Datos de Contacto
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...
dc.contributor.author | Correa Mejía, Diego Andrés | spa |
dc.contributor.author | Lopera Castaño, Mauricio | spa |
dc.date.accessioned | 2019-04-01 00:00:00 | |
dc.date.available | 2019-04-01 00:00:00 | |
dc.date.issued | 2019-04-01 | |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | 10.32997/2463-0470-vol.27-num.2-2019-2639 | |
dc.identifier.eissn | 2463-0470 | |
dc.identifier.issn | 0122-8900 | |
dc.identifier.uri | https://hdl.handle.net/11227/13877 | |
dc.identifier.url | https://doi.org/10.32997/2463-0470-vol.27-num.2-2019-2639 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Cartagena | spa |
dc.relation.bitstream | https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/download/2639/2220 | |
dc.relation.citationedition | Núm. 2 , Año 2019 | spa |
dc.relation.citationendpage | 526 | |
dc.relation.citationissue | 2 | spa |
dc.relation.citationstartpage | 510 | |
dc.relation.citationvolume | 27 | spa |
dc.relation.ispartofjournal | Panorama Económico | spa |
dc.relation.references | Altman, E. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x | spa |
dc.relation.references | Amendola, A., Giordano, F., Parrella, M., y Restaino, M. (2017). Variable selection in high-dimensional regression: a nonparametric procedure for business failure prediction. Applied Stochastic Models in Business and Industry, 33(4), 355-368. https://doi.org/10.1002/asmb.2240 | spa |
dc.relation.references | Barboza, F. , Kimura, H., y Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. https://doi.org/10.1016/j.eswa.2017.04.006 | spa |
dc.relation.references | Beaver, W. (1966). Financial Ratios As Predictors of Failure. Journal of Accounting Research, 4(1966), 71-111. https://doi.org/10.2307/2490171 | spa |
dc.relation.references | Ben, S. (2017). Bankruptcy prediction using Partial Least Squares Logistic Regression. Journal of Retailing and Consumer Services, 36(November 2016), 197-202. https://doi.org/10.1016/j.jretconser.2017.02.005 | spa |
dc.relation.references | Bredart, X., Vella, V., y Bonello, J. (2018). Machine Learning Models for Predicting Financial Distress. Journal of Research in Economics, 2(2), 174-185. https://doi.org/10.24954/JORE.2018.22 | spa |
dc.relation.references | Calabrese, R., y Osmetti, S. A. (2013). Modelling small and medium enterprise loan defaults as rare events: The generalized extreme value regression model. Journal of Applied Statistics, 40(6), 1172-1188. https://doi.org/10.1080/02664763.2013.784894 | spa |
dc.relation.references | Calabrese, R., y Osmetti, S. A. (2015). Improving forecast of binary rare events data: A gam-based approach. Journal of Forecasting, 34(3), 230-239. https://doi.org/10.1002/for.2335 | spa |
dc.relation.references | Correa-García, J. A. (2005). De la partida doble al análisis financiero. Contaduría Universidad de Antioquia, (46), 169-194. | spa |
dc.relation.references | Correa-García, J. A., Gómez, S., y Londoño, F. (2018). Indicadores financieros y su eficiencia en la explicación de la generación de valor en el sector cooperativo. Rev.fac.cienc.econ., XXVI(2), 129-144. https://doi.org/10.18359/rfce.3859 | spa |
dc.relation.references | Correa, D., Laura, M., Camila, R., y Alejandra, Y. (2018). Los indicadores de costos: una herramienta para gestionar la generación de valor en las empresas industriales colombianas. Estudios Gerenciales, 34(147), 190-199. https://doi.org/10.18046/j.estger.2018.147.2643 | spa |
dc.relation.references | Correa, J., Pulgarín, A., Muñoz, L., y Álvarez, M. (2010). Marco normativo y antecedentes de la revelación contable en Colombia. Contaduría Universidad de Antioquia, (56), 269-292. | spa |
dc.relation.references | Cultrera, L., y Brédart, X. (2016). Bankruptcy prediction: The case of Belgian SMEs. Review of Accounting and Finance, 15(1), 101-119. https://doi.org/10.1108/RAF-06-2014-0059 | spa |
dc.relation.references | Dinca, G., Baba, M. C., Dinca, M. S., Dauti, B., y Deari, F. (2017). Insolvency risk prediction using the logit and logistic models: Some evidences from Romania. Economic Computation and Economic Cybernetics Studies and Research, 51(4), 139-157. | spa |
dc.relation.references | Eling, M., y Jia, R. (2018). Business failure, efficiency, and volatility: Evidence from the European insurance industry. International Review of Financial Analysis, 59, 58-76. https://doi.org/10.1016/j.irfa.2018.07.007 | spa |
dc.relation.references | Gupta, J., Gregoriou, A., y Ebrahimi, T. (2018). Empirical comparison of hazard models in predicting SMEs failure. Quantitative Finance, 18(3), 437-466. https://doi.org/10.1080/14697688.2017.1307514 | spa |
dc.relation.references | Hastie, T., Tibshirani, R., Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Standford, California. | spa |
dc.relation.references | Hebous, S., y De Mooij, R. (2018). Curbing Corporate Debt Bias: Do Limitations to Interest Deductibility Work? Journal of Banking y Finance, 1-11. https://doi.org/10.1016/j.jbankfin.2018.07.013 | spa |
dc.relation.references | Jabeur, S. Ben, y Fahmi, Y. (2018). Forecasting financial distress for French firms: a comparative study. Empirical Economics, 54(3), 1173-1186. https://doi.org/10.1007/s00181-017-1246-1 | spa |
dc.relation.references | Jayasekera, R. (2018). Prediction of company failure: Past, present and promising directions for the future. International Review of Financial Analysis, 55, 196-208. https://doi.org/10.1016/j.irfa.2017.08.009 | spa |
dc.relation.references | Jones, S., Johnstone, D., y Wilson, R. (2017). Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks. Journal of Business Finance and Accounting, 44(1-2), 3-34. https://doi.org/10.1111/jbfa.12218 | spa |
dc.relation.references | Jovanovik, D., Todorovic, M., y Grbic, M. (2017). Financial Indicators as Predictors of Illiquidity. Romanian Journal of Economic Forecasting, 20(1), 128-149. | spa |
dc.relation.references | Kovacova, M., y Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium-Quarterly Journal of Economics and Economic Policy, 12(4), 775-791. https://doi.org/10.24136/eq.v12i4.40 | spa |
dc.relation.references | Le, T., Son, L. H., Vo, M. T., Lee, M. Y., y Baik, S. W. (2018). A cluster-based boosting algorithm for bankruptcy prediction in a highly imbalanced dataset. Symmetry, 10(7), 1-12. https://doi.org/10.3390/sym10070250 | spa |
dc.relation.references | Ley 1116. (2006). Diario Oficial No. 46.494 de 27 de diciembre de 2006, Colombia, diciembre 27 de 2006. | spa |
dc.relation.references | Lyandres, E., y Zhdanov, A. (2013). Investment opportunities and bankruptcy prediction. Journal of Financial Markets, 16(3), 439-476. https://doi.org/10.1016/j.finmar.2012.10.003 | spa |
dc.relation.references | Nyitrai, T., y Virág, M. (2018). The effects of handling outliers on the performance of bankruptcy prediction models. Socio-Economic Planning Sciences, 1-9. https://doi.org/10.1016/0304-3762(82)90059-1 | spa |
dc.relation.references | Pérez, J., Lopera, M., y Vásquez, F. (2017). Estimación de la probabilidad de riesgo de quiebra en las empresas colombianas a partir de un modelo para eventos raros. Cuadernos de Administración, 30(54), 7-38. https://doi.org/10.11144/Javeriana.cao30-54.eprqe | spa |
dc.relation.references | Rodríguez, J. (2007). Nuevo régimen de insolvencia. Bogotá, Colombia: Universidad Externado de Colombia. | spa |
dc.relation.references | Romero, F., Melgarejo, Z., y Vera, M. (2015). Fracaso empresarial de las pequeñas y medianas empresas (pymes) en Colombia. Suma de Negocios, 6(13), 29-41. https://doi.org/10.1016/j.sumneg.2015.08.003 | spa |
dc.relation.references | Tian, S. , y Yu, Y. (2017). Financial ratios and bankruptcy predictions: An international evidence. International Review of Economics and Finance, 51, 510-526. https://doi.org/10.1016/j.iref.2017.07.025 | spa |
dc.relation.references | Upegui, A. y Londoño, Á. (2011). Comentarios al régimen de insolvencia empresarial. Bogotá, Colombia: Legis Editores. | spa |
dc.relation.references | Vélez, L. (2011). ¿Qué tan bueno es el sistema de insolvencia empresarial colombiano? Revista Supersociedades, 2, 5-6. | spa |
dc.relation.references | Wang, G., Ma, J., y Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications, 41(5), 2353-2361. https://doi.org/10.1016/j.eswa.2013.09.033 | spa |
dc.relation.references | Wilches, R. (2008). Vacíos e inconsistencias estructurales del nuevo régimen de insolvencia empresarial colombiano. Identificación y propuestas de solución. Vniversitas, (117), 197-218. | spa |
dc.relation.references | Wilches, R. (2009). La insolvencia transfronteriza en el derecho colombiano. Revista de Derecho, (32), 162-198. | spa |
dc.relation.references | Yazdanfar, D., y Öhman, P. (2015). Debt financing and firm performance: an empirical study based on Swedish data. The Journal of Risk Finance, 16(1), 102-118. https://doi.org/10.1108/JRF-06-2014-0085 | spa |
dc.rights | Panorama Económico - 2019 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.creativecommons | Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0 | spa |
dc.source | https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/2639 | spa |
dc.subject | Insolvency | eng |
dc.subject | Financial indicators | eng |
dc.subject | Financial analysis | eng |
dc.subject | Boosting algorithm | eng |
dc.subject | Logistic regression | eng |
dc.subject | Insolvencia empresarial | spa |
dc.subject | Indicadores financieros | spa |
dc.subject | Análisis financiero | spa |
dc.subject | Algoritmo boosting | spa |
dc.subject | Regresión logística | spa |
dc.subject | Insolvabilité des entreprises | spa |
dc.subject | Indicateurs financiers | spa |
dc.subject | Analyse financière | spa |
dc.subject | Algorithme de boosting | spa |
dc.subject | Régression logistique | spa |
dc.title | Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros. | spa |
dc.title.translated | Forecast of business insolvency in Colombia through financial indicators. | eng |
dc.type | Artículo de revista | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.local | Journal article | eng |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication |
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...