Publicación:
Mining pubchem and protein databases for unknown targets of pollutants and therapeutic molecules

dc.contributor.advisorOlivero Verbel, Jesús (Director)
dc.contributor.authorCabarcas Montalvo, María Paulina
dc.date.accessioned2016-11-30T21:05:33Z
dc.date.available2016-11-30T21:05:33Z
dc.date.issued2016
dc.descriptionThesis (Doctor of Biomedical Sciences). - University of Cartagena, Institute of Immunological Research, 2016es
dc.description.abstractLas uniones proteína-ligando corresponden a un proceso dinámico, que permite que los residuos que se encuentran en los bolsillos puedan interactuar con una variedad de ligandos de forma, tamaño y composición diferente a los ligandos naturales. Dado que la teoría convencional "una molécula, un blanco, una enfermedad" es limitado y poco común en la naturaleza, la estrategia de análisis de la interacción entre redes de ligandos y proteínas diana surge como un método sistemático para sondear los mecanismos moleculares en eventos complejos, que son difíciles de predecir a través de los enfoques in vitro o in vivo. Los estudios de cribado virtual se han convertido en una parte importante de la investigación en toxicología y farmacología dirigida al descubrimiento de nuevos blancos proteicos y fármacos, respectivamente. Una de las estrategias utilizadas consiste en evaluar las diferentes vías metabólicas involucradas y seleccionar el objetivo biológico potencial. Para esto, existen dos enfoques fundamentales: el primero basado en ligando, cuya finalidad consiste en la identificación de aquellas estructuras que tienen más probabilidades de unirse a una molécula diana; y el segundo basado en la estructura 3D de proteínas, de tal forma que sea posible seleccionar compuestos candidatos que puedan interactuar favorablemente con los residuos que hacen parte del sitio activo de la proteína, o sitios alostéricos.es
dc.format.mediumapplication/pdf
dc.identifier.citationTD542.1 / C111es
dc.identifier.urihttps://hdl.handle.net/11227/3662
dc.identifier.urihttp://dx.doi.org/10.57799/11227/93
dc.language.isoenges
dc.publisherUniversity Cartagenaes
dc.rights.accessopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectMoléculas - Simulación por computadoreses
dc.subjectCribado de alto rendimiento (Desarrollo de medicamentos)es
dc.subjectBlancos moleculareses
dc.subjectPruebas de toxicidad in vitroes
dc.subjectBiomoléculases
dc.subjectAgentes antivirales - Ensayoes
dc.subjectMoléculas - Medicamentoses
dc.subjectBlancos proteicos - investigacioneses
dc.subjectAgentes antivirales - Investigacioneses
dc.subjectDengue - Inhibidores de proteasaes
dc.subjectDengue - Análisises
dc.subjectDengue - Investigacioneses
dc.titleMining pubchem and protein databases for unknown targets of pollutants and therapeutic moleculeses
dc.typeTrabajo de grado - Doctoradospa
dcterms.referencesBoffetta, P., K.A. Mundt, H.O. Adami, P. Cole, and J.S. Mandel. 2011. TCDD and cancer: a critical review of epidemiologic studies. Critical reviews in toxicology. 41:622-636.
dcterms.referencesBruner-Tran, K.L., and K.G. Osteen. 2011. Developmental exposure to TCDD reduces fertility and negatively affects pregnancy outcomes across multiple generations. Reprod Toxicol. 31:344-350.
dcterms.referencesChastain, J.E., Jr., and T.L. Pazdernik. 1985. 2,3,7,8- Tetrachlorodibenzo-p-dioxin (TCDD)-induced immunotoxicity. International journal of immunopharmacology. 7:849-856.
dcterms.referencesCummings, A.M., J.M. Hedge, and L.S. Birnbaum. 1999. Effect of prenatal exposure to TCDD on the promotion of endometriotic lesion growth by TCDD in adult female rats and mice. Toxicological sciences : an official journal of the Society of Toxicology. 52:45-49.
