Publicación:
Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros.

dc.contributor.authorCorrea Mejía, Diego Andrésspa
dc.contributor.authorLopera Castaño, Mauriciospa
dc.date.accessioned2019-04-01 00:00:00
dc.date.available2019-04-01 00:00:00
dc.date.issued2019-04-01
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.32997/2463-0470-vol.27-num.2-2019-2639
dc.identifier.eissn2463-0470
dc.identifier.issn0122-8900
dc.identifier.urihttps://hdl.handle.net/11227/13877
dc.identifier.urlhttps://doi.org/10.32997/2463-0470-vol.27-num.2-2019-2639
dc.language.isospaspa
dc.publisherUniversidad de Cartagenaspa
dc.relation.bitstreamhttps://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/download/2639/2220
dc.relation.citationeditionNúm. 2 , Año 2019spa
dc.relation.citationendpage526
dc.relation.citationissue2spa
dc.relation.citationstartpage510
dc.relation.citationvolume27spa
dc.relation.ispartofjournalPanorama Económicospa
dc.relation.referencesAltman, E. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.xspa
dc.relation.referencesAmendola, A., Giordano, F., Parrella, M., y Restaino, M. (2017). Variable selection in high-dimensional regression: a nonparametric procedure for business failure prediction. Applied Stochastic Models in Business and Industry, 33(4), 355-368. https://doi.org/10.1002/asmb.2240spa
dc.relation.referencesBarboza, F. , Kimura, H., y Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. https://doi.org/10.1016/j.eswa.2017.04.006spa
dc.relation.referencesBeaver, W. (1966). Financial Ratios As Predictors of Failure. Journal of Accounting Research, 4(1966), 71-111. https://doi.org/10.2307/2490171spa
dc.relation.referencesBen, S. (2017). Bankruptcy prediction using Partial Least Squares Logistic Regression. Journal of Retailing and Consumer Services, 36(November 2016), 197-202. https://doi.org/10.1016/j.jretconser.2017.02.005spa
dc.relation.referencesBredart, X., Vella, V., y Bonello, J. (2018). Machine Learning Models for Predicting Financial Distress. Journal of Research in Economics, 2(2), 174-185. https://doi.org/10.24954/JORE.2018.22spa
dc.relation.referencesCalabrese, R., y Osmetti, S. A. (2013). Modelling small and medium enterprise loan defaults as rare events: The generalized extreme value regression model. Journal of Applied Statistics, 40(6), 1172-1188. https://doi.org/10.1080/02664763.2013.784894spa
dc.relation.referencesCalabrese, R., y Osmetti, S. A. (2015). Improving forecast of binary rare events data: A gam-based approach. Journal of Forecasting, 34(3), 230-239. https://doi.org/10.1002/for.2335spa
dc.relation.referencesCorrea-García, J. A. (2005). De la partida doble al análisis financiero. Contaduría Universidad de Antioquia, (46), 169-194.spa
dc.relation.referencesCorrea-García, J. A., Gómez, S., y Londoño, F. (2018). Indicadores financieros y su eficiencia en la explicación de la generación de valor en el sector cooperativo. Rev.fac.cienc.econ., XXVI(2), 129-144. https://doi.org/10.18359/rfce.3859spa
dc.relation.referencesCorrea, D., Laura, M., Camila, R., y Alejandra, Y. (2018). Los indicadores de costos: una herramienta para gestionar la generación de valor en las empresas industriales colombianas. Estudios Gerenciales, 34(147), 190-199. https://doi.org/10.18046/j.estger.2018.147.2643spa
dc.relation.referencesCorrea, J., Pulgarín, A., Muñoz, L., y Álvarez, M. (2010). Marco normativo y antecedentes de la revelación contable en Colombia. Contaduría Universidad de Antioquia, (56), 269-292.spa
dc.relation.referencesCultrera, L., y Brédart, X. (2016). Bankruptcy prediction: The case of Belgian SMEs. Review of Accounting and Finance, 15(1), 101-119. https://doi.org/10.1108/RAF-06-2014-0059spa
dc.relation.referencesDinca, G., Baba, M. C., Dinca, M. S., Dauti, B., y Deari, F. (2017). Insolvency risk prediction using the logit and logistic models: Some evidences from Romania. Economic Computation and Economic Cybernetics Studies and Research, 51(4), 139-157.spa
dc.relation.referencesEling, M., y Jia, R. (2018). Business failure, efficiency, and volatility: Evidence from the European insurance industry. International Review of Financial Analysis, 59, 58-76. https://doi.org/10.1016/j.irfa.2018.07.007spa
dc.relation.referencesGupta, J., Gregoriou, A., y Ebrahimi, T. (2018). Empirical comparison of hazard models in predicting SMEs failure. Quantitative Finance, 18(3), 437-466. https://doi.org/10.1080/14697688.2017.1307514spa
dc.relation.referencesHastie, T., Tibshirani, R., Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Standford, California.spa
dc.relation.referencesHebous, S., y De Mooij, R. (2018). Curbing Corporate Debt Bias: Do Limitations to Interest Deductibility Work? Journal of Banking y Finance, 1-11. https://doi.org/10.1016/j.jbankfin.2018.07.013spa
dc.relation.referencesJabeur, S. Ben, y Fahmi, Y. (2018). Forecasting financial distress for French firms: a comparative study. Empirical Economics, 54(3), 1173-1186. https://doi.org/10.1007/s00181-017-1246-1spa
dc.relation.referencesJayasekera, R. (2018). Prediction of company failure: Past, present and promising directions for the future. International Review of Financial Analysis, 55, 196-208. https://doi.org/10.1016/j.irfa.2017.08.009spa
dc.relation.referencesJones, S., Johnstone, D., y Wilson, R. (2017). Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks. Journal of Business Finance and Accounting, 44(1-2), 3-34. https://doi.org/10.1111/jbfa.12218spa
dc.relation.referencesJovanovik, D., Todorovic, M., y Grbic, M. (2017). Financial Indicators as Predictors of Illiquidity. Romanian Journal of Economic Forecasting, 20(1), 128-149.spa
dc.relation.referencesKovacova, M., y Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium-Quarterly Journal of Economics and Economic Policy, 12(4), 775-791. https://doi.org/10.24136/eq.v12i4.40spa
dc.relation.referencesLe, T., Son, L. H., Vo, M. T., Lee, M. Y., y Baik, S. W. (2018). A cluster-based boosting algorithm for bankruptcy prediction in a highly imbalanced dataset. Symmetry, 10(7), 1-12. https://doi.org/10.3390/sym10070250spa
dc.relation.referencesLey 1116. (2006). Diario Oficial No. 46.494 de 27 de diciembre de 2006, Colombia, diciembre 27 de 2006.spa
dc.relation.referencesLyandres, E., y Zhdanov, A. (2013). Investment opportunities and bankruptcy prediction. Journal of Financial Markets, 16(3), 439-476. https://doi.org/10.1016/j.finmar.2012.10.003spa
dc.relation.referencesNyitrai, T., y Virág, M. (2018). The effects of handling outliers on the performance of bankruptcy prediction models. Socio-Economic Planning Sciences, 1-9. https://doi.org/10.1016/0304-3762(82)90059-1spa
dc.relation.referencesPérez, J., Lopera, M., y Vásquez, F. (2017). Estimación de la probabilidad de riesgo de quiebra en las empresas colombianas a partir de un modelo para eventos raros. Cuadernos de Administración, 30(54), 7-38. https://doi.org/10.11144/Javeriana.cao30-54.eprqespa
dc.relation.referencesRodríguez, J. (2007). Nuevo régimen de insolvencia. Bogotá, Colombia: Universidad Externado de Colombia.spa
dc.relation.referencesRomero, F., Melgarejo, Z., y Vera, M. (2015). Fracaso empresarial de las pequeñas y medianas empresas (pymes) en Colombia. Suma de Negocios, 6(13), 29-41. https://doi.org/10.1016/j.sumneg.2015.08.003spa
dc.relation.referencesTian, S. , y Yu, Y. (2017). Financial ratios and bankruptcy predictions: An international evidence. International Review of Economics and Finance, 51, 510-526. https://doi.org/10.1016/j.iref.2017.07.025spa
dc.relation.referencesUpegui, A. y Londoño, Á. (2011). Comentarios al régimen de insolvencia empresarial. Bogotá, Colombia: Legis Editores.spa
dc.relation.referencesVélez, L. (2011). ¿Qué tan bueno es el sistema de insolvencia empresarial colombiano? Revista Supersociedades, 2, 5-6.spa
dc.relation.referencesWang, G., Ma, J., y Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications, 41(5), 2353-2361. https://doi.org/10.1016/j.eswa.2013.09.033spa
dc.relation.referencesWilches, R. (2008). Vacíos e inconsistencias estructurales del nuevo régimen de insolvencia empresarial colombiano. Identificación y propuestas de solución. Vniversitas, (117), 197-218.spa
dc.relation.referencesWilches, R. (2009). La insolvencia transfronteriza en el derecho colombiano. Revista de Derecho, (32), 162-198.spa
dc.relation.referencesYazdanfar, D., y Öhman, P. (2015). Debt financing and firm performance: an empirical study based on Swedish data. The Journal of Risk Finance, 16(1), 102-118. https://doi.org/10.1108/JRF-06-2014-0085spa
dc.rightsPanorama Económico - 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0spa
dc.sourcehttps://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/2639spa
dc.subjectInsolvencyeng
dc.subjectFinancial indicatorseng
dc.subjectFinancial analysiseng
dc.subjectBoosting algorithmeng
dc.subjectLogistic regressioneng
dc.subjectInsolvencia empresarialspa
dc.subjectIndicadores financierosspa
dc.subjectAnálisis financierospa
dc.subjectAlgoritmo boostingspa
dc.subjectRegresión logísticaspa
dc.subjectInsolvabilité des entreprisesspa
dc.subjectIndicateurs financiersspa
dc.subjectAnalyse financièrespa
dc.subjectAlgorithme de boostingspa
dc.subjectRégression logistiquespa
dc.titlePronóstico de insolvencia empresarial en Colombia a través de indicadores financieros.spa
dc.title.translatedForecast of business insolvency in Colombia through financial indicators.eng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: