Show simple item record

dc.contributor.advisorZakzuk Sierra, Josefina (Profesor(a) / Docente / Tutor(a))
dc.contributor.authorVarela Coneo, Eskarly
dc.date.accessioned2021-08-03T15:17:38Z
dc.date.available2021-08-03T15:17:38Z
dc.date.issued2021
dc.identifier.citationTM616.0799 / V423es
dc.identifier.urihttps://hdl.handle.net/11227/12319
dc.descriptionTesis (Magíster en Inmunología). -- Universidad de Cartagena, Instituto de Investigaciones Inmunológicas, 202es
dc.description.abstractLas infecciones por helmintos se consideran un problema de salud pública a nivel mundial, dado que, aunque estos organismos casi nunca generan mortalidad, los índices de morbilidad son bastante elevados, generando grandes costos en los sistemas de salud, sobre todo en poblaciones endémicas, gracias a su capacidad para manipular y suprimir el sistema inmune del hospedero y generar infecciones crónicas. Durante varios años, el Instituto de Investigaciones Inmunológicas, ha venido estudiando la relación inmunológica entre las células del sistema inmune y los nematodos endémicos de la región caribe colombiana, dadas las bajas condiciones socioeconómicas y sanitarias en diversas poblaciones. Teniendo como base la hipótesis de que los eosinófilos son claves en la respuesta frente a la infección por helmintos y tomando como base de estudio los resultados encontrados en poblaciones rurales cercanas a Cartagena de indias, hemos querido identificar herramientas para estudiar si el eosinófilo es capaz de atacar directamente al nematodo Ascaris spp en estado larvario y los eventos de activación que ocurren en la célula al exponerse a ellas o a través del reconocimiento de sus productos secretados. Para esto, se estandarizó la técnica de incubación de huevos de Ascaris suum para obtener larvas en estadio L3. Se evaluó la técnica de purificación magnética de eosinófilos humanos a partir de sangre periférica (“Eosinophil Isolation Kit human” #130-092-010, Miltenyi Biotech, Alemania), obteniéndose eosinófilos purificados por citometría de flujo y microscopio óptico con un 60% de pureza. Se estudió la actividad larvicida in vitro de los eosinófilos purificados frente a Áscaris spp y sus antígenos representativos, encontrándose que los eosinófilos de sangre periférica humanos, en presencia de anticuerpos IgE, incubados con larvas L3 de Ascaris suum, fueron capaces de adherirse masivamente a las paredes de la larva, pero no se obtuvieron resultados concluyentes sobre la viabilidad de las larvas. Adicionalmente, se observó liberación de proteína citotóxica peroxidasa del eosinófilo (EPO) en presencia del recombinante rABA-1 y de suero de pacientes con IgE a este antígeno. Se evaluó una estrategia de medición de activación de eosinófilos basada en el anticuerpo monoclonal CD69, encontrándose una mayor expresión de CD69 en presencia de ABA-1 y con la adición de sueros positivos a ABA-1, pero no en sueros IgE negativa a ABA-1.es
dc.format.mediumapplication/pdfes
dc.language.isospaes
dc.publisherUniversidad de Cartagenaes
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0es
dc.subjectLeucocitos - Hematologíaes
dc.subjectHematologíaes
dc.subjectParasitología humanaes
dc.subjectÁscaris lumbricoides - Parásitoes
dc.titleEstandarización de técnicas experimentales para la evaluación de la actividad eosinofílica en respuesta a Ascaris sppes
dc.typemasterThesises
dcterms.referencesPullan, R.L., et al., Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites & vectors, 2014. 7(1): p. 37.
dcterms.referencesBrooker, S., Estimating the global distribution and disease burden of intestinal nematode infections: adding up the numbers–a review. International journal for parasitology, 2010. 40(10): p. 1137-1144.
dcterms.referencesAgudelo-Lopez, S., et al., Prevalence of intestinal parasitism and associated factors in a village on the Colombian Atlantic Coast. Revista de Salud Publica, 2008. 10(4): p. 633- 642.
dcterms.referencesMoreau, E. and A. Chauvin, Immunity against helminths: interactions with the host and the intercurrent infections. BioMed Research International, 2010. 2010
dcterms.referencesKlion, A.D. and T.B. Nutman, The role of eosinophils in host defense against helminth parasites. Journal of Allergy and Clinical Immunology, 2004. 113(1): p. 30-37.
dcterms.referencesGlauert, A.M., et al., The mechansim of antibody-dependent, eosinophil-mediated damage to schistosomula of Schistosoma mansoni in vitro: a study by phase-contrast and electron microscopy. Journal of cell science, 1978. 34(1): p. 173-192
dcterms.referencesMasure, D., et al., A role for eosinophils in the intestinal immunity against infective Ascaris suum larvae. PLoS neglected tropical diseases, 2013. 7(3): p. e2138
dcterms.referencesZhu, X., et al., Characterisation of Ascaris from human and pighosts by nuclear ribosomal DNA sequences. International journal for parasitology, 1999. 29(3): p. 469- 478.
dcterms.referencesAnderson, T., M. Romero-Abal, and J. Jaenike, Genetic structure and epidemiology of Ascaris populations: patterns of host affiliation in Guatemala. Parasitology, 1993. 107(3): p. 319-334.
dcterms.referencesLiu, G.-H., et al., Comparative analyses of the complete mitochondrial genomes of Ascaris lumbricoides and Ascaris suum from humans and pigs. Gene, 2012. 492(1): p. 110-116.
dcterms.referencesDold, C. and C.V. Holland, Ascaris and ascariasis. Microbes and infection, 2011. 13(7): p. 632-637
dcterms.referencesTakata, I., Experimental infection of man with Ascaris of man and the pig. Kitasato Archives of Experimental Medicine, 1951. 23(4): p. 49-59.
dcterms.referencesJardim‐Botelho, A., et al., Hookworm, Ascaris lumbricoides infection and polyparasitism ssociated with poor cognitive performance in Brazilian schoolchildren. Tropical Medicine & International Health, 2008. 13(8): p. 994-1004.
dcterms.referencesHolland, C., Predisposition to ascariasis: patterns, mechanisms and implications. Parasitology, 2009. 136(12): p. 1537-1547.
dcterms.referencesWilliams-Blangero, S., et al., Genetic analysis of susceptibility to infection with Ascaris lumbricoides. The American journal of tropical medicine and hygiene, 1999. 60(6): p. 921-926.
dcterms.referencesWright, J.E., et al., Current epidemiological evidence for predisposition to high or low intensity human helminth infection: a systematic review. Parasites & vectors, 2018. 11(1): p. 1-12.
dcterms.referencesBaba, A.A., S.M. Ahmad, and K.A. Sheikh, Intestinal ascariasis: the commonest cause of bowel obstruction in children at a tertiary care center in Kashmir. Pediatric surgery international, 2009. 25(12): p. 1099.
dcterms.referencesKatakam, K.K., Ecology and viability of eggs of the pig round worm (Ascaris suum)–onfarm and laboratory studies. 2014, University of Copenhagen.
dcterms.referencesSoller, J.A., et al., Risk-based approach to evaluate the public health benefit of additional wastewater treatment. Environmental science & technology, 2003. 37(9): p. 1882-1891
dcterms.referencesWharton, D., The production and functional morphology of helminth egg-shells. Parasitology, 1983. 86(4): p. 85-97.
dcterms.referencesSeamster, A.P., Developmental studies concerning the eggs of Ascaris lumbricoides var. suum. The American Midland Naturalist, 1950. 43(2): p. 450-470.
dcterms.referencesCruz, L.M., et al., Morphological changes of Ascaris spp. eggs during their development outside the host. Journal of Parasitology, 2012. 98(1): p. 63-68.
dcterms.referencesFagerholm, H.-P., et al., Differentiation of cuticular structures during the growth of the third-stage larva of Ascaris suum (Nematoda, Ascaridoidea) after emerging from the egg. Journal of Parasitology, 2000. 86(3): p. 421-427.
dcterms.referencesMaizels, R.M., et al., Regulation of pathogenesis and immunity in helminth infections. Journal of Experimental Medicine, 2009. 206(10): p. 2059-2066.
dcterms.referencesJohnston, L.K. and P.J. Bryce, Understanding interleukin 33 and its roles in eosinophil development. Frontiers in medicine, 2017. 4: p. 51
dcterms.referencesCherry, W.B., et al., A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. Journal of allergy and clinical immunology, 2008. 121(6): p. 1484-1490.
dcterms.referencesCortés, A., et al., Th2 and Th1 responses: clear and hidden sides of immunity against intestinal helminths. Trends in parasitology, 2017. 33(9): p. 678-693.
dcterms.referencesGazzinelli-Guimaraes, P.H. and T.B. Nutman, Helminth parasites and immune regulation. F1000Research, 2018. 7.
dcterms.referencesGazzinelli-Guimarães, P.H., et al., Parasitological and immunological aspects of early Ascaris spp. infection in mice. International journal for parasitology, 2013. 43(9): p. 697-706.
dcterms.referencesNogueira, D.S., et al., Multiple exposures to Ascaris suum induce tissue injury and mixed Th2/Th17 immune response in mice. PLoS neglected tropical diseases, 2016. 10(1): p. e0004382.
dcterms.referencesPaterson, J.C., et al., Modulation of a heterologous immune response by the products of Ascaris suum. Infection and immunity, 2002. 70(11): p. 6058-6067.
dcterms.referencesCaraballo, L. and N. Acevedo, New allergens of relevance in tropical regions: the impact of Ascaris lumbricoides infections. World Allergy Organization Journal, 2011. 4(5): p. 77-84.
dcterms.referencesCaraballo, L., N. Acevedo, and J. Zakzuk, Ascariasis as a model to study the helminth/allergy relationships. Parasite immunology, 2019. 41(6): p. e12595
dcterms.referencesAhumada, V., et al., Identification and Physicochemical Characterization of a New Allergen from Ascaris lumbricoides. International journal of molecular sciences, 2020. 21(24): p. 9761
dcterms.referencesAcevedo, N., et al., IgE cross‐reactivity between Ascaris and domestic mite allergens: the role of tropomyosin and the nematode polyprotein ABA‐1. Allergy, 2009. 64(11): p. 1635-1643.
dcterms.referencesKennedy, M. and F. Qureshi, Stage-specific secreted antigens of the parasitic larval stages of the nematode Ascaris. Immunology, 1986. 58(3): p. 515.
dcterms.referencesXia, Y., et al., The ABA-1 allergen of Ascaris lumbricoides: sequence polymorphism, stage and tissue-specific expression, lipid binding function, and protein biophysical properties. Parasitology, 2000. 120(2): p. 211-224.
dcterms.referencesSastre, B., et al., Eosinophils: Old Players in a New Game. J Investig Allergol Clin Immunol, 2018. 28(5): p. 289-304.
dcterms.referencesWalsh, G.M., et al., Ligation of CD69 induces apoptosis and cell death in human eosinophils cultured with granulocyte-macrophage colony-stimulating factor. Blood, 1996. 87(7): p. 2815-2821.
dcterms.referencesKlion, A., Recent advances in understanding eosinophil biology. F1000Research, 2017. 6.
dcterms.referencesVan Leeuwen, B., et al., Molecular organization of the cytokine gene cluster, involving the human IL-3, IL-4, IL-5, and GM-CSF genes, on human chromosome 5. Blood, 1989. 73(5): p. 1142-1148.
dcterms.referencesMcBrien, C.N. and A. Menzies-Gow, The Biology of Eosinophils and Their Role in Asthma. Frontiers in Medicine, 2017. 4(93).
dcterms.referencesMcBrien, C.N. and A. Menzies-Gow, The biology of eosinophils and their role in asthma. Frontiers in medicine, 2017. 4: p. 93.
dcterms.referencesMuniz, V.S., P.F. Weller, and J.S. Neves, Eosinophil crystalloid granules: structure, function, and beyond. Journal of leukocyte biology, 2012. 92(2): p. 281-288.
dcterms.referencesAcharya, K.R. and S.J. Ackerman, Eosinophil granule proteins: form and function. Journal of Biological Chemistry, 2014. 289(25): p. 17406-17415
dcterms.referencesLieschke, G.J., et al., Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood, 2001. 98(10): p. 3087-3096.
dcterms.referencesStacy, N.I. and R.E. Raskin, Reptilian Eosinophils: Beauty and Diversity by Light Microscopy. Veterinary clinical pathology, 2015. 44(2): p. 177.
dcterms.referencesUhm, T.G., B.S. Kim, and I.Y. Chung, Eosinophil development, regulation of eosinophilspecific genes, and role of eosinophils in the pathogenesis of asthma. Allergy, asthma & immunology research, 2012. 4(2): p. 68-79.
dcterms.referencesRosenberg, H.F., S. Phipps, and P.S. Foster, Eosinophil trafficking in allergy and asthma. Journal of Allergy and Clinical Immunology, 2007. 119(6): p. 1303-1310.
dcterms.referencesChoi, Y., et al., Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma. Allergy, 2019.
dcterms.referencesVarricchi, G., et al., Interleukin-5 pathway inhibition in the treatment of eosinophilic respiratory disorders: evidence and unmet needs. Current opinion in allergy and clinical immunology, 2016. 16(2): p. 186.
dcterms.referencesHogan, S.P., et al., Eosinophils: biological properties and role in health and disease. Clinical & Experimental Allergy, 2008. 38(5): p. 709-750.
dcterms.referencesMelo, R.C., et al., Eosinophil‐derived cytokines in health and disease: unraveling novel mechanisms of selective secretion. Allergy, 2013. 68(3): p. 274-284.
dcterms.referencesAbbas, A.K., A.H. Lichtman, and S. Pillai, Cellular and molecular immunology E-book. 2014: Elsevier Health Sciences.
dcterms.referencesRådinger, M. and J. Lötvall, Eosinophil progenitors in allergy and asthma—Do they matter? Pharmacology & therapeutics, 2009. 121(2): p. 174-184.
dcterms.referencesCarlens, J., et al., Common γ-chain-dependent signals confer selective survival of eosinophils in the murine small intestine. The Journal of Immunology, 2009. 183(9): p. 5600-5607.
dcterms.referencesYoung, B., P. Woodford, and G. O'Dowd, Wheater's Functional Histology E-Book: A Text and Colour Atlas. 2013: Elsevier Health Sciences
dcterms.referencesPalframan, R.T., et al., Eotaxin induces a rapid release of eosinophils and their progenitors from the bone marrow. Blood, 1998. 91(7): p. 2240-2248.
dcterms.referencesMatthews, A.N., et al., Eotaxin is required for the baseline level of tissue eosinophils. Matthews, A.N., et al., Eotaxin is required for the baseline level of tissue eosinophils. Proceedings of the National Academy of Sciences, 1998. 95(11): p. 6273-6278. Proceedings of the National Academy of Sciences, 1998. 95(11): p. 6273-6278.
dcterms.referencesWoltmann, G., et al., Interleukin-13 induces PSGL-1/P–selectin–dependent adhesion of eosinophils, but not neutrophils, to human umbilical vein endothelial cells under flow. lood, 2000. 95(10): p. 3146-3152.
dcterms.referencesHamann, K., et al., In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. The Journal of Immunology, 1990. 144(8): p. 3166- 3173.
dcterms.referencesFabre, V., et al., Eosinophil deficiency compromises parasite survival in chronic nematode infection. The Journal of Immunology, 2009. 182(3): p. 1577-1583.
dcterms.referencesCulley, F.J., et al., Eotaxin is specifically cleaved by hookworm metalloproteases preventing its action in vitro and in vivo. The Journal of Immunology, 2000. 165(11): p. 6447-6453.
dcterms.referencesAkuthota, P., et al., Immunoregulatory roles of eosinophils: a new look at a familiar cell. Clinical & Experimental Allergy, 2008. 38(8): p. 1254-1263.
dcterms.referencesAkuthota, P., et al., Immunoregulatory roles of eosinophils: a new look at a familiar cell. Clinical & Experimental Allergy, 2008. 38(8): p. 1254-1263.
dcterms.referencesPadigel, U.M., et al., Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infection and immunity, 2006. 74(6): p. 3232-3238.
dcterms.referencesRomano, M., et al., Hereditary eosinophil peroxidase deficiency: immunochemical and spectroscopic studies and evidence for a compound heterozygosity of the defect. Proceedings of the National Academy of Sciences, 1994. 91(26): p. 12496-12500.
dcterms.referencesEthier, C., P. Lacy, and F. Davoine, Identification of human eosinophils in whole blood by flow cytometry, in Eosinophils. 2014, Springer. p. 81-92.
dcterms.referencesBochner, B.S., Systemic activation of basophils and eosinophils: markers and consequences. Journal of allergy and clinical immunology, 2000. 106(5): p. S292-S302.
dcterms.referencesMatsumoto, K., et al., CD44 and CD69 represent different types of cell-surface activation markers for human eosinophils. American journal of respiratory cell and molecular biology, 1998. 18(6): p. 860-866.
dcterms.referencesFoussias, G., G.M. Yousef, and E.P. Diamandis, Molecular characterization of a Siglec8 variant containing cytoplasmic tyrosine-based motifs, and mapping of the Siglec8 gene. iochemical and biophysical research communications, 2000. 278(3): p. 775-781
dcterms.referencesBochner, B.S., Siglec‐8 on human eosinophils and mast cells, and Siglec‐F on murine eosinophils, are functionally related inhibitory receptors. Clinical & Experimental Allergy, 2009. 39(3): p. 317-324.
dcterms.referencesSon, K., et al., Improved recovery of functionally active eosinophils and neutrophils using novel immunomagnetic technology. Journal of immunological methods, 2017. 449: p. 44-55.
dcterms.referencesUrban Jr, J., F. Douvres, and F. Tromba, A rapid method for hatching Ascaris suum eggs n vitro. Proceedings of the Helminthological Society of Washington, 1981. 48(2): p. 241-243.
dcterms.referencesSarma, N.J., A. Takeda, and N.R. Yaseen, Colony forming cell (CFC) assay for human hematopoietic cells. JoVE (Journal of Visualized Experiments), 2010(46): p. e2195.
dcterms.referencesJames, C.E. and M.W. Davey, A rapid colorimetric assay for the quantitation of the viability of free-living larvae of nematodes in vitro. Parasitology research, 2007. 101(4): p. 975-980.
dcterms.referencesDeslyper, G., et al., The liver proteome in a mouse model for Ascaris suum resistance and susceptibility: evidence for an altered innate immune response. Parasit Vectors, 2019. 12(1): p. 402.
dcterms.referencesGiacomin, P.R., et al., The role of complement in innate, adaptive and eosinophildependent immunity to the nematode Nippostrongylus brasiliensis. Molecular immunology, 2008. 45(2): p. 446-455.
dcterms.referencesHaapasalo, K., T. Meri, and T.S. Jokiranta, <i>Loa loa</i> Microfilariae Evade Complement Attack In Vivo by Acquiring Regulatory Proteins from Host Plasma. Infection and Immunity, 2009. 77(9): p. 3886-3893.
dcterms.referencesMatsuyama, W., et al., Discoidin domain receptor 1 contributes to eosinophil survival in an NF-κB–dependent manner in Churg-Strauss syndrome. Blood, 2007. 109(1): p. 22- 30.
dc.rights.accessopenAccesses


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0