dcterms.referencesCzepiel, J., G. Biesiada, M. Gajda, W. Szczepanski, K. Szypula, Z. Dabrowski, and T. Mach. 2010. The effect of TCDD dioxin on the rat liver in biochemical and histological assessment. Folia biologica. 58:85-90.
dcterms.referencesde Sousa, L.R.F., H. Wu, L. Nebo, J.B. Fernandes, M.F.d.G.F. da Silva, W. Kiefer, M. Kanitz, J. Bodem, W.E. Diederich, T. Schirmeister, and P.C. Vieira. 2015. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies. Bioorganic & medicinal chemistry. 23:466-470.
dcterms.referencesDong, W., F. Matsumura, and S.W. Kullman. 2010. TCDD induced pericardial edema and relative COX-2 expression in medaka (Oryzias Latipes) embryos. Toxicological sciences : an official journal of the Society of Toxicology. 118:213-223.
dcterms.referencesEPA, U.S.E.P.A. 2010. Recommended Toxicity Equivalence Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8- Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds Washington, DC.
dcterms.referencesFlipse, J., J. Wilschut, and J.M. Smit. 2013. Molecular mechanisms involved in antibody-dependent enhancement of dengue virus infection in humans. Traffic. 14:25-35.
dcterms.referencesLim, S.P., Q.Y. Wang, C.G. Noble, Y.L. Chen, H. Dong, B. Zou, F. Yokokawa, S. Nilar, P. Smith, D. Beer, J. Lescar, and P.Y. Shi. 2013. Ten years of dengue drug discovery: progress and prospects. Antiviral research. 100:500-519.
dcterms.referencesMastroiacovo, P., A. Spagnolo, E. Marni, L. Meazza, R. Bertollini, G. Segni, and C. Borgna-Pignatti. 1988. Birth defects in the Seveso area after TCDD contamination. Jama. 259:1668-1672.
dcterms.referencesOliveira, A.S.D., M.L.D. Silva, A.F. Oliveira, C.C.D. Silva, R.R. Teixeira, and S.O. De Paula. 2014. NS3 and NS5 proteins: important targets for antidengue drug design. Journal of the Brazilian Chemical Society. 25:1759- 1769.
dcterms.referencesPasteur, S. 2014. Sanofi Pasteur’s Dengue Vaccine Candidate Successfully Completes Final Landmark Phase III Clinical Efficacy Study in Latin America. Press Release, Lyon, France
dcterms.referencesPuhvel, S.M., M. Sakamoto, and R.M. Reisner. 1989. Effect of TCDD on the density of Langerhans cells in murine skin. Toxicol Appl Pharmacol. 99:72-80.
dcterms.referencesSchuurman, H.J., E.J. DE WAAL, H. Van Loveren, and J.G. Vos. 1991. The toxicity of dioxin to the thymus. In The Thymus in Immunotoxicology. M.A.R. M. D. Kendall, editor. Harwood Academic Publishers, ChurSwitzerland.
dcterms.referencesStahl, B.U., D.G. Beer, L.W. Weber, and K. Rozman. 1993. Reduction of hepatic phosphoenolpyruvate carboxykinase (PEPCK) activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is due to decreased mRNA levels. Toxicology. 79:81-95.
dcterms.referencesVannice, K.S., A. Durbin, and J. Hombach. 2016. Status of vaccine research and development of vaccines for dengue. Vaccine. In Press, Corrected Proof.
dcterms.referencesWilder-Smith, A., and I.K. Yoon. 2016. Edging closer towards the goal of a dengue vaccine. Expert review of vaccines. 15:433-435.
dcterms.referencesWu, H., S. Bock, M. Snitko, T. Berger, T. Weidner, S. Holloway, M. Kanitz, W.E. Diederich, H. Steuber, C. Walter, D. Hofmann, B. Weissbrich, R. Spannaus, E.G. Acosta, R. Bartenschlager, B. Engels, T. Schirmeister, and J. Bodem. 2015. Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob Agents Chemother. 59:1100-1109.
