Publicación:
Cambios moleculares en la remodelación cardiaca por síndrome metabólico.

dc.contributor.authorVargas López, Misaelspa
dc.contributor.authorCortés Martínez, Edgar Fernandospa
dc.contributor.authorVelázquez Domínguez, José Antoniospa
dc.date.accessioned2020-07-15 00:00:00
dc.date.available2020-07-15 00:00:00
dc.date.issued2020-07-15
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.32997/rcb-2020-3160
dc.identifier.eissn2389-7252
dc.identifier.issn2215-7840
dc.identifier.urlhttps://doi.org/10.32997/rcb-2020-3160
dc.language.isospaspa
dc.publisherUniversidad de Cartagenaspa
dc.relation.bitstreamhttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3160/2687
dc.relation.citationeditionNúm. 2 , Año 2020spa
dc.relation.citationendpage146
dc.relation.citationissue2spa
dc.relation.citationstartpage131
dc.relation.citationvolume9spa
dc.relation.ispartofjournalRevista Ciencias Biomédicasspa
dc.relation.referencesAl-Daghri NM, Alkharfy KM, Al-Saleh Y, Al-Attas OS, Alokail MS, Al-Othman A, et al. Modest reversal of metabolic syndrome manifestations with vitamin D status correction: A 12-month prospective study. Metabolism [Internet]. 2012; 61(5): 661-6. https://doi.org/10.1016/j.metabol.2011.09.017spa
dc.relation.referencesTadic M, Cuspidi C. Childhood obesity and cardiac remodeling: From cardiac structure to myocardial mechanics. J Cardiovasc Med. 2015;16(8):538-46. https://doi.org/10.2459/JCM.0000000000000261spa
dc.relation.referencesXuZ,SunJ,TongQ,LinQ,QianL,ParkY,etal.The role of ERK1/2 in the development of diabetic cardiomyopathy. Int J Mol Sci. 2016;17(12):1-17. https://doi.org/10.3390/ijms17122001spa
dc.relation.referencesMartínez-Martínez E, López-Ándres N, Jurado-López R, Rousseau E, Bartolomé MV, Fernández-Celis A, et al. Galectin-3 participates in cardiovascular remodeling associated with obesity. Hypertension. 2015;66(5):961- 9. https://doi.org/10.1161/HYPERTENSIONAHA.115.06032spa
dc.relation.referencesDe Boer RA, V an Der V elde AR. Galectin-3: A new biomarker for heart failure progression and prognosis. Laboratoriums Medizin. 2013;37(5):251-60. https://doi.org/10.1515/labmed-2012-0073spa
dc.relation.referencesBobronnikova L. Galectin-3 as a potential biomarker of metabolic disorders and cardiovascular remodeling in patients with hypertension and type 2 diabetes. Vessel Plus. 2017;1(2):61-7. https://doi.org/10.20517/2574-1209.2016.10spa
dc.relation.referencesYue Y, Meng K, Pu Y, Zhang X. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pract [Internet]. 2017; 133: 124-30. Available from: https://doi.org/10.1016/j.diabres.2017.08.018spa
dc.relation.referencesLiu G, Ma C, Yang H, Zhang PY. Transforming growth factor β and its role in heart disease. Exp Ther Med. 2017;13(5):2123-8. https://doi.org/10.3892/etm.2017.4246spa
dc.relation.referencesLiu X, Liang E, Song X, Du Z, Zhang Y, Zhao Y. Inhibition of Pin1 alleviates myocardial fibrosis and dysfunction in STZ-induced diabetic mice. Biochem Biophys Res Commun 2016; 479(1): 109-15. https://doi.org/10.1016/j.bbrc.2016.09.050spa
dc.relation.referencesShaker YM, Soliman HA, Ezzat E, Hussein NS, Ashour E, Donia A, et al. Serum and urinary transforming growth factor beta 1 as biochemical markers in diabetic nephropathy patients. Beni-Suef Univ J Basic Appl Sci. 2014;3(1):16-23. https://doi.org/10.1016/j.bjbas.2014.02.002spa
dc.relation.referencesHuang GL, Qiu JH, Li BBin, Wu JJ, Lu Y, Liu XY, et al. Prolyl isomerase pin1 regulated signaling pathway revealed by pin1 +/+ and Pin1 -/- mouse embryonic fibroblast cells. Pathol Oncol Res. 2013; 19(4): 667-75. https://doi.org/10.1007/s12253-013-9629-xspa
dc.relation.referencesTurner, Blythe. Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. J Cardiovasc Dev Dis. 2019;6(3):27. https://doi.org/10.3390/jcdd6030027spa
dc.relation.referencesMuslin JA. MAPK Signaling in cardiovascular health and desease: Molecular mechanism and therapeutic targets. Clin Sci. 2009;115(7):203-18. https://doi.org/10.1042/CS20070430spa
dc.relation.referencesWang S, Ding L, Ji H, Xu Z, Liu Q, Zheng Y. Therole of p38 MAPK in the development of diabetic cardiomyopathy. Int J Mol Sci. 2016;17(7):1-14. https://doi.org/10.3390/ijms18010001spa
dc.relation.referencesCraige SM, Chen K, Blanton RM, Keaney JF, Kant S. JNK and cardiometabolic dysfunction. Biosci Rep. 2019;39(7):1-18. https://doi.org/10.1042/BSR20190267spa
