Datos de Contacto
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...
dc.contributor.advisor | Acevedo Caballero, Nathalie | |
dc.contributor.author | Zelaya Vallecillo, Bayron Mijail | |
dc.date.accessioned | 2021-10-26T14:56:43Z | |
dc.date.available | 2021-10-26T14:56:43Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Se estima que el fenotipo de superposición EPOC/asma (ACO) afecta aproximadamente al 20% de los pacientes con asma y a más del 30 % de los pacientes con EPOC. El estudio de este fenotipo ACO no solo es de gran interés teórico por las posibles vías inflamatorias que pudieran estar involucradas en su patogénesis sino por las repercusiones que tiene en los individuos que lo padecen. Se sabe que los pacientes con ACO sufren deterioro importante en la calidad de vida, ya que presentan síntomas respiratorios más fuertes, más disnea, más sibilancias, y niveles reducidos de actividad física. Además, el ACO se asocia con exacerbaciones más frecuentes, mayor tasa de hospitalización y mayores costos de atención médica que el asma o la EPOC por sí solas. El objetivo de este trabajo de grado fue analizar los niveles de las proteínas NGAL y YKL-40 en plasma como biomarcadores de la respuesta inflamatoria en el fenotipo ACO. Para ello se midieron estos marcadores en el plasma de 397 individuos que incluían 100 controles, 100 pacientes con EPOC, 74 pacientes con ACO y 123 pacientes con asma. También se analizó la relación entre los niveles de esos marcadores con los conteos de leucocitos en sangre periférica y 67 proteínas indicadoras de inflamación en el plasma. Los resultados mostraron que los niveles de YKL-40 y NGAL no difieren entre los pacientes con ACO y los pacientes con EPOC. Además, encontramos que, si bien NGAL mostró diferencias significativas en sus niveles entre los asmáticos y los pacientes con ACO, los análisis de área bajo la curva (AUC) mostraron que NGAL no tiene la capacidad de diferenciar esos dos fenotipos con una AUC > 0.70. Otro hallazgo importante en este estudio fue la observación de que ninguno de los conteos de leucocitos circulantes ya sean linfocitos, neutrófilos o monocitos mostraron diferencias entre los pacientes con ACO y los pacientes con EPOC o con asma. Sin embargo, cuando se analizó el cociente neutrófilos/linfocitos (NLR) se encontró que este era más alto en pacientes con ACO comparado con pacientes con asma y pudiera ser considerado dentro de los marcadores que pudieran ayudar a distinguir estos dos fenotipos. Los análisis de regresión corrigiendo por edad y género confirmaron que NGAL se asocia con ACO, mientras que la asociación con YKL-40 desaparece después de la corrección. Los niveles de la proteína YKL-40 se correlacionaron con otras proteínas en el plasma siendo las más significativas CST5, IL-10RB, OPG y VEGFA mientras que las correlaciones más significativas para los niveles de NGAL se encontraron con IL6, OSM, PDL1, TNF, CCL23, CD40, EN-RAGE y TGF-alfa. Cabe destacar que algunas de esas proteínas han sido asociadas al fenotipo ACO y en este estudio se pudo evidenciar por ejemplo la relación de los niveles de NGAL con CCL23, CCL25, EN-RAGE e IL-6. También se encontró que los niveles de NGAL y YLK-40 son directamente proporcionales a los conteos de monocitos y neutrófilos en sangre periférica. En conclusión, los biomarcadores NGAL y YLK-40 por si solos no tienen la capacidad de diferenciar a los pacientes con el fenotipo ACO de aquellos con asma y EPOC. Sin embargo, se observan diferencias en sus niveles cuando se comparan los pacientes con ACO con los controles sanos y se encontraron relaciones entre esas proteínas y los parámetros de función pulmonar, con el número de leucocitos y con los niveles de otros mediadores inflamatorios. Este estudio también confirma el aumento significativo de YLK-40 y de NGAL en pacientes con EPOC comparado con controles sanos sugiriendo que esas proteínas pudieran estar involucradas en su fisiopatología. Se requieren estudios futuros donde todos estos datos puedan ser analizados en combinación y empleando herramientas integrativas con el fin de aumentar su sensibilidad y especificidad. Los resultados también sugieren que el fenotipo ACO si bien tiene ciertas diferencias con la EPOC, son ambas entidades indistinguibles en términos de los mediadores analizados aquí y sugiere que el ACO pudiera ser más un fenotipo del EPOC que una entidad en sí misma como. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Inmunología | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://hdl.handle.net/11227/13504 | |
dc.identifier.uri | http://dx.doi.org/10.57799/11227/1354 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Cartagena | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Cartagena de India | spa |
dc.publisher.program | Maestría en Inmunología | spa |
dc.rights | Derechos Reservados - Universidad de Cartagena, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.armarc | Inmunología | |
dc.subject.armarc | Inmunidad | |
dc.subject.armarc | Células | |
dc.subject.armarc | Inmunotecnología | |
dc.title | Análisis de los niveles de NGAL y YKL-40 como biomarcadores de la respuesta inflamatoria en el fenotipo de superposición EPOC/Asma | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Baptista, E. A., Dey, S. & Pal, S. Chronic respiratory disease mortality and its associated factors in selected Asian countries: evidence from panel error correction model. BMC Public Health 21, (2021). | spa |
dcterms.references | Executive Committee and Planning Group meeting. Global Alliance Against Chronic Respiratory Diseases (GARD). World Health Organization (2017). | spa |
dcterms.references | Soriano, J. B. et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 5, 691–706 (2017). | spa |
dcterms.references | Izuhara, K. & Barnes, P. J. Can We Define Asthma-COPD Overlap (ACO) by Biomarkers? J. Allergy Clin. Immunol. Pract. 7, 146–147 (2019). | spa |
dcterms.references | Gava, G. et al. Analysis of Blood Biomarkers in Patients with Chronic Obstructive Pulmonary Disease (COPD) and with Asthma-COPD Overlap (ACO). COPD J. Chronic Obstr. Pulm. Dis. 17, 306–310 (2020). | spa |
dcterms.references | Gao, J. et al. Characterization of sputum biomarkers for asthma-COPD overlap syndrome. Int. J. COPD 11, 2457–2465 (2016). | spa |
dcterms.references | Wang, J. et al. Plasma YKL-40 and NGAL are useful in distinguishing ACO from asthma and COPD. Respir. Res. 19, 47 (2018). | spa |
dcterms.references | Bousquet, J., Dahl, R. & Khaltaev, N. Global Alliance against Chronic Respiratory Diseases. World Heal. Organ. 62, 216–223 (2007). | spa |
dcterms.references | Stern, J., Pier, J. & Litonjua, A. A. Asthma epidemiology and risk factors. Semin. Immunopathol. 42, 5–15 (2020). | spa |
dcterms.references | Forum international Respiratory Societies. The Global Impact of Respiratory Disease – Second Edition Forum of International Respiratory Societies. Sheffield, European Respiratory Society, 2017. IMAGE (2017). doi:10.1016/j.expthermflusci.2015.12.005 | spa |
dcterms.references | Tan, K. Sen et al. Respiratory Viral Infections in Exacerbation of Chronic Airway Inflammatory Diseases: Novel Mechanisms and Insights From the Upper Airway Epithelium. Front. Cell Dev. Biol. 8, 99 (2020). | spa |
dcterms.references | Vázquez-García, J. C. et al. Estrategia de telesalud para mejorar el diagnostico de EPOC y asma en Mexico en el primer nivel de atención. Neumol. y Cir. Torax(Mexico) 80, 11– 18 (2021). | spa |
dcterms.references | Zhou, X. L. & Zhao, L. Y. Comparison of clinical features and outcomes for asthma-COPD overlap syndrome vs. COPD patients: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 25, 1495–1510 (2021). | spa |
dcterms.references | Miravitlles, M. et al. Algorithm for identification of asthma - COPD overlap: Consensus between the Spanish COPD and asthma guidelines. Eur. Respir. J. 49, 10–12 (2017). | spa |
dcterms.references | GOLD-GINA. Diagnosis of Diseases of Chronic Airflow Limitation: Asthma. COPD and Asthma-COPD Overlap Syndrome (ACOS). Glob. Initiat. asthma Glob. Initiat. chronic Obstr. lung Dis. 189–193 (2015). doi:10.1007/978-3-662-47178-4_13 | spa |
dcterms.references | Marsh, S. E. et al. Proportional classifications of COPD phenotypes. Thorax 63, 761–767 (2008). | spa |
dcterms.references | Alshabanat, A., Zafari, Z., Albanyan, O., Dairi, M. & FitzGerald, J. M. Asthma and COPD overlap syndrome (ACOS): A systematic review and meta analysis. PLoS One 10, (2015). | spa |
dcterms.references | Miravitlles, M. et al. Characterisation of the overlap COPD-asthma phenotype. Focus on physical activity and health status. Respir. Med. 107, 1053–1060 (2013). | spa |
dcterms.references | Plaza, V. et al. Consenso sobre el solapamiento de asma y EPOC (ACO) entre la Guía española de la EPOC (GesEPOC) y la Guía Española para el Manejo del Asma (GEMA). Arch. Bronconeumol. 53, 443–449 (2017). | spa |
dcterms.references | Gelb, A. F., Christenson, S. A. & Nadel, J. A. Understanding the pathophysiology of the asthma-chronic obstructive pulmonary disease overlap syndrome. Curr. Opin. Pulm. Med. 22, 100–105 (2016) | spa |
dcterms.references | Hardin, M. et al. The clinical and genetic features of COPD-asthma overlap syndrome. Eur. Respir. J. 44, 341–350 (2014). | spa |
dcterms.references | Rhee, C. K. Phenotype of asthma-chronic obstructive pulmonary disease overlap syndrome. Korean Journal of Internal Medicine 30, 443–449 (2015). | spa |
dcterms.references | National Institute of Health/ National Institute of cancer. Available at: https://www.nih.gov/about-nih/what-we-do/nih-almanac/national-cancer-institutenci | spa |
dcterms.references | Lee, H., Van Tho, N., Nakano, Y., Lee, B. J. & Park, H. Y. A diagnostic approach and natural course of a patient with asthma-COPD overlap syndrome. Respirol. Case Reports 3, 119–121 (2015). | spa |
dcterms.references | Maselli, D. J. & Hanania, N. A. Management of asthma COPD overlap. Ann. Allergy, Asthma Immunol. 123, 335–344 (2019). | spa |
dcterms.references | Silva O., R., Montes, J. F., García-Valero, J. & Olloquequi, J. Cellular effectors of the inflammatory response in chronic obstructive pulmonary disease (COPD). Rev. Med. Chil. 143, 1162–1171 (2015) | spa |
dcterms.references | Athanazio, R. Airway disease: Similarities and differences between asthma, COPD and bronchiectasis. Clinics 67, 1335–1343 (2012). | spa |
dcterms.references | Reséndiz-Hernández, J. M., Camarena, Á., Pérez-Rubio, G. & Falfán-Valencia, R. Mecanismos inmunológicos de la respuesta inflamatoria en EPOC. Revista del Instituto Nacional de Enfermedades Respiratorias 69, 210–217 (2010). | spa |
dcterms.references | Cosío, B. G. EPOC. Arch Bronconeumol. 43, 15–23 (2007). | spa |
dcterms.references | Pazmiño, F. A. & Navarrete-Jiménez, M. L. Immunologic mechanisms involved in the pathology of allergic asthma. Revista Facultad de Medicina 62, 639–647 (2014). | spa |
dcterms.references | Núñez-Naveira, L., Montero-Martínez, C. & Ramos-Barbón, D. Oxidación, inflamación y modificaciones estructurales. Arch. Bronconeumol. 43, 18–29 (2007) | spa |
dcterms.references | Fu, J. J., McDonald, V. M., Gibson, P. G. & Simpson, J. L. Systemic inflammation in older adults with asthma-COPD overlap syndrome. Allergy, Asthma Immunol. Res. 6, 316–324 (2014). | spa |
dcterms.references | Aksoy, E. et al. Neutrophil to lymphocyte ratio is a better indicator of COPD exacerbation severity in neutrophilic endotypes than eosinophilic endotypes. Int. J. COPD 13, 2721–2730 (2018). | spa |
dcterms.references | Saitoh, T. et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12, 109–116 (2012). | spa |
dcterms.references | Abadie, V. et al. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106, 1843–1850 (2005). | spa |
dcterms.references | Puga, I. et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 13, 170–180 (2012). | spa |
dcterms.references | Jaeger, B. N. et al. Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. J. Exp. Med. 209, 565–580 (2012). | spa |
dcterms.references | Borregaard, N., Sørensen, O. E. & Theilgaard-Mönch, K. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 28, 340–345 (2007). | |
dcterms.references | Németh, T., Sperandio, M. & Mócsai, A. Neutrophils as emerging therapeutic targets. Nat. Rev. Drug Discov. 19, 253–275 (2020). | |
dcterms.references | Talukdar, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412 (2012). | |
dcterms.references | Drechsler, M., Megens, R. T. A., Van Zandvoort, M., Weber, C. & Soehnlein, O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122, 1837–1845 (2010). | |
dcterms.references | fridlenber 2009.pdf. | |
dcterms.references | Jönsson, F. et al. Mouse and human neutrophils induce anaphylaxis. J. Clin. Invest. 121, 1484–1496 (2011). | |
dcterms.references | Wei, Q. et al. Relationship between Th17-mediated immunity and airway inflammation in childhood neutrophilic asthma. Allergy, Asthma Clin. Immunol. 17, 1–12 (2021). | |
dcterms.references | Panettieri, R. A. Neutrophilic and Pauci-immune Phenotypes in Severe Asthma. Immunol. Allergy Clin. North Am. 36, 569–579 (2016). | |
dcterms.references | Panettieri, R. A. The Role of Neutrophils in Asthma. Immunol. Allergy Clin. North Am. 38, 629–638 (2018). | |
dcterms.references | Shilovskiy, I. P., Nikolskii, A. A., Kurbacheva, O. M. & Khaitov, M. R. Modern View of Neutrophilic Asthma Molecular Mechanisms and Therapy. Biochem. 85, 854–868 (2020). | |
dcterms.references | David, B., Bafadhel, M., Koenderman, L. & Soyza, A. De. Eosinophilic inflammation in COPD : from an inflammatory marker to a treatable trait. Trorax 76, 188–195 (2021). | |
dcterms.references | Benjamin, J. T. et al. Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD. J. Clin. Invest. 131, 1–16 (2021). | |
dcterms.references | Proboszcz, M. & Paplińska-, M. Phenotypic Variations of Mild-to-Moderate Obstructive Pulmonary Diseases According to Airway Inflammation and Clinical Features. Jorunal Inflamm. Res. 14, 2793–2806 (2021). | |
dcterms.references | Jasper, A. E., Mciver, W. J., Sapey, E. & Walton, G. M. Understanding the role of neutrophils in chronic inflammatory airway disease [ version 1 ; peer review : 2 approved ]. F1000Research 8, 557 (2019). | |
dcterms.references | Iwamoto, H. et al. Differences in plasma and sputum biomarkers between COPD and COPD-asthma overlap. Eur. Respir. J. 43, 421–429 (2014). | |
dcterms.references | Coillard, A. & Segura, E. In vivo differentiation of human monocytes. Front. Immunol. 10, (2019). | |
dcterms.references | Korotkaya, E., Iakovleva, Y., Feoktistov, I. & Sazonov, A. with bronchial asthma. 464, 1314–1320 (2016). | |
dcterms.references | Cosío, B. G. EPOC. Arch. Bronconeumol. 43, 15–23 (2007). | |
dcterms.references | Fan Wang, Jiayan Nie, H. W. Characteristics of peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J. Infetious Dieseases 221, 1762–1769 (2020). | |
dcterms.references | Parra-Ortega, I. et al. Detection and quantification of T-cell subpopulations and NK cells in peripheral blood from healthy individuals. Bol. Med. Hosp. Infant. Mex. 76, 66–78 (2019). | |
dcterms.references | . Luo, X. H., Zhu, Y., Mao, J. & Du, R. C. T cell immunobiology and cytokine storm of COVID-19. Scandinavian Journal of Immunology 93, (2021). | |
dcterms.references | Silva O, R., Montes, J. F., García-Valero, J. & Olloquequi, J. Efectores celulares de larespuesta inflamatoria en la enfermedad pulmonar obstructiva crónica. Rev. Med. Chil. 143, 1162–1171 (2015). | |
dcterms.references | Jimenez-Alvarez Luis , Joaquin Zuniga Ramos, G. R.-M. Mecanismos Moleculares y Respuesta Inmune En El Pulmón. Rev. Inst. Nac. Enfermedades Respir. 22, 304–315 (2010). | |
dcterms.references | Guthrie, G. J. K. et al. The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer. Critical Reviews in Oncology/Hematology 88, 218–230 (2013). | |
dcterms.references | Yuan, L. et al. The correlational study about neutrophil-to-lymphocyte ratio and exercise tolerance of chronic obstructive pulmonary disease patients. Medicine (Baltimore). 99, e21550 (2020). | |
dcterms.references | Urrejola, G. I. et al. Un índice neutrófilo/linfocito elevado se asocia a peor pronóstico en. Rev. Med. Chil. 141, 602–608 (2013) | |
dcterms.references | Zahorec, R. Ratio of neutrophil to lymphocyte counts--rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl. Lek. Listy 102, 5–14 (2001). | |
dcterms.references | Lee, S. J. et al. Usefulness of neutrophil to lymphocyte ratio in patients with chronic obstructive pulmonary disease: A prospective observational study. Korean J. Intern. Med. 31, 891–898 (2016). | |
dcterms.references | Juusela, M. et al. Bronchial hyperresponsiveness in an adult population in Helsinki: Decreased FEV1, the main determinant. Clin. Respir. J. 7, 34–44 (2013). | |
dcterms.references | Chis, A. F. & Pop, C. M. Correlations between neutrophil to lymphocyte ratio, blood eosinophils and clinical characteristics in chronic obstructive pulmonary disease. Med. Pharm. Reports 93, (2019). | |
dcterms.references | Forget, P. et al. What is the normal value of the neutrophil-to-lymphocyte ratio? BMC Res. Notes 10, 1–4 (2017). | |
dcterms.references | Kjeldsen, L., Johnsen, A. H., Sengelov, H. & Borregaard, N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem. 268, 10425–10432 (1993). | |
dcterms.references | Flower, D. R., North, A. C. T. & Sansom, C. E. The lipocalin protein family: Structural and sequence overview. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology 1482, 9–24 (2000). | |
dcterms.references | Goetz, D. H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043 (2002). | |
dcterms.references | Cowland, J. B., Sørensen, O. E., Sehested, M. & Borregaard, N. Neutrophil GelatinaseAssociated Lipocalin Is Up-Regulated in Human Epithelial Cells by IL-1β, but Not by TNFα. J. Immunol. 171, 6630–6639 (2003). | |
dcterms.references | Chakraborty, S., Kaur, S., Guha, S. & Batra, S. K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochimica et Biophysica Acta - Reviews on Cancer 1826, 129–169 (2012). | |
dcterms.references | Marti-Macia, C. et al. Análisis de la lipocalina asociada a la gelatinasa de neutrófilos en el paciente crítico. Med. Intensiva 38, 146–153 (2014). | |
dcterms.references | Guo, Y., Zhai, J., Zhang, J. & Zhou, H. NGAL protects in nasopharyngeal carcinoma by inducing apoptosis and blocking epithelial-mesenchymal transition. Oncol. Lett. 19, 3711–3718 (2020). | |
dcterms.references | Latoch, E. et al. Urine NGAL and KIM-1: tubular injury markers in acute lymphoblastic leukemia survivors. Cancer Chemother. Pharmacol. (2020). doi:10.1007/s00280-020- 04164-3 | |
dcterms.references | Maleki-Sadeghi, N., Rahmani, P., Aghsaeifard, Z. & Heidari, G. Effects of aminophylline on the levels of neutrophil gelatinase-associated lipocalin (NGAL) in asphyxiated term neonates. Arch. Physiol. Biochem. (2020). doi:10.1080/13813455.2020.1752259 | |
dcterms.references | Eagan, T. M. et al. Neutrophil gelatinase-associated lipocalin: A biomarker in COPD. Chest 138, 888–895 (2010). | |
dcterms.references | Jo, Y. S., Kwon, S. O., Kim, J. & Kim, W. J. Neutrophil gelatinase-associated lipocalin as a complementary biomarker for the asthma-chronic obstructive pulmonary disease overlap. J. Thorac. Dis. 10, 5047–5056 (2018). | |
dcterms.references | Mukherjee, S. P., Bottini, M. & Fadeel, B. Graphene and the immune system: A romance of many dimensions. Front. Immunol. 8, 1–11 (2017). | |
dcterms.references | Guerra, S. et al. The relation of circulating YKL-40 to levels and decline of lung function in adult life. Respir. Med. 107, 1923–1930 (2013). | |
dcterms.references | Rehli, M. et al. Transcriptional Regulation of CHI3L1, a Marker Gene for Late Stages of Macrophage Differentiation. J. Biol. Chem. 278, 44058–44067 (2003). | |
dcterms.references | Kazakova, M. H. & Sarafian, V. S. YKL-40--a novel biomarker in clinical practice? Folia Med. (Plovdiv). 51, 5–14 (2009). | |
dcterms.references | Østergaard, C., Johansen, J. S., Benfield, T., Price, P. A. & Lundgren, J. D. YKL-40 is elevated in cerebrospinal fluid from patients with purulent meningitis. Clin. Diagn. Lab. Immunol. 9, 598–604 (2002). | |
dcterms.references | Lee, C. G. et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu. Rev. Physiol. 73, 479–501 (2011). | |
dcterms.references | Guerra, S. et al. Genetic and epigenetic regulation of YKL-40 in childhood. J. Allergy Clin. Immunol. 141, 1105–1114 (2018). | |
dcterms.references | Acevedo, N. et al. Genetic variants in chia and chi3l1 are associated with the ige response to the ascaris resistance marker aba-1 and the birch pollen allergen bet v 1. PLoS One 11, 1–20 (2016). | |
dcterms.references | Libreros, S. & Iragavarapu-Charyulu, V. YKL-40/CHI3L1 drives inflammation on the road of tumor progression. J. Leukoc. Biol. 98, 931–936 (2015). | |
dcterms.references | Konradsen, J. R. et al. The chitinase-like protein YKL-40: A possible biomarker of inflammation and airway remodeling in severe pediatric asthma. J. Allergy Clin. Immunol. 132, (2013). | |
dcterms.references | Otsuka, K. et al. Sputum YKL-40 levels and pathophysiology of asthma and chronic obstructive pulmonary disease. Respiration 83, 507–519 (2012). | |
dcterms.references | Bara, I. et al. Role of YKL-40 in bronchial smooth muscle remodeling in asthma. Am. J. Respir. Crit. Care Med. 185, 715–722 (2012). | |
dcterms.references | James, A. J. et al. Increased YKL-40 and chitotriosidase in asthma and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 193, 131–142 (2016). | |
dcterms.references | Tong, X. et al. The YKL-40 protein is a potential biomarker for COPD: A meta-analysis and systematic review. Int. J. COPD 13, 409–418 (2018). | |
dcterms.references | Shirai, T. et al. Combined Assessment of Serum Periostin and YKL-40 May Identify Asthma-COPD Overlap. J. Allergy Clin. Immunol. Pract. 7, 134-145.e1 (2019). | |
dcterms.references | Miravitlles, M. et al. Guía española de la enfermedad pulmonar obstructiva crónica (GesEPOC) 2017. Tratamiento farmacológico en fase estable. Arch. Bronconeumol. 53, 324–335 (2017). | |
dcterms.references | Global Initiative for Asthma. GINA poket. Manejo y Prevencion del asma para adultos y niños mayores de 5 años. (2019). | |
dcterms.references | Zhu, Z., Zheng, T., Homer, R. J. & Kim, Y. Acidic Mammalian Chitinase in Asthmatic Th2 Inflammation and IL-13 Pathway Activation. Science (80-. ). 304, 1678–1682 (2004). | |
dcterms.references | Charles S. Dela Cruz1,*, Wei Liu1, Chuan Hua He1, Adam Jacoby1, Alex Gornitzky1, BingMa1, Richard Flavell2, 3, Chun Geun Lee1, and J. A. E. Chitinase 3-like-1 Promotes Streptococcus pneumoniae Killingand Augments Host Tolerance to Lung Antibacterial Responses. Cell Host Microbe 12, 34–46 (2012). | |
dcterms.references | Komi, D. E. A., Kazemi, T. & Bussink, A. P. New Insights Into the Relationship Between Chitinase-3-Like-1 and Asthma. Current Allergy and Asthma Reports 16, (2016). | |
dcterms.references | Kanazawa, J. et al. A cis-eQTL allele regulating reduced expression of CHI3L1 is associated with late-onset adult asthma in Japanese cohorts. BMC Medical Genetics 20, (2019). | |
dcterms.references | Jinlian Shao, Xuexi Yang, Dunqiang Ren, Y. L. & W. L. A genetic variation in CHI3L1 is associated withbronchial asthma. Arch. Physiol. Biochem. 127, (2021). | |
dcterms.references | Kawagoe, J. et al. Serum Neutrophil Gelatinase-associated Lipocalin (NGAL) Is Elevated in Patients with Asthma and Airway Obstruction. Curr. Med. Sci. 41, 323–328 (2021). | |
dcterms.references | Franziska Roth-Walter, Luis F. Pacios, Cristina Gomez-Casado, Gerlinde Hofstetter, Georg A. Roth, Josef Singer, Araceli Diaz-Perales, E. J.-J. The Major Cow Milk Allergen Bos d 5 ManipulatesT-Helper Cells Depending on Its Load withSiderophore-Bound Iron. PLoS One 9, 1–8 (2014). | |
dcterms.references | Jimeno, S. et al. Prognostic implications of neutrophil-lymphocyte ratio in COVID-19. European Journal of Clinical Investigation 51, (2021). | |
dcterms.references | Günay, E. et al. Neutrophil-to-lymphocyte ratio in chronic obstructive pulmonary disease: A retrospective study. Inflammation 37, 374–380 (2014). | |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...