dcterms.referencesYang, C.C., Y.C. Hsieh, S.J. Lee, S.H. Wu, C.L. Liao, C.H. Tsao, Y.S. Chao, J.H. Chern, C.P. Wu, and A. Yueh. 2011. Novel dengue virus-specific NS2B/NS3 protease inhibitor, BP2109, discovered by a highthroughput screening assay. Antimicrob Agents Chemother. 55:229- 238.
dcterms.referencesBöhm, H.-J. and G. Klebe (1996). "What Can We Learn from Molecular Recognition in Protein–Ligand Complexes for the Design of New Drugs?" Angewandte Chemie International Edition in English 35(22): 2588-2614.
dcterms.referencesBreitenlechner, C. B., D. Bossemeyer, et al. (2005). "Crystallography for protein kinase drug design: PKA and SRC case studies." Biochim Biophys Acta 1754(1-2): 38-49.
dcterms.referencesBronowska, A. K. (2011). Thermodynamics of Ligand-Protein Interactions: Implications for Molecular Design. Thermodynamics - Interaction Studies - Solids, Liquids and Gases. J. C. Moreno-Pirajan, InTech.
dcterms.referencesBrooijmans, N. 2009. Docking methods, ligand design, and validating data sets in the structural genomics era. In Structural Bioinformatics. J. Gu and P.E. Bourne, editors. John Wiley & Sons, Inc., Hoboken, New Jersey.
dcterms.referencesCavasotto, C. N. and S. S. Phatak (2009). "Homology modeling in drug discovery: current trends and applications." Drug Discov Today 14(13-14): 676-683.
dcterms.referencesChowdhry, B. Z. and S. E. Harding (2001). Protein-ligand interactions and their analysis. Protein-ligand interactions: Hydrodynamics and calorimetry. B. Z. C. S.E. Harding, Oxford University Press.
dcterms.referencesCleaves, H. J. (2011). Molecular Recognition. Encyclopedia of Astrobiology. M. Gargaud, R. Amils, J. C. Quintanillaet al. Berlin, Heidelberg, Springer Berlin Heidelberg: 1079-1080.
dcterms.referencesCohen, N. C. (1996). Guidebook on Molecular Modeling in Drug Design. Boston, Academic Press.
dcterms.referencesde Almeida, H., I. M. Bastos, et al. (2013). "New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation." PLoS One 8(8): e72402.
dcterms.referencesDoppelt-Azeroual, O., F. Moriaud, F. Delfaud, and A.G. de Brevern. 2009. Analysis of HSP90-related folds with MED-SuMo classification approach. Drug design, development and therapy. 3:59-72.
dcterms.referencesDu, X., Y. Li, et al. (2016). "Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods." Int J Mol Sci 17(2).
dcterms.referencesForli, S., R. Huey, M.E. Pique, M.F. Sanner, D.S. Goodsell, and A.J. Olson. 2016. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature protocols. 11:905-919.
dcterms.referencesGrant, B. J., A. A. Gorfe, et al. (2010). "Large conformational changes in proteins: signaling and other functions." Curr Opin Struct Biol 20(2): 142-147.
dcterms.referencesGupta, S. P. (2012). "Matrix metalloproteinase inhibitors: specificity of binding and structure-activity relationships." EXS 103: v-vi
dcterms.referencesHalperin, I., H. Wolfson, et al. (2003). "SiteLight: binding-site prediction using phage display libraries." Protein Sci. 12(7): 1344- 1359
dcterms.referencesHaupt, V. J., S. Daminelli, et al. (2013). "Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key." PLoS One 8(6): e65894.
dcterms.referencesHawkins, P. S., G. (2006). Ligand-Based Design Workflow, OpenEye Scientifi c Software.
dcterms.referencesHenrich, S., O. M. Salo-Ahen, et al. (2010). "Computational approaches to identifying and characterizing protein binding sites for ligand design." J Mol Recognit 23(2): 209-219.
dcterms.referencesKalidas, Y. and N. Chandra (2008). "PocketDepth: a new depth based algorithm for identification of ligand binding sites in proteins." J Struct Biol 161(1): 31-42.
dcterms.referencesKang, L., B. G. Chung, et al. (2008). "Microfluidics for drug discovery and development: from target selection to product lifecycle management." Drug Discov Today 13(1-2): 1-13.
dcterms.referencesKawabata, T. 2010. Detection of multiscale pockets on protein surfaces using mathematical morphology.
dcterms.referencesKessel, A. B.-t. N. (2010). Protein-Ligand Interactions: Structure, Function, and Motion. Introduction to Proteins, CRC Press: 515-591.
dcterms.referencesKoes, D.R., and C.J. Camacho. 2012. ZINCPharmer: pharmacophore search of the ZINC database. Nucleic acids research. 40:W409-414
dcterms.referencesKontogiorgis, C. A., P. Papaioannou, et al. (2005). "Matrix metalloproteinase inhibitors: a review on pharmacophore mapping and (Q)SARs results." Curr Med Chem 12(3): 339-355.
dcterms.referencesLengauer, T., C. Lemmen, et al. (2004). "Novel technologies for virtual screening." Drug Discov Today 9(1): 27-34.
dcterms.referencesMolSoft. 2000. ICM 2.8 Program Manual. MolSoft LLC, San Diego, CA.
dcterms.referencesNisius, B., F. Sha, et al. (2012). "Structure-based computational analysis of protein binding sites for function and druggability prediction." J Biotechnol 159(3): 123-134.
dcterms.referencesPace, C. N., B. A. Shirley, et al. (1996). "Forces contributing to the conformational stability of proteins." FASEB J 10(1): 75-83.
dcterms.referencesPierri, C. L., G. Parisi, et al. (2010). "Computational approaches for protein function prediction: a combined strategy from multiple sequence alignment to molecular docking-based virtual screening." Biochim Biophys Acta 1804(9): 1695-1712.
dcterms.referencesRamos, M. J., A. Melo, et al. (2001). Chapter 13 – Modeling enzyme – ligand interactions. Theoretical and Computational Chemistry. A. E. Leif, Elsevier. Volume 9: 539-595.
dcterms.referencesSaada, I. and J. K. Pearson (2011). "A theoretical study of the structure and electron density of the peptide bond." Computational and Theoretical Chemistry 969(1–3): 76-82.
dcterms.referencesSchreiber, G. and A. E. Keating (2011). "Protein binding specificity versus promiscuity." Curr Opin Struct Biol 21(1): 50-61.
dcterms.referencesSousa, S.F., A.J. Ribeiro, J.T. Coimbra, R.P. Neves, S.A. Martins, N.S. Moorthy, P.A. Fernandes, and M.J. Ramos. 2013. Protein-ligand docking in the new millennium--a retrospective of 10 years in the field. Current medicinal chemistry. 20:2296-2314.
dcterms.referencesSrinivasan, B., H. Zhou, J. Kubanek, and J. Skolnick. 2014. Experimental validation of FINDSITEcomb virtual ligand screening results for eight proteins yields novel nanomolar and micromolar binders. J. Cheminformatics. 6:16.
dcterms.referencesWang, J.C., and J.H. Lin. 2013. Scoring functions for prediction of protein-ligand interactions. Current pharmaceutical design. 19:2174- 2182
dcterms.referencesWasserman, S. R., J. W. Koss, et al. (2012). "Rapid-access, highthroughput synchrotron crystallography for drug discovery." Trends Pharmacol Sci 33(5): 261-267.
dcterms.referencesWilliams, M.A., and T. Daviter. 2013. Protein-ligand interactions [electronic resource] : methods and applications. Humana Press, New York.
dcterms.referencesWieder, M., U. Perricone, T. Seidel, S. Boresch, and T. Langer. 2016. Comparing pharmacophore models derived from crystal structures and from molecular dynamics simulations. Monatshefte fur chemie. 147:553-563.
dcterms.referencesAgrawal, H., Kumar, A., Chandra-Bal, N., Imran-Siddiqia, M., Arora, A., 2007. Ligand based virtual screening and biological evaluation of inhibitors of chorismate mutase (Rv1885c) from Mycobacterium tuberculosis H37Rv. Bioorg. Med. Chem Lett. 17, 3053–3058.