dc.relation.referencesPal M, Febbraio MA, Lancaster GI. The roles of c-Jun NH2-terminal kinases (JNKs) in obesity and insulin resistance. J Physiol. 2016; 594(2): 267-79. https://doi.org/10.1113/JP271457spa
dc.relation.referencesSchumacher-Bass SM, Traynham CJ, Koch WJ. G protein-coupled receptor kinase 2 as a therapeutic target for heart failure. Drug Discov Today Ther Strateg. 2012;9(4):1-14. https://doi.org/10.1016/j.ddstr.2014.01.002spa
dc.relation.referencesWoodall MC, Ciccarelli M, Woodall BP, Koch WJ. GRK2 - A Link Between Myocardial Contractile Function and Cardiac Metabolism. Circ Res. 2014;114(10):1661-70. https://doi.org/10.1161/CIRCRESAHA.114.300513spa
dc.relation.referencesGoncąlves N, Falcaõ-Pires I, Leite-Moreira AF. Adipokines and their receptors: Potential new targets in cardiovascular diseases. Future Med Chem. 2015;7(2):139-57. https://doi.org/10.4155/fmc.14.147spa
dc.relation.referencesHui X, Lam KS, Vanhoutte PM, Xu A. Adiponectin and cardiovascular health: An update. Br J Pharmacol. 2012;165(3):574-90. https://doi.org/10.1111/j.1476-5381.2011.01395.xspa
dc.relation.referencesImo A. E, David C. GJ, Carlos J. R, Haiying C, Alain G. B. Mechanisms of heart failure in obesity. Obes Res Clin Pr. 2014;8(6):e540-8. https://doi.org/10.1016/j.orcp.2013.12.005spa
dc.relation.referencesKatsiki N, Mikhailidis DP , Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus review-article. Acta Pharmacol Sin. 2018;39(7):1176-88. https://doi.org/10.1038/aps.2018.40spa
dc.relation.referencesFujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, et al. NF-kβ and AP-1 Connection : Mechanism of NF-kβ Dependent Regulation of AP-1 Activity. 2004; 24(17): 7806-19. https://doi.org/10.1128/MCB.24.17.7806-7819.2004spa
dc.relation.referencesCraig R, Wagner M, McCardle T, Craig AG, Glembotski CC. The Cytoprotective Effects of the Glycoprotein 130 Receptor-coupled Cytokine, Cardiotrophin-1, Require Activation of NF-κB. J Biol Chem. 2001;276(40):37621- 9. https://doi.org/10.1074/jbc.M103276200spa
dc.relation.referencesHernández-Gutiérrez S, Rojas-del Castillo E. edigraphic.com. El Pap del factor transcripción NF-κB en la célula cardíaca. 2005;75:363-70.spa
dc.relation.referencesHiguchi M, Manna SK, Sasaki R, Aggarwal BB. Regulation of the activation of nuclear factor κB by mitochondrial respiratory function: Evidence for the reactive oxygen species-dependent and -independent pathways. Antioxidants Redox Signal. 2002; 4(6): 945-55. https://doi.org/10.1089/152308602762197489spa
dc.relation.referencesPurcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A. Activation of NF-κB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A. 2001;98(12):6668-73. https://doi.org/10.1073/pnas.111155798spa
dc.relation.referencesPark KR, Kwon MS, An JY, Lee JG, Youn HS, Lee Y, et al. Structural implications of Ca2+-dependent actin- bundling function of human EFhd2/Swiprosin-1. Sci Rep. 2016;6(July):1-15. https://doi.org/10.1038/srep39095spa
dc.relation.referencesHuh YH, Kim SH, Chung KH, Oh S, Kwon MS, Choi HW, et al. Swiprosin-1 modulates actin dynamics by regulating the F-actin accessibility to cofilin. Cell Mol Life Sci. 2013; 70(24): 4841-54. https://doi.org/10.1007/s00018-013-1447-5spa
dc.relation.referencesSchreckenberg R, Pöling J, Lörchner H. Swiprosin- 1/EFhD-2 Expression in Cardiac Remodeling and Post- Infarct Repair : Effect of Ischemic Conditioning. 2020; 2: 1-13.spa
dc.relation.referencesNippert F, Schreckenberg R, Hess A, Weber M, Schlüter KD. The effects of swiprosin-1 on the formation of pseudopodia-like structures and β- adrenoceptor coupling in cultured adult rat ventricular cardiomyocytes. PLoS One. 2016; 11(12): 1-15. https://doi.org/10.1371/journal.pone.0167655spa
dc.rightsRevista Ciencias Biomédicas - 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3160spa
dc.subjectCardiac remodelingeng
dc.subjectMetabolic syndromeeng
dc.subjectObesityeng
dc.subjectDiabeteseng
dc.subjectDyslipidemiaeng
dc.subjectMolecular biologyeng
dc.subjectRemodelación cardiacaspa
dc.subjectSíndrome metabólicospa
dc.subjectObesidadspa
dc.subjectDiabetesspa
dc.subjectDislipidemiasspa
dc.subjectBiología molecularspa
dc.titleCambios moleculares en la remodelación cardiaca por síndrome metabólico.spa
dc.title.translatedMolecular changes in cardiac remodeling due to metabolic syndrome.eng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: