomarcadores de inflamación tipo 2 y la historia clínica. Con respecto a las proteínas inflamatorias en el plasma, se encontró que los niveles del ligando 1 de quimiocinas CXC (CXCL1) y del ligando 9 de quimiocinas CXC (CXCL9) están aumentados en pacientes con ACO en comparación con los pacientes asmáticos. Sin embargo, estas diferencias dejaron de ser significativas después del ajuste por la edad y el sexo. Además, los niveles de la proteína quimiotáctica de monocitos 3 (MCP-3 o CCL7) y la proteína 1 que contiene el dominio CUB (CDCP1) son más altos en los pacientes con EPOC en comparación con los detectados en los pacientes con ACO y en los pacientes con asma. De estos, la proteína MCP-3 también se incrementó en ACO en comparación con el asma. Estos resultados sugieren que CXCL1, CXCL9, MCP-3 y CDCP1 podrían ser investigados más a fondo como biomarcadores de ACO. | es |
dc.format.medium | application/pdf | es |
dc.identifier.citation | TM616.238 / E14 | es |
dc.identifier.uri | https://hdl.handle.net/11227/12386 | |
dc.identifier.uri | http://dx.doi.org/10.57799/11227/1353 | |
dc.language.iso | spa | es |
dc.publisher | Universidad de Cartagena | es |
dc.rights | Derechos reservados - Universidad de Cartagena, 2021 | |
dc.rights.access | openAccess | es |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | es |
dc.subject | Asma | es |
dc.subject | Enfermedades de los pulmones | es |
dc.subject | Asma - Tratamiento | es |
dc.subject | Bronquitis | es |
dc.title | Análisis comparativo de niveles de Biomarcadores inflamatorios en pacientes con asma, EPOC y superposición Asma/EPOC | es |
dc.type | Trabajo de grado - Maestría | spa |
dcterms.references | Krishnan JA, Nibber A, Chisholm A, Price D, Bateman ED, Bjermer L, et al. Prevalence and Characteristics of Asthma-Chronic Obstructive Pulmonary Disease Overlap in Routine Primary Care Practices. Ann Am Thorac Soc. 2019;16(9):1143-50. | |
dcterms.references | Nunez A, Sarasate M, Loeb E, Esquinas C, Miravitlles M, Barrecheguren M. Practical Guide to the Identification and Diagnosis of Asthma-COPD Overlap (ACO). COPD. 2019;16(1):1-7. | |
dcterms.references | Sin DD, Miravitlles M, Mannino DM, Soriano JB, Price D, Celli BR, et al. What is asthmaCOPD overlap syndrome? Towards a consensus definition from a round table discussion. Eur Respir J. 2016;48(3):664-73. | |
dcterms.references | Jung JY. Characteristics of Asthma-COPD Overlap According to Various Criteria. Tuberc Respir Dis (Seoul). 2021;84(1):87-8. | |
dcterms.references | Hikichi M, Hashimoto S, Gon Y. Asthma and COPD overlap pathophysiology of ACO. Allergol Int. 2018;67(2):179-86. | |
dcterms.references | Hirai K, Tanaka A, Homma T, Kawahara T, Oda N, Mikuni H, et al. Prevalence and clinical features of asthma-COPD overlap in patients with COPD not using inhaled corticosteroids. Allergol Int. 2021;70(1):134-5. | |
dcterms.references | Lazar Z, Horvath A, Tomisa G, Tamasi L, Muller V. Impact of Clinical Factors on Generic and Disease-Specific Quality of Life in COPD and Asthma-COPD Overlap with Exacerbations. Pulm Med. 2020;2020:6164343. | |
dcterms.references | Queiroz APA, Fonseca FR, Re A, Maurici R. Clinical, laboratory, and functional characteristics of asthma-COPD overlap in patients with a primary diagnosis of COPD. J Bras Pneumol. 2020;47(1):e20200033. | |
dcterms.references | Lee H, Kim SH, Kim BK, Lee Y, Lee HY, Ban GY, et al. Characteristics of Specialist-Diagnosed Asthma-COPD Overlap in Severe Asthma: Observations from the Korean Severe Asthma Registry (KoSAR). Allergy. 2021;76(1):223-32. | |
dcterms.references | Tho NV, Park HY, Nakano Y. Asthma-COPD overlap syndrome (ACOS): A diagnostic challenge. Respirology. 2016;21(3):410-8 | |
dcterms.references | Plaza V, Alvarez F, Calle M, Casanova C, Cosio BG, Lopez-Vina A, et al. Consensus on the Asthma-COPD Overlap Syndrome (ACOS) Between the Spanish COPD Guidelines (GesEPOC) and the Spanish Guidelines on the Management of Asthma (GEMA). Arch Bronconeumol. 2017;53(8):443-9. | |
dcterms.references | Slats A, Taube C. Asthma and chronic obstructive pulmonary disease overlap: asthmatic chronic obstructive pulmonary disease or chronic obstructive asthma? Ther Adv Respir Dis. 2016;10(1):57-71. | |
dcterms.references | Lopez-Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology. 2016;21(1):14- 23. | |
dcterms.references | van den Berge M. The Asthma COPD Overlap Syndrome: ACOS. Epidemiology and Historical Perspective. Tanaffos. 2017;16(Suppl 1):S26-S8. | |
dcterms.references | Collaborators GBDCRD. Global, regional, and national deaths, prevalence, disabilityadjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med. 2017;5(9):691-706. | |
dcterms.references | Gelb AF, Christenson SA, Nadel JA. Understanding the pathophysiology of the asthmachronic obstructive pulmonary disease overlap syndrome. Curr Opin Pulm Med. 2016;22(2):100-5. | |
dcterms.references | Postma DS, Rabe KF. The Asthma-COPD Overlap Syndrome. N Engl J Med. 2015;373(13):1241-9. | |
dcterms.references | GINA-GOLD. Diagnosis of Diseases of Chronic Airflow Limitation: Asthma, COPD and Asthma-COPD Overlap Syndrome (ACOS). In: (GINA). GSfAMaP, editor. https://ginasthma.org/asthma-copd-and-asthma-copd-overlap-syndrome-acos/ 2015. | |
dcterms.references | Barnes PJ. Asthma-COPD Overlap. Chest. 2016;149(1):7-8. | |
dcterms.references | Miravitlles M. Asthma-COPD Overlap (ACO) PRO-CON Debate. ACO: Call Me by My Name. COPD. 2020;17(5):471-3. | |
dcterms.references | Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond). 2017;131(13):1541-58. | |
dcterms.references | Leung JM, Sin DD. Asthma-COPD overlap syndrome: pathogenesis, clinical features, and therapeutic targets. BMJ. 2017;358:j3772. | |
dcterms.references | Alshabanat A, Zafari Z, Albanyan O, Dairi M, FitzGerald JM. Asthma and COPD Overlap Syndrome (ACOS): A Systematic Review and Meta Analysis. PLoS One. 2015;10(9):e0136065. | |
dcterms.references | Poh TY, Mac Aogain M, Chan AK, Yii AC, Yong VF, Tiew PY, et al. Understanding COPDoverlap syndromes. Expert Rev Respir Med. 2017;11(4):285-98. | |
dcterms.references | Hines KL, Peebles RS, Jr. Management of the Asthma-COPD Overlap Syndrome (ACOS): a Review of the Evidence. Curr Allergy Asthma Rep. 2017;17(3):15. | |
dcterms.references | Menezes AMB, Montes de Oca M, Perez-Padilla R, Nadeau G, Wehrmeister FC, LopezVarela MV, et al. Increased risk of exacerbation and hospitalization in subjects with an overlap phenotype: COPD-asthma. Chest. 2014;145(2):297-304. | |
dcterms.references | de Marco R, Pesce G, Marcon A, Accordini S, Antonicelli L, Bugiani M, et al. The coexistence of asthma and chronic obstructive pulmonary disease (COPD): prevalence and risk factors in young, middle-aged and elderly people from the general population. PLoS One. 2013;8(5):e62985. | |
dcterms.references | Ekerljung L, Mincheva R, Hagstad S, Bjerg A, Telg G, Stratelis G, et al. Prevalence, clinical characteristics and morbidity of the Asthma-COPD overlap in a general population sample. J Asthma. 2018;55(5):461-9. | |
dcterms.references | Mendy A, Forno E, Niyonsenga T, Carnahan R, Gasana J. Prevalence and features of asthma-COPD overlap in the United States 2007-2012. Clin Respir J. 2018;12(8):2369-77 | |
dcterms.references | Soler X, Ramsdell JW. Are Asthma and COPD a Continuum of the Same Disease? J Allergy Clin Immunol Pract. 2015;3(4):489-95; quiz 96-7. | |
dcterms.references | Rogliani P, Ora J, Puxeddu E, Cazzola M. Airflow obstruction: is it asthma or is it COPD? Int J Chron Obstruct Pulmon Dis. 2016;11:3007-13. | |
dcterms.references | Barrecheguren M, Pinto L, Mostafavi-Pour-Manshadi SM, Tan WC, Li PZ, Aaron SD, et al. Identification and definition of asthma-COPD overlap: The CanCOLD study. Respirology. 2020;25(8):836-49. | |
dcterms.references | Kreukniet J, Orie NG. Chronic bronchitis, bronchial asthma, a host factor in patients with pulmonary tuberculosis. Allerg Asthma (Leipz). 1961;7:220-30 | |
dcterms.references | Postma DS, Boezen HM. Rationale for the Dutch hypothesis. Allergy and airway hyperresponsiveness as genetic factors and their interaction with environment in the development of asthma and COPD. Chest. 2004;126(2 Suppl):96S-104S; discussion 59S-61S. | |
dcterms.references | Chambliss JM, Sur S, Tripple JW. Asthma versus chronic obstructive pulmonary disease, the Dutch versus British hypothesis, and role of interleukin-5. Curr Opin Allergy Clin Immunol. 2018;18(1):26-31 | |
dcterms.references | Anthonisen NR. The British hypothesis revisited. Eur Respir J. 2004;23(5):657-8. | |
dcterms.references | Ko FWS, Hui DSC. Asthma-COPD overlap: No formal definition and simple diagnostic tool so far? Respirology. 2020;25(7):672-3. | |
dcterms.references | Hardin M, Cho M, McDonald ML, Beaty T, Ramsdell J, Bhatt S, et al. The clinical and genetic features of COPD-asthma overlap syndrome. Eur Respir J. 2014;44(2):341-50. | |
dcterms.references | Araujo D, Padrao E, Morais-Almeida M, Cardoso J, Pavao F, Leite RB, et al. Asthma-chronic obstructive pulmonary disease overlap syndrome - Literature review and contributions towards a Portuguese consensus. Rev Port Pneumol (2006). 2017;23(2):90-9. | |
dcterms.references | Barrecheguren M, Esquinas C, Miravitlles M. The asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS): opportunities and challenges. Curr Opin Pulm Med. 2015;21(1):74-9. | |
dcterms.references | Miravitlles M, Alvarez-Gutierrez FJ, Calle M, Casanova C, Cosio BG, Lopez-Vina A, et al. Algorithm for identification of asthma-COPD overlap: consensus between the Spanish COPD and asthma guidelines. Eur Respir J. 2017;49(5). | |
dcterms.references | Miravitlles M. Diagnosis of asthma-COPD overlap: Is it possible a global definition? Pulmonology. 2018;24(3):143-5. | |
dcterms.references | O'Donnell DE, Aaron S, Bourbeau J, Hernandez P, Marciniuk DD, Balter M, et al. Canadian Thoracic Society recommendations for management of chronic obstructive pulmonary disease - 2007 update. Can Respir J. 2007;14 Suppl B:5B-32B. | |
dcterms.references | Koblizek V, Chlumsky J, Zindr V, Neumannova K, Zatloukal J, Zak J, et al. Chronic Obstructive Pulmonary Disease: official diagnosis and treatment guidelines of the Czech Pneumological and Phthisiological Society; a novel phenotypic approach to COPD with patientoriented care. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2013;157(2):189-201. | |
dcterms.references | Kubo M. Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol Rev. 2017;278(1):162-72. | |
dcterms.references | Lloyd CM, Snelgrove RJ. Type 2 immunity: Expanding our view. Sci Immunol. 2018;3(25). | |
dcterms.references | Pulendran B, Artis D. New paradigms in type 2 immunity. Science. 2012;337(6093):431-5. | |
dcterms.references | Mart MF, Peebles RS, Jr. Asthma-chronic obstructive pulmonary disease overlap syndrome. Curr Opin Immunol. 2020;66:161-6. | |
dcterms.references | von Moltke J, Pepper M. Sentinels of the Type 2 Immune Response. Trends Immunol. 2018;39(2):99-111. | |
dcterms.references | Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest. 2019;129(4):1441-51. | |
dcterms.references | Hoyte FCL, Gross LM, Katial RK. Exhaled Nitric Oxide: An Update. Immunol Allergy Clin North Am. 2018;38(4):573-85. | |
dcterms.references | Sato Y, Chibana K, Horigane Y, Uchida N, Masawa M, Koike R, et al. Comparison of inducible nitric oxide synthase mRNA expression in different airway portions and association with nitric oxide parameters from patients with asthma. Clin Exp Allergy. 2019;49(5):582-90. | |
dcterms.references | Duong-Quy S. Clinical Utility Of The Exhaled Nitric Oxide (NO) Measurement With Portable Devices In The Management Of Allergic Airway Inflammation And Asthma. J Asthma Allergy. 2019;12:331-41. | |
dcterms.references | Izuhara K, Nunomura S, Nanri Y, Ogawa M, Ono J, Mitamura Y, et al. Periostin in inflammation and allergy. Cell Mol Life Sci. 2017;74(23):4293-303. | |
dcterms.references | Akdis M, Aab A, Altunbulakli C, Azkur K, Costa RA, Crameri R, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: Receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016;138(4):984-1010. | |
dcterms.references | Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996;183(1):195-201. | |
dcterms.references | Manceau H, Amrani K, Peoc'h K. Personalized medicine, pharmacogenomic and companion biomarker. Ann Biol Clin (Paris). 2017;75(6):631-6. | |
dcterms.references | Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018;243(3):213-21. | |
dcterms.references | Soler Artigas M, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet. 2011;43(11):1082-90. | |
dcterms.references | Wilk JB, Shrine NR, Loehr LR, Zhao JH, Manichaikul A, Lopez LM, et al. Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. Am J Respir Crit Care Med. 2012;186(7):622-32. | |
dcterms.references | Qiu W, Baccarelli A, Carey VJ, Boutaoui N, Bacherman H, Klanderman B, et al. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am J Respir Crit Care Med. 2012;185(4):373-81. | |
dcterms.references | Kim KW, Ober C. Lessons Learned From GWAS of Asthma. Allergy Asthma Immunol Res. 2019;11(2):170-87. | |
dcterms.references | Daya M, Rafaels N, Brunetti TM, Chavan S, Levin AM, Shetty A, et al. Author Correction: Association study in African-admixed populations across the Americas recapitulates asthma risk loci in non-African populations. Nat Commun. 2019;10(1):4082. | |
dcterms.references | Ghosh N, Dutta M, Singh B, Banerjee R, Bhattacharyya P, Chaudhury K. Transcriptomics, proteomics and metabolomics driven biomarker discovery in COPD: an update. Expert Rev Mol Diagn. 2016;16(8):897-913. | |
dcterms.references | Tiotiu A. Applying personalized medicine to adult severe asthma. Allergy Asthma Proc. 021;42(1):e8-e16 | |
dcterms.references | Zhang J, Zhu C, Gao H, Liang X, Fan X, Zheng Y, et al. Identification of biomarkers associated with clinical severity of chronic obstructive pulmonary disease. PeerJ. 2020;8:e10513. | |
dcterms.references | sbv Ipt, Boue S, Fields B, Hoeng J, Park J, Peitsch MC, et al. Enhancement of COPD biological networks using a web-based collaboration interface. F1000Res. 2015;4:32. | |
dcterms.references | de Llano LP, Cosio BG, Iglesias A, de Las Cuevas N, Soler-Cataluna JJ, Izquierdo JL, et al. Mixed Th2 and non-Th2 inflammatory pattern in the asthma-COPD overlap: a network approach. Int J Chron Obstruct Pulmon Dis. 2018;13:591-601. | |
dcterms.references | Kobayashi S, Hanagama M, Yamanda S, Ishida M, Yanai M. Inflammatory biomarkers in asthma-COPD overlap syndrome. Int J Chron Obstruct Pulmon Dis. 2016;11:2117-23. | |
dcterms.references | Chen FJ, Huang XY, Liu YL, Lin GP, Xie CM. Importance of fractional exhaled nitric oxide in the differentiation of asthma-COPD overlap syndrome, asthma, and COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:2385-90 | |
dcterms.references | Hersh CP, Zacharia S, Prakash Arivu Chelvan R, Hayden LP, Mirtar A, Zarei S, et al. Immunoglobulin E as a Biomarker for the Overlap of Atopic Asthma and Chronic Obstructive Pulmonary Disease. Chronic Obstr Pulm Dis. 2020;7(1):1-12. | |
dcterms.references | Takayama Y, Ohnishi H, Ogasawara F, Oyama K, Kubota T, Yokoyama A. Clinical utility of fractional exhaled nitric oxide and blood eosinophils counts in the diagnosis of asthma-COPD overlap. Int J Chron Obstruct Pulmon Dis. 2018;13:2525-32 | |
dcterms.references | Wang J, Wang W, Lin H, Huan C, Jiang S, Lin D, et al. Role of pulmonary function and FeNO detection in early screening of patients with ACO. Exp Ther Med. 2020;20(2):830-7. | |
dcterms.references | Lipworth B, Kuo CR, Chan R. 2020 Updated Asthma Guidelines: Clinical utility of fractional exhaled nitric oxide (Feno) in asthma management. J Allergy Clin Immunol. 2020;146(6):1281-2. | |
dcterms.references | Kuo CR, Spears M, Haughney J, Smith A, Miller J, Bradshaw T, et al. Scottish consensus statement on the role of FeNO in adult asthma. Respir Med. 2019;155:54-7. | |
dcterms.references | Li M, Yang T, He R, Li A, Dang W, Liu X, et al. The Value of Inflammatory Biomarkers in Differentiating Asthma-COPD Overlap from COPD. Int J Chron Obstruct Pulmon Dis. 2020;15:3025- 37. | |
dcterms.references | Mostafavi-Pour-Manshadi SM, Naderi N, Barrecheguren M, Dehghan A, Bourbeau J. Investigating Fractional Exhaled Nitric Oxide in Chronic Obstructive Pulmonary Disease (COPD) and Asthma-COPD Overlap (ACO): A Scoping Review. COPD. 2018;15(4):377-91. | |
dcterms.references | Caraballo L, Zakzuk J, Lee BW, Acevedo N, Soh JY, Sanchez-Borges M, et al. Particularities of allergy in the Tropics. World Allergy Organ J. 2016;9:20 | |
dcterms.references | Shirai T, Hirai K, Gon Y, Maruoka S, Mizumura K, Hikichi M, et al. Combined Assessment of Serum Periostin and YKL-40 May Identify Asthma-COPD Overlap. J Allergy Clin Immunol Pract. 2019;7(1):134-45 e1. | |
dcterms.references | Soler-Cataluna JJ, Cosio B, Izquierdo JL, Lopez-Campos JL, Marin JM, Aguero R, et al. Consensus document on the overlap phenotype COPD-asthma in COPD. Arch Bronconeumol. 2012;48(9):331-7. | |
dcterms.references | Barrecheguren M, Roman-Rodriguez M, Miravitlles M. Is a previous diagnosis of asthma a reliable criterion for asthma-COPD overlap syndrome in a patient with COPD? Int J Chron Obstruct Pulmon Dis. 2015;10:1745-52. | |
dcterms.references | Maselli DJ, Hanania NA. Management of asthma COPD overlap. Ann Allergy Asthma Immunol. 2019;123(4):335-44 | |
dcterms.references | Ding Q, Sun S, Zhang Y, Tang P, Lv C, Ma H, et al. Serum IL-8 and VEGFA are Two Promising iagnostic Biomarkers of Asthma-COPD Overlap Syndrome. Int J Chron Obstruct Pulmon Dis. 2020;15:357-65. | |
dcterms.references | Huang AX, Lu LW, Liu WJ, Huang M. Plasma Inflammatory Cytokine IL-4, IL-8, IL-10, and TNF-alpha Levels Correlate with Pulmonary Function in Patients with Asthma-Chronic Obstructive Pulmonary Disease (COPD) Overlap Syndrome. Med Sci Monit. 2016;22:2800-8. | |
dcterms.references | Tommola M, Ilmarinen P, Tuomisto LE, Lehtimaki L, Haanpaa J, Niemela O, et al. Differences between asthma-COPD overlap syndrome and adult-onset asthma. Eur Respir J. 2017;49(5). | |
dcterms.references | Fu JJ, McDonald VM, Gibson PG, Simpson JL. Systemic Inflammation in Older Adults With Asthma-COPD Overlap Syndrome. Allergy Asthma Immunol Res. 2014;6(4):316-24. | |
dcterms.references | Kubysheva N, Boldina M, Eliseeva T, Soodaeva S, Klimanov I, Khaletskaya A, et al. Relationship of Serum Levels of IL-17, IL-18, TNF-alpha, and Lung Function Parameters in Patients with COPD, Asthma-COPD Overlap, and Bronchial Asthma. Mediators Inflamm. 2020;2020:4652898. | |
dcterms.references | Ghosh N, Choudhury P, Kaushik SR, Arya R, Nanda R, Bhattacharyya P, et al. Metabolomic fingerprinting and systemic inflammatory profiling of asthma COPD overlap (ACO). Respir Res. 2020;21(1):126. | |
dcterms.references | Gao J, Iwamoto H, Koskela J, Alenius H, Hattori N, Kohno N, et al. Characterization of sputum biomarkers for asthma-COPD overlap syndrome. Int J Chron Obstruct Pulmon Dis. 2016;11:2457-65. | |
dcterms.references | Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13. | |
dcterms.references | Juniper EF, O'Byrne PM, Guyatt GH, Ferrie PJ, King DR. Development and validation of a questionnaire to measure asthma control. Eur Respir J. 1999;14(4):902-7. | |
dcterms.references | Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation. The St. George's Respiratory Questionnaire. Am Rev Respir Dis. 1992;145(6):1321-7. | |
dcterms.references | Jones PW, Harding G, Berry P, Wiklund I, Chen WH, Kline Leidy N. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009;34(3):648-54. | |
dcterms.references | Casanova C, Celli BR, de-Torres JP, Martinez-Gonzalez C, Cosio BG, Pinto-Plata V, et al. Prevalence of persistent blood eosinophilia: relation to outcomes in patients with COPD. Eur Respir J. 2017;50(5). | |
dcterms.references | Buendia E, Zakzuk J, Mercado D, Alvarez A, Caraballo L. The IgE response to Ascaris molecular components is associated with clinical indicators of asthma severity. World Allergy Organ J. 2015;8(1):8 | |
dcterms.references | Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 2006;12(1):17-25. | |
dcterms.references | de Castro LF, Burke AB, Wang HD, Tsai J, Florenzano P, Pan KS, et al. Activation of RANK/RANKL/OPG Pathway Is Involved in the Pathophysiology of Fibrous Dysplasia and Associated With Disease Burden. J Bone Miner Res. 2019;34(2):290-4. | |
dcterms.references | Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J Clin Invest. 2019;129(8):3214-23. | |
dcterms.references | Koziol-White C, Cao G, Parikh V, Deeney B, Vieth J, Ng C, et al. CD6 is highly expressed in fatal asthma patients and may modulate bronchomotor tone. European Respiratory Journal. 2020;56(suppl 64):320. | |
dcterms.references | Wortmann A, He Y, Deryugina EI, Quigley JP, Hooper JD. The cell surface glycoprotein CDCP1 in cancer--insights, opportunities, and challenges. IUBMB Life. 2009;61(7):723-30. | |
dcterms.references | Spassov DS, Wong CH, Moasser MM. Trask phosphorylation defines the reverse mode of a phosphotyrosine signaling switch that underlies cell anchorage state. Cell Cycle. 2011;10(8):1225- 32. | |
dcterms.references | He Y, Wortmann A, Burke LJ, Reid JC, Adams MN, Abdul-Jabbar I, et al. Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKCdelta. J Biol Chem. 2010;285(34):26162-73. | |
dcterms.references | Enyindah-Asonye G, Li Y, Ruth JH, Spassov DS, Hebron KE, Zijlstra A, et al. CD318 is a ligand for CD6. Proc Natl Acad Sci U S A. 2017;114(33):E6912-E21. | |
dcterms.references | Casar B, Rimann I, Kato H, Shattil SJ, Quigley JP, Deryugina EI. In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated beta1 integrin and induction of FAK/PI3K/Akt motility signaling. Oncogene. 2014;33(2):255-68. | |
dcterms.references | Uekita T, Sakai R. Roles of CUB domain-containing protein 1 signaling in cancer invasion and metastasis. Cancer Sci. 2011;102(11):1943-8. | |
dcterms.references | Spassov DS, Wong CH, Wong SY, Reiter JF, Moasser MM. Trask loss enhances tumorigenic growth by liberating integrin signaling and growth factor receptor cross-talk in unanchored cells. Cancer Res. 2013;73(3):1168-79. | |
dcterms.references | Brown TA, Yang TM, Zaitsevskaia T, Xia Y, Dunn CA, Sigle RO, et al. Adhesion or plasmin regulates tyrosine phosphorylation of a novel membrane glycoprotein p80/gp140/CUB domaincontaining protein 1 in epithelia. J Biol Chem. 2004;279(15):14772-83. | |
dcterms.references | Spassov DS, Baehner FL, Wong CH, McDonough S, Moasser MM. The transmembrane src substrate Trask is an epithelial protein that signals during anchorage deprivation. Am J Pathol. 2009;174(5):1756-65. | |
dcterms.references | Spassov DS, Wong CH, Sergina N, Ahuja D, Fried M, Sheppard D, et al. Phosphorylation of Trask by Src kinases inhibits integrin clustering and functions in exclusion with focal adhesion signaling. Mol Cell Biol. 2011;31(4):766-82. | |
dcterms.references | Badrani J, Cavagnero K, Ng C, Ampudia J, Connelly S, Desai P, et al. CD6 is expressed on human airway and blood innate lymphoid cells (ILCs) and is upregulated by epithelial alarmins IL33 and TSLP. European Respiratory Journal. 2020;56(suppl 64):613. | |
dcterms.references | Kasaian MT, Lee J, Brennan A, Danto SI, Black KE, Fitz L, et al. Proteomic analysis of serum and sputum analytes distinguishes controlled and poorly controlled asthmatics. Clin Exp Allergy. 2018;48(7):814-24. | |
dcterms.references | Magnusson L, Espes D, Casas R, Carlsson PO. Increased Plasma Levels of the Co-stimulatory Proteins CDCP1 and SLAMF1 in Patients With Autoimmune Endocrine Diseases. Front Immunol. 2020;11:1916 | |
dcterms.references | Alajati A, D'Ambrosio M, Troiani M, Mosole S, Pellegrini L, Chen J, et al. CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. J Clin Invest. 2020;130(5):2435-50. | |
dcterms.references | Miyazawa Y, Uekita T, Hiraoka N, Fujii S, Kosuge T, Kanai Y, et al. CUB domain-containing protein 1, a prognostic factor for human pancreatic cancers, promotes cell migration and extracellular matrix degradation. Cancer Res. 2010;70(12):5136-46. | |
dcterms.references | Ohnishi K, Takagi M, Kurokawa Y, Satomi S, Konttinen YT. Matrix metalloproteinasemediated extracellular matrix protein degradation in human pulmonary emphysema. Lab Invest. 1998;78(9):1077-87. | |
dcterms.references | Mochizuki F, Iijima H, Watanabe A, Tanabe N, Sato S, Shiigai M, et al. The Concavity of the Maximal Expiratory Flow-Volume Curve Reflects the Extent of Emphysema in Obstructive Lung Diseases. Sci Rep. 2019;9(1):13159. | |
dcterms.references | Uysal P, Uzun H. Relationship Between Circulating Serpina3g, Matrix Metalloproteinase-9, and Tissue Inhibitor of Metalloproteinase-1 and -2 with Chronic Obstructive Pulmonary Disease Severity. Biomolecules. 2019;9(2). | |
dspace.entity.type | Publication |
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...