dcterms.referencesAkahoshi, E., Yoshimura, S., Uruno, S., Ishihara-Sugano, M., 2009. Effect of dioxins on regulation of tyrosine hydroxylase gene expression by aryl hydrocarbon receptor: a neurotoxicology study. Environ. Health 8, 24.
dcterms.referencesAllport, J.R., Lim, Y.C., Shipley, J.M., Senior, R.M., Shapiro, S.D., Matsuyoshi, N., Vestweber, D., Luscinskas, F.W., 2002. Neutrophils from MMP-9- or neutrophil elastase-deficient mice show no defect in transendothelial migration under flow in vitro. J. Leukocyte Biol. 71, 821–828.
dcterms.referencesApfel, R., Benbrook, D., Lernhardt, E., Ortiz, M.A., Salbert, G., Pfahl, M., 1994. A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol. Cell. Biol. 14, 7025–7035.
dcterms.referencesArima, A., Kato, H., Ooshima, Y., Tateishi, T., Inoue, A., Muneoka, A., Ihara, T., Kamimura, S., Fukusato, T., Kubota, S., Sumida, H., Yasuda, M., 2009. In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) induces a reduction in epididymal and ejaculated sperm number in rhesus monkeys. Reprod. Toxicol. 28, 495–502.
dcterms.referencesATSDR. 1998. Toxicological Profile for Chlorinated Dibenzo-p-Dioxins. U.S.D.o.H.a.H.S. Public Health Service, editor. Agency for Toxic Substances and Disease Registry, Atlanta, GA.
dcterms.referencesBerrin, J.G., McLauchlan, W.R., Needs, P., Williamson, G., Puigserver, A., Kroon, P.A., Juge, N., 2002. Functional expression of human liver cytosolic b-glucosidase in Pichia pastoris: insights into its role in the metabolism of dietary glucosides. Eur. J. Biochem. 269, 249–258.
dcterms.referencesBersten, D.C., A.E. Sullivan, D.J. Peet, and M.L. Whitelaw. 2013. bHLHPAS proteins in cancer. Nature reviews. Cancer. 13:827-841.
dcterms.referencesBoutros, P.C., Yan, R., Moffat, I.D., Pohjanvirta, R., Okey, A.B., 2008. Transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in liver: comparison of rat and mouse. BMC Genom. 9, 419.
dcterms.referencesBrinckerhoff, C.E., Rutter, J.L., Benbow, U., 2000. Interstitial collagenases as markers of tumor progression. Clin. Cancer Res. 6, 4823–4830
dcterms.referencesBryant, P.L., Schmid, J.E., Fenton, S.E., Buckalew, A.R., Abbott, B.D., 2001. Teratogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (tcdd) in mice lacking the expression of egf and/or tgf-a. Toxicol. Sci. 62, 103– 114.
dcterms.referencesBurcham, P.C. 2014. Toxicodynamics: How Chemicals Harm Cells. Springer, London.
dcterms.referencesCastrignano, T., De Meo, P.D., Cozzetto, D., Talamo, I.G., Tramontano, A., 2006. The PMDB protein model database. Nucleic Acids Res. 34, 306–309.
dcterms.referencesChan, C.Y.Y., Kim, P.M., Winn, L.M., 2004. TCDD affects DNA double strand-break repair. Toxicol. Sci. 81, 133–138.
dcterms.referencesCortés, V., Quezadaa, N., Rigott, A., Maiz, A., 2005. Nuevos receptores nucleares heterodiméricos: reguladores metabólicos con impacto en fisiopatología y su proyección terapéutica en dislipidemias y diabetes mellitus. Rev. Méd. Chile 133, 1483–1492.
dcterms.referencesCox, K.E., Piva, M., Sharpe-Timms, K.L., 2001. Differential regulation of matrix metalloproteinase-3 gene expression in endometriotic lesions compared with endometrium. Biol. Reprod. 65, 1297–1303.
dcterms.referencesDaniels, L.B., Coyle, P.J., Chiao, Y.B., Glew, R.H., Labow, R.S., 1981. Purification and characterization of a cytosolic broad specificity bglucosidase from human liver. J. Biol. Chem. 256, 13004–13013.
dcterms.referencesEnan, E., Matsumura, F., 1995. Evidence for a second pathway i n the action mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Significance of Ahreceptor mediated activation of protein kinase under cell-free conditions. Biochem. Pharmacol. 49, 249–261.
dcterms.referencesFernandez-Salguero, P.M., Hilbert, D.M., Rudikoff, S., Ward, J.M., Gonzalez, F.J., 1996. Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8- tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol. Appl. Pharmacol. 140, 173–179.
dcterms.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A., 2003. Gaussian 03. Revision B.02. Gaussian, Inc., Pittsburgh PA.
dcterms.referencesGogal Jr., R.M., Holladay, S.D., 2008. Perinatal TCDD exposure and the adult onset of autoimmune disease. J. Immunotoxicol. 5, 413–418.
dcterms.referencesGuha, R., Howard, M.T., Hutchison, G.R., Murray-Rust, P., Rzepa, H., Steinbeck, C., Wegner, J., Willighagen, E.L., 2006. The blue obeliskinteroperability in chemical informatics. J. Chem. Inf. Model. 46, 991– 998.
dcterms.referencesHaupt, V.J., S. Daminelli, and M. Schroeder. 2013. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key. PloS one. 8:e65894.
dcterms.referencesHillegass, J.M., K.A. Murphy, C.M. Villano, and L.A. White. 2006. The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease. Biological chemistry. 387:1159-1173.
dcterms.referencesHutz, R.J., 1999. Reproductive endocrine disruption by environmental xenobiotics that modulate the estrogen-signaling pathway, particularly tetrachlorodibenzop-dioxin (TCDD). J. Reprod. Develop. 45, 1–12.
dcterms.referencesJin, S.L.C., Lan, L., Zoudilova, M., Conti, M., 2005. Specific role of phosphodiesterase 4b in lipopolysaccharide-induced signaling in mouse macrophages. J. Immunol. 175, 1523–1531.
dcterms.referencesJin, M.H., Hong, C.H., Lee, H.Y., Kang, H.J., Han, S.W., 2008a. Enhanced TGF-beta1 is involved in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced oxidative stress in C57BL/6 mouse testis. Toxicol. Lett. 178, 202–209.
dcterms.referencesJin, M.H., Ko, H.K., Hong, C.H., Han, S.W., 2008b. In utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin affects the development of reproductive system in mouse. Yonsei Med. J. 49, 843–850.
dcterms.referencesKerkvliet, N.I., 1995. Immunological effects of chlorinated dibenzo-pdioxins. Environ. Health Perspect. 103, 47–53.
dcterms.referencesKessel, A.B.-t.N. 2010. Protein-Ligand Interactions: Structure, Function, and Motion. In Introduction to Proteins. CRC Press. 515-591
dcterms.referencesKhedkar, S.A., Malde, A.K., Coutinho, E.C., Srivastava, S., 2007. Pharmacophore modeling in drug discovery and development: an overview. Med. Chem. 3, 187-197.
dcterms.referencesKnerr, S., Schrenk, D., 2006. Carcinogenicity of 2,3,7,8- tetrachlorodibenzo-p-dioxin in experimental models. Mol. Nutr. Food Res. 50, 897–907.
dcterms.referencesKobayashi, D., Ahmed, S., Ishida, M., Kasai, S., Kikuchi, H., 2009. Calcium/calmodulin signaling elicits release of cytochrome c during 2,3,7,8-tetrachlorodibenzo-pdioxin-induced apoptosis in the human lymphoblastic T-cell line. L-MAT Toxicol. 258, 25–32.
dcterms.referencesKobayashi, S., Okamoto, H., Iwamoto, T., Toyama, Y., Tomatsu, T., Yamanaka, H., Momohara, S., 2008. A role for the aryl hydrocarbon receptor and the dioxin TCDD in rheumatoid arthritis. Rheumatology 47, 1317–1322
dcterms.referencesKortagere, S., Ekins, S., We, W.J., 2008. Halogenated ligands and their interactions with amino acids: Implications for structure–activity and structure–toxicity relationships. J. Mol. Graph. Model. 27, 170–177.
dcterms.referencesKramer, M.A., 2006. Focus on Cholesterol Research. New York, Nova Science Publishers, Inc.
dcterms.referencesKufareva, I., A.V. Ilatovskiy, and R. Abagyan. 2012. Pocketome: an encyclopedia of small-molecule binding sites in 4D. Nucleic acids research. 40:D535-540.
dcterms.referencesKumar, A., Imran-Siddiqi, M., Miertus, S., 2009. New molecular scaffolds for the design of Mycobacterium tuberculosis type II dehydroquinase inhibitors identified using ligand and receptor based virtual screening. J. Mol. Model. 16, 693–712.
dcterms.referencesLewis, S.N., Bassaganya-Riera, J., Bevan, D.R., 2009. Virtual screening as a technique for PPAR modulator discovery. PPAR Res. 2010, 861238.
dcterms.referencesLugnier, C., 2006. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol. Therapeut. 109, 366–398.
dcterms.referencesLyne, P.D., 2002. Structure-based virtual screening: an overview. Drug Discov. Today 7, 1047–1055.
dcterms.referencesMatsuki, H., Fujimoto, N., Iwata, K., Knauper, V., Okada, Y., Hayakawa, T., 1996. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 8 (neutrophil collagenase) using monoclonal antibodies. Clin. Chim. Acta 244, 129–143.
dcterms.referencesMimura, J., Fujii-Kuriyama, Y., 2003. Functional role of AhR in the expression of toxic effects by TCDD. Biochim. Biophys. Acta 1619, 263– 268.
dcterms.referencesMimura, J., Yamashita, K., Nakamura, K., Morita, M., Takagi, T.N., Nakao, K., Ema, M.,Sogawa, K., Yasuda, M., Katsuki, M., Fujii-Kuriyama, Y., 1997. Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 2, 645–654.
dcterms.referencesMurphy, S.D., 1986. Toxic effects of pesticides in Casarett and Doull’s toxicology. In: Klaassen, Curtis.D., Amdur, Mary.O., John, Doull (Eds.), The Basic Science of Poisons, third ed. Macmillan Publishing Company, New York.
dcterms.referencesNavratil, T., and L. Minarik. 2011. Trace Elements and Contaminants. In Earth System - History and Natural Variability. . Vol. 8. V. Cilek, Smith, R. H. , editor. EOLSS Publishers, Oxford
dcterms.referencesNukaya, M., Moran, S., Bradfield, C.A., 2009. The role of the dioxinresponsive element cluster between the Cyp1a1 and Cyp1a2 loci in aryl hydrocarbon receptor biology. Proc. Natl. Acad. Sci. USA 106, 4923–4928.
dcterms.referencesNwomeh, B.C., Liang, H.X., Cohen, I.K., Yager, D.R., 1999. MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J. Surg. Res. 81, 189–195.
dcterms.referencesPalackal, N.T., Lee, S.H., Harvey, R.G., Blair, I.A., Penning, T.M., 2002. Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo–keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells. J. Biol. Chem. 277, 24799–24808.
dcterms.referencesPandini, A., Soshilov, A.A., Song, Y., Zhao, J., Bonati, L., Denison, M.S., 2009. Detection of the TCDD binding-fingerprint within the Ah receptor ligand binding domain by structurally driven mutagenesis and functional analysis. Biochemistry 48, 5972–5983.
dcterms.referencesPark, S.J., Yoon, W.K., Kim, H.J., Son, H.Y., Cho, S.W., Jeong, K.S., Kim, T.H., Kim, S.H., Kim, S.R., Ryu, S.Y., 2005. 2,3,7,8-Tetrachlorodibenzo-pdioxin activates ERK and p38 mitogen-activated protein kinases in RAW 264.7 cells. Anticancer Res. 25, 2831–2836.
dcterms.referencesPark, J.H., Hahn, E.J., Kong, J.H., Cho, H.J., Yoon, C.S., Cheong, S.W., Oh, G.S., Youn, H.J., 2003. TCDD-induced apoptosis in EL-4 cells deficient of the aryl hydrocarbon receptor and down-regulation of IGFBP-6 prevented the apoptotic cell death. Toxicol. Lett. 145, 55–68.
dcterms.referencesPauwels, A., Schepens, P.J.,D´ Hooghe, T., Delbeke, L., Dhont, M., Brouwer, A., Weyler, J., 2001. The risk of endometriosis and exposure to dioxins and polychlorinated biphenyls: a case-control study of infertile women. Human Reprod. 16, 2050– 2055.
dcterms.referencesPenning, T.M., Drury, J.E., 2007. Human aldo–keto reductases: function, gene regulation, and single nucleotide polymorphisms. Arch. Biochem. Biophys. 464, 241–250.
dcterms.referencesPérez-Nueno, V.I., Pettersson, S., Ritchie, D.W., Borrell, J.I., Teixidó, J., 2009. Discovery of novel HIV entry inhibitors for the CXCR4 receptor by prospective virtual screening. J. Chem. Inf. Model. 49, 810–823.
dcterms.referencesPeters, J.M., M.G. Narotsky, G. Elizondo, P.M. Fernandez-Salguero, F.J. Gonzalez, and B.D. Abbott. 1999. Amelioration of TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null mice. Toxicological sciences: an official journal of the Society of Toxicology. 47:86-92.
dcterms.referencesPohjanvirta, R., Tuomisto, J., 1994. Short-term toxicity of 2,3,7,8- tetrachlorodibenzo-p-dioxin in laboratory animals: effects, mechanisms, and animal models. Pharmacol. Rev. 46, 483–549.
dcterms.referencesPorpora, M.G., Medda, E., Abballe, A., Bolli, S., De Angelis, I., di Domenico, A., Ferro, A., Ingelido, A.M., Maggi, A., Panici, P.B., De Felip, E., 2009. Endometriosis and organochlorinated environmental pollutants: a case-control study on Italian women of reproductive age. Environ. Health Perspect. 117, 1070–1075.
dcterms.referencesRatjen, F., Hartog, C.M., Paul, K., Wermelt, J., Braun, J., 2002. Matrix metalloproteases in BAL fluid of patients with cystic fibrosis and their modulation by treatment with dornase. Thorax 57, 930–934.
dcterms.referencesSahlberg, C., Peltonen, E., Lukinmaa, P.L., Alaluusua, S., 2007. Dioxin alters gene expression in mouse embryonic tooth explants. J. Dent. Res. 86, 600–605.
dcterms.referencesSato, S., Shirakawa, H., Tomita, S., Ohsaki, Y., Haketa, K., Tooi, O., Santo, N., Tohkin, M., Furukawa, Y., Gonzalez, F.J., Komai, M., 2008. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicol. Appl. Pharm. 229, 10–19.
dcterms.referencesSchecter, A., and T.A. Gasiewicz. 2003. Dioxins and Health. John Wiley & Sons, Inc., Hoboken, New Jersey.
dcterms.referencesShetty, K., Paliyath, G., Pometto, A., Levin, R.E., 2006. Food Biotechnology. CRC Press, Taylor & Francis Group, Cleveland.
dcterms.referencesShimada, T. 2006. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug metabolism and pharmacokinetics. 21:257-276.
dcterms.referencesSmialowicz, R.J., DeVito, M.J., Williams, W.C., Birnbaum, L.S., 2008. Relative potency based on hepatic enzyme induction predicts immunosuppressive effects of a mixture of PCDDS/PCDFS and PCBS. Toxicol. Appl. Pharm. 227, 477–484.
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis María Paulina Cabarcas.pdf
Tamaño:
3.8 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.7 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: