Datos de Contacto
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...
dc.contributor.advisor | Zakzuk Sierra, Josefina | |
dc.contributor.author | Puerto López, Alejandra | |
dc.date.accessioned | 2022-05-04T21:37:01Z | |
dc.date.available | 2022-05-04T21:37:01Z | |
dc.date.issued | 2022 | |
dc.description.abstract | La anemia gestacional y deficiencia de hierro son condiciones usuales en países en no desarrollados y confieren un riesgo para la madre y el feto de presentar desenlaces perinatales adversos. La evidencia que respalda esta información proviene de estudios realizados mayormente durante el primer trimestre del embarazo, sin embargo, esta relación no es clara cuando se analiza en madres durante la etapa final del embarazo. Algunos de estos desenlaces se han asociado también con estados de inflamación maternos, sin embargo, no existe claridad sobre la relación entre los niveles de hierro y las citoquinas proinflamatorias en este periodo. El objetivo de esta tesis fue determinar la relación entre los niveles de ferritina sérica materna y citoquinas proinflamatorias en el tercer trimestre del embarazo y su impacto en desenlaces perinatales adversos. Métodos: Se determinaron los niveles de ferritina sérica, hemoglobina y citoquinas pro-inflamatorias en mujeres en el tercer trimestre de gestación de la ciudad de Cartagena. Se analizó la relación entre los niveles de ferritina, hemoglobina y citoquinas inflamatorias con desenlaces perinatales adversos, así como la relación entre los niveles de ferritina y las citoquinas pro-inflamatorias. Resultados: La hemoglobina, y ferritina sérica materna se asociaron inversamente con el peso al nacer. La FS pero no la IL-6 o IL-8 se asoció con la presentación de PP. Los niveles de IL-6 se asociaron significativamente con la FS ([β0,20 (IC95%: 0,02 a 0,3; p=0,02), pero no con la edad de la madre o la presentación de hipertensión durante el embarazo. Los niveles de IL-6 se asociaron significativamente con el número de leucocitos ([β 0,98 (IC95%: 0,27 a 1,70; p=0,007). Conclusiones: La AG y depleción de SF se asoció inversamente con el BPN en una población colombiana. La concentración de IL-6 se asoció positivamente con la FS materna. El número de leucocitos maternos se correlacionó con la concentración sérica de IL-6. No se encontró asociación entre las citoquinas pro-inflamatorias y desenlaces al nacer como BPN o parto pretérmino | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Inmunología | spa |
dc.format.extent | 124 hojas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://hdl.handle.net/11227/15116 | |
dc.identifier.uri | http://dx.doi.org/10.57799/11227/1352 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Cartagena | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.publisher.program | Maestría en Inmunología | spa |
dc.rights | Derechos Reservados - Universidad de Cartagena, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.armarc | Anemia | |
dc.subject.armarc | Sangre - Enfermedades | |
dc.subject.armarc | Parto prematuro | |
dc.subject.armarc | Trabajo de parto prematuro | |
dc.subject.armarc | Complicaciones del embarazo | |
dc.title | Relación entre la ferritina sérica y las citoquinas proinflamatorias en el tercer trimestre del embarazo | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.references | Rahman MM, Abe SK, Rahman MS, Kanda M, Narita S, Bilano V, et al. Maternal anemia and risk of adverse birth and health outcomes in low-and middle-income countries: systematic review and meta-analysis, 2. Am J Clin Nutr. 2016;103(2):495–504. | spa |
dcterms.references | Xiong X, Buekens P, Alexander S, Demianczuk N, Wollast E. Anemia during pregnancy and birth outcome: A meta-analysis. Am J Perinatol. 2000;17(3):137–46. | spa |
dcterms.references | Yuan X, Hu H, Zhang M, Long W, Liu J, Jiang J, et al. Iron deficiency in late pregnancy and its associations with birth outcomes in Chinese pregnant women: A retrospective cohort study. Nutr Metab. 2019;16(1):1–11. | |
dcterms.references | Hsu WY, Wu CH, Hsieh CTC, Lo HC, Lin JS, Kao MD. Low body weight gain, low white blood cell count and high serum ferritin as markers of poor nutrition and increased risk for preterm delivery. Asia Pac J Clin Nutr. 2013;22(1):90–9 | |
dcterms.references | Ng S-W, Norwitz SG, Norwitz ER. The Impact of Iron Overload and Ferroptosis on Reproductive Disorders in Humans: Implications for Preeclampsia. Int J Mol Sci. 2019;20(13):3283. | |
dcterms.references | Huisman A, Aarnoudse JG. Increased 2nd trimester hemoglobin concentration in pregnancies later complicated by hypertension and growth retardation. Early evidence of a reduced plasma volume. Acta Obstet Gynecol Scand. 1986;65(6):605–8. | |
dcterms.references | Maghsoudlou S, Cnattingius S, Stephansson O, Aarabi M, Semnani S, Montgomery SM, et al. Maternal haemoglobin concentrations before and during pregnancy and stillbirth risk: A population-based case-control study. BMC Pregnancy Childbirth [Internet]. 2016;16(1):1–8. Available from: http://dx.doi.org/10.1186/s12884-016-0924-x | |
dcterms.references | Dewey KG, Oaks BM. U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. Am J Clin Nutr. 2017;106(Id):1694S-1702S. | |
dcterms.references | Vásquez-Molina ME, Corral-Terrazas M, Apezteguia MA, Carmona-Sawasky J, Levario-Carrillo M. Relación entre las reservas de hierro maternas y del recién nacido. Salud Publica Mex. 2001;43(5):402–7. | |
dcterms.references | Mujica-Coopman MF, Brito A, López de Romaña D, Ríos-Castillo I, Coris H, Olivares M. Prevalence of Anemia in Latin America and the Caribbean. Food Nutr Bull. 2015;36(Supplement 2):S119–28. | |
dcterms.references | Sosa BEP, Mesa SLR, Correa LMM, López LPM. Indicadores bioquímicos del hierro materno en el tercer trimestre de la gestación y su relación con la antropometría materna y el peso al nacer. Iatreia. 2009;22(1):16–26. | |
dcterms.references | Balla J, Vercellotti GM, Jeney V, Yachie A, Varga Z, Eaton JW, et al. Heme, heme oxygenase and ferritin in vascular endothelial cell injury. Mol Nutr Food Res. 2005;49(11):1030–43. | |
dcterms.references | Siddiqui IA, Jaleel A, Al Kadri HMF, Al Saeed W, Tamimi W. Iron status parameters in preeclamptic women. Arch Gynecol Obstet. 2011;284(3):587– 91. | |
dcterms.references | Mannaerts D, Faes E, Cos P, Briedé JJ, Gyselaers W, Cornette J, et al. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS One. 2018;13(9):1–14. | |
dcterms.references | Tamura T, Goldenberg RL, Johnston KE, Cliver SP, Hickey CA. Serum ferritin: a predictor of early spontaneous preterm delivery. Obstet Gynecol. 1996 Mar;87(3):360–5. | |
dcterms.references | Goldenberg RL, Tamura T, DuBard M, Johnston KE, Copper RL, Neggers Y. Plasma ferritin and pregnancy outcome. Am J Obstet Gynecol. 1996;175(5):1356–9. | |
dcterms.references | Lao TT. Third trimester iron status and pregnancy outcome in non-anaemic women; pregnancy unfavourably affected by maternal iron excess. Hum Reprod. 2000;15(8):1843–8. | |
dcterms.references | Chen X, Scholl TO, Stein TP. Association of elevated serum ferritin levels and the risk of gestational diabetes mellitus in pregnant women: The Camden study. Diabetes Care. 2006;29(5):1077–82. | |
dcterms.references | Scholl TO. High third-trimester ferritin concentration: Associations with very preterm delivery, infection, and maternal nutritional status. Obstet Gynecol. 1998;92(2):161–6. | |
dcterms.references | Oaks BM, Jorgensen JM, Baldiviez LM, Adu-Afarwuah S, Maleta K, Okronipa H, et al. Prenatal Iron Deficiency and Replete Iron Status Are Associated with Adverse Birth Outcomes, but Associations Differ in Ghana and Malawi. J Nutr. 2019;149(3):513–21. | |
dcterms.references | Hwang JY, Lee JY, Kim KN, Kim H, Ha EH, Park H, et al. Maternal iron intake at mid-pregnancy is associated with reduced fetal growth: Results from Mothers and Children’s Environmental Health (MOCEH) study. Nutr J. 2013;12(1):1–7. | |
dcterms.references | Brunacci F, Rocha VS, De Carli E, Espósito BP, Ruano R, Colli C. Increased serum iron in preeclamptic women is likely due to low hepcidin levels. Nutr Res. 2018 May;53:32–9. | |
dcterms.references | Lee S, Guillet R, Cooper EM, Westerman M, Orlando M, Pressman E, et al. Maternal Inflammation at Delivery Affects Assessment of Maternal Iron Status. J Nutr [Internet]. 2014 Oct 1;144(10):1524–32. Available from: https://doi.org/10.3945/jn.114.191445 | |
dcterms.references | Petkova-Marinova T, Ruseva B, Paneva-Barzashka B, Atanasova M, Dragomirova P, PD L. Relationships between hepcidin, interleukin-6 and parameters of iron metabolism in pregnant women. Arch Balk Med Union. 2020;55(4):564–72. | |
dcterms.references | 2001 I of medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. In: Dietary reference intakes. 2001. p. 290–393. | |
dcterms.references | Messenger ANNJM, Barclay R. Production of siderophores. Biochem Educ Tion. 1983;11(2):49–88. | |
dcterms.references | Haas H, Eisendle M, Turgeon BG. Siderophores in fungal physiology and virulence. Annu Rev Phytopathol. 2008;46:149–87. | |
dcterms.references | Haber F, Weiss J. Über die Katalyse des Hydroperoxydes. Naturwissenschaften. 1932;20(51):948–50. | |
dcterms.references | Fenton H. LXXIII.—Oxidation of tartaric acid in presence of iron. J Chem Soc Trans. 1894;65:899--910. | |
dcterms.references | Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89. | |
dcterms.references | Casanueva E, Viteri FE. Iron and oxidative stress in pregnancy. J Nutr. 2003;133(5):1700S-1708S. | |
dcterms.references | Rehema A, Zilmer K, Klaar U, Karro H, Kullisaar T, Zilmer M. Ferrous iron administration during pregnancy and adaptational oxidative stress (Pilot study). Medicina (Kaunas). 2004;40(6):547–52. | |
dcterms.references | Martins R, Maier J, Gorki AD, Huber KVM, Sharif O, Starkl P, et al. Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions. Nat Immunol [Internet]. 2016;17(12):1361–72. Available from: http://dx.doi.org/10.1038/ni.3590 | |
dcterms.references | NC A. Disorders of iron metabolism. N Engl J Med. 1999;341:1986–95. | |
dcterms.references | Ponka P, Lok CN. The transferrin receptor: Role in health and disease. Int J Biochem Cell Biol. 1999;31(10):1111–37. | |
dcterms.references | Quiao, Bo; Sugianto, Priscilla; Fung, Eileen; Del-Castillo-Rueda, Alejandro; Josefa, Maria; Jimenez, Moran; Ganz Tomas; Nemeth E. Hepcidin- induced endocytosis of ferropontin is dependent of ferropontin ubiquitation. Cell Metab. 2012;15(6):918–024. | |
dcterms.references | Hahn PF, Carothers EL, Darby WJ, Martin M, Sheppard CW, Cannon RO, et al. Iron metabolism in human pregnancy as studied with the radioactive isotope, Fe59. Am J Obstet Gynecol. 1951;61(3):477–86. | |
dcterms.references | Picciano MF. Pregnancy and lactation: physiological adjustments, nutritional requirements and the role of dietary supplements. J Nutr. 2003 Jun;133(6):1997S-2002S. | |
dcterms.references | Gambling L, Czopek A, Andersen HS, Holtrop G, Srai SKS, Krejpcio Z, et al. Fetal iron status regulates maternal iron metabolism during pregnancy in the rat. Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R1063-70. | |
dcterms.references | Fuqua BK, Vulpe CD, Anderson GJ. Intestinal iron absorption. J Trace Elem Med Biol [Internet]. 2012;26(2–3):115–9. Available from: http://dx.doi.org/10.1016/j.jtemb.2012.03.015 | |
dcterms.references | Gunshin H, Fujiwara Y, Custodio AO, DiRenzo C, Robine S, Andrews NC. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest. 2005;115(5):1258–66. | |
dcterms.references | Courville P, Chaloupka R, Cellier M. Recent progress in structure – function analyses of Nramp proton-dependent metal-ion transporters. Biochem Cell Biol. 2006;84(6):960–78. | |
dcterms.references | Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403(6771):776–81. | |
dcterms.references | Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000;275(26):19906–12. | |
dcterms.references | McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell. 2000;5(2):299–309. | |
dcterms.references | Fuqua BK, Lu Y, Darshan D, Frazer DM, Wilkins SJ, Wolkow N, et al. The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice. PLoS One. 2014;9(6):1–13. | |
dcterms.references | Osaki S, Johnson A. Mobilization of Liver Iron by Ferroxidase (Ceruloplasmin). J Biol Chem. 1969;244(20):5757–65. | |
dcterms.references | Fung E, Nemeth E. Manipulation of the hepcidin pathway for therapeutic purposes. Haematologica. 2013;98(11):1667–76. | |
dcterms.references | Shayeghi M, Latunde-dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Identification of an Intestinal Heme Transporter. Cell. 2005;122:789–801. | |
dcterms.references | Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, et al. The iron exporter ferroportin / Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1(March):191–200. | |
dcterms.references | Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J. 2011;434(3):365–81. | |
dcterms.references | Peyrin-biroulet L, Williet N, Cacoub P. Guidelines on the diagnosis and treatment of iron deficiency across indications : a systematic review. Am J Clin Nutr. 2015;102:1585–94. | |
dcterms.references | Sahlstedt L, Ebeling F, Bonsdorff L Von, Parkkinen J, Ruutu T. Non- transferrin-bound iron during allogeneic stem cell transplantation. Br J Haematol. 2001;113:836–8. | |
dcterms.references | Pootrakul P, Breuer W, Sametband M, Sirankapracha P, Hershko C, Cabantchik ZI. Labile plasma iron ( LPI ) as an indicator of chelatable plasma redox activity in iron-overloaded B -thalassemia / HbE patients treated with an oral chelator. Blood. 2004;104(5):1504–11. | |
dcterms.references | Theil EC. Ferritin: The protein nanocage and iron biomineral in health and in disease. Inorg Chem. 2013;52(21):12223–33. | |
dcterms.references | Theil EC. Ferritin : At the Crossroads of Iron and Oxygen Metabolism. Am Soc Nutr Sci. 2003;1549–53. | |
dcterms.references | Truman-Rosentsvit M, Berenbaum D, Spektor L, Cohen LA, Belizowsky- Moshe S, Lifshitz L, et al. Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood. 2018 Jan;131(3):342–52. | |
dcterms.references | Jurado RL. Iron, infections, and anemia of inflammation. Clin Infect Dis. 1997;25(4):888–95. | |
dcterms.references | Dev S, Babitt JL. Overview of iron metabolism in health and disease. Hemodial Int. 2017;21:S6–20. | |
dcterms.references | Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: Molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–97. | |
dcterms.references | Nemeth E, Tuttle MS, Powelson J, Vaughn MD, Donovan A, Ward DMV, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science (80- ). 2004;306(5704):2090–3. | |
dcterms.references | Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to Tango : Regulation of Mammalian Iron Metabolism. Cell. 2010;142:24–38. | |
dcterms.references | Finch CA, Huebers HA, Miller LR, Josephson BM, Shepard TH, Mackler B. Fetal iron balance in the rat. Am J Clin Nutr. 1983 Jun;37(6):910–7. | |
dcterms.references | Millard KN, Frazer DM, Wilkins SJ, Anderson GJ. Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat. Gut. 2004 May;53(5):655–60. | |
dcterms.references | Cao C, O’Brien KO. Pregnancy and iron homeostasis: an update. Nutr Rev. 2013 Jan;71(1):35–51. | |
dcterms.references | McArdle HJ, Morgan EH. Transferrin and iron movements in the rat conceptus during gestation. J Reprod Fertil. 1982 Nov;66(2):529–36. | |
dcterms.references | Contractor SF, Eaton BM. Role of transferrin in iron transport between maternal and fetal circulations of a perfused lobule of human placenta. Cell Biochem Funct. 1986 Jan;4(1):69–74. | |
dcterms.references | Bastin J, Drakesmith H, Rees M, Sargent I, Townsend A. Localisation of proteins of iron metabolism in the human placenta and liver. Br J Haematol. 2006 Sep;134(5):532–43. | |
dcterms.references | McArdle HJ, Douglas AJ, Morgan EH. Transferrin binding by microvillar vesicles isolated from rat placenta. Placenta. 1984;5(2):131–8. | |
dcterms.references | Ohgami RS, Campagna DR, McDonald A, Fleming MD. The Steap proteins are metalloreductases. Blood. 2006 Aug;108(4):1388–94. | |
dcterms.references | Zhang D, Su D, Bérczi A, Vargas A, Asard H. An ascorbate-reducible cytochrome b561 is localized in macrophage lysosomes. Biochim Biophys Acta. 2006 Dec;1760(12):1903–13. | |
dcterms.references | Georgieff MK, Wobken JK, Welle J, Burdo JR, Connor JR. Identification and localization of divalent metal transporter-1 (DMT-1) in term human placenta. Placenta. 2000 Nov;21(8):799–804. | |
dcterms.references | Danzeisen R, Ponnambalam S, Lea RG, Page K, Gambling L, McArdle HJ. The effect of ceruloplasmin on iron release from placental (BeWo) cells; evidence for an endogenous Cu oxidase. Placenta. 2000 Nov;21(8):805–12. | |
dcterms.references | Chen H, Attieh ZK, Syed BA, Kuo Y-M, Stevens V, Fuqua BK, et al. Identification of zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells. J Nutr. 2010 Oct;140(10):1728–35. | |
dcterms.references | Guller S, Buhimschi CS, Ma YY, Huang STJ, Yang L, Kuczynski E, et al. Placental expression of ceruloplasmin in pregnancies complicated by severe preeclampsia. Lab Invest. 2008 Oct;88(10):1057–67. | |
dcterms.references | Li Y-Q, Bai B, Cao X-X, Zhang Y-H, Yan H, Zheng Q-Q, et al. Divalent metal transporter 1 expression and regulation in human placenta. Biol Trace Elem Res. 2012 Apr;146(1):6–12. | |
dcterms.references | Li Y-Q, Bai B, Cao X-X, Zhang Y-H, Yan H, Zheng Q-Q, et al. Divalent metal transporter 1 expression and regulation in human placenta. Biol Trace Elem Res. 2012 Apr;146(1):6–12. | |
dcterms.references | Larsson A, Palm M, Hansson L-O, Axelsson O. Reference values for clinical chemistry tests during normal pregnancy. BJOG. 2008 Jun;115(7):874–81. | |
dcterms.references | Ramsay M. Normal hematological changes during pregnancy and the puerperium. In: The obstetric hematology manual. 2010. p. 1–11. | |
dcterms.references | Pritchard J. Changes in the blood volume during pregnancy and delivery. Anesthesiology. 1965;26:393–9. | |
dcterms.references | Pritchard J. Changes in the blood volume during pregnancy and delivery. Anesthesiology. 1965;26:393–9. | |
dcterms.references | van der Harst P, Zhang W, Mateo Leach I, Rendon A, Verweij N, Sehmi J, et al. Seventy-five genetic loci influencing the human red blood cell. Nature [Internet]. 2012/12/05. 2012 Dec 20;492(7429):369–75. Available from: https://pubmed.ncbi.nlm.nih.gov/23222517 | |
dcterms.references | Galarneau G, Palmer CD, Sankaran VG, Orkin SH, Hirschhorn JN, Lettre G. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat Genet. 2010 Dec;42(12):1049–51. | |
dcterms.references | Barrera-Reyes PK, Tejero ME. Genetic variation influencing hemoglobin levels and risk for anemia across populations. Ann N Y Acad Sci [Internet]. 2019 Aug 1;1450(1):32–46. Available from: https://doi.org/10.1111/nyas.14200 | |
dcterms.references | Merryweather-Clarke AT, Pointon JJ, Jouanolle AM, Rochette J, Robson KJH. Geography of HFE C282Y and H63D Mutations. Genet Test [Internet]. 2000 Jun 19;4(2):183–98. Available from: https://doi.org/10.1089/10906570050114902 | |
dcterms.references | Gordeuk VR, Brannon PM. Ethnic and genetic factors of iron status in women of reproductive age. Am J Clin Nutr [Internet]. 2017 Dec 1;106(suppl_6):1594S-1599S. Available from: https://doi.org/10.3945/ajcn.117.155853 | |
dcterms.references | Jakovljevic B, Novakov-Mikic A, Brkic S, Bogavac MA, Tomic S, Miler V. Lipid peroxidation in the first trimester of pregnancy. J Matern Neonatal Med. 2012;25(8):1316–8. | |
dcterms.references | Ardalić D, Stefanović A, Kotur-Stevuljević J, Ninić A, Spasić S, Spasojević- Kalimanovska V, et al. Lipid indexes and parameters of lipid peroxidation during physiological pregnancy. J Lab Med. 2019;43(2):93–9. | |
dcterms.references | Lekharu R, Pradhan R, Sharma R, Sharma D. A Study of Lipid Peroxidation and Antioxidant Enzymes in Normal Pregnancy. GCSMC J Med Sci. 2014;3(1):55–6. | |
dcterms.references | Calderón Vélez JC. La suplementación con hierro y el aumento del estrés oxidativo en el embarazo: una paradoja poco discutida. Rev Colomb Obstet Ginecol. 2007;58(4):304–8. | |
dcterms.references | Casanueva E, Viteri FE. Iron and oxidative stress in pregnancy. J Nutr. 2003;133(5 SUPPL. 1):1700–8. | |
dcterms.references | Fu Y, Tang L, Hu M, Xiang Z, Hu Y. Changes of serum interleukin-6 in healthy pregnant women and establishment of relevant reference intervals. Clin Chim Acta [Internet]. 2020;502:116–9. Available from: https://www.sciencedirect.com/science/article/pii/S0009898119321825 | |
dcterms.references | Hebisch G, Neumaier-Wagner PM, Huch R, von Mandach U. Maternal serum interleukin-1β, -6 and -8 levels and potential determinants in pregnancy and peripartum. 2004;32(6):475–80. Available from: https://doi.org/10.1515/JPM.2004.131 | |
dcterms.references | Marzi M, Vigano A, Trabattoni D, Villa ML, Salvaggio A, Clerici E, et al. Characterization of type 1 and type 2 cytokine production profile in physiologic and pathologic human pregnancy. Clin Exp Immunol. 1996 Oct;106(1):127– 33. | |
dcterms.references | Azizieh F, Dingle K, Raghupathy R, Johnson K, VanderPlas J, Ansari A. Multivariate analysis of cytokine profiles in pregnancy complications. Am J Reprod Immunol [Internet]. 2018 Mar 1;79(3):e12818. Available from: https://doi.org/10.1111/aji.12818 | |
dcterms.references | Fisher AL, Sangkhae V, Balušíková K, Palaskas NJ, Ganz T, Nemeth E. Iron- dependent apoptosis causes embryotoxicity in inflamed and obese pregnancy. Nat Commun [Internet]. 2021;12(1):4026. Available from: https://doi.org/10.1038/s41467-021-24333-z | |
dcterms.references | Zakzuk J, Solano-Aguilar G, Sanchez J, Acevedo N, Bornacelly A, Ets H, et al. Altered Composition Of Gut Microflora In Wheezing Infants From Cartagena, A Tropical City Of Colombia. J Allergy Clin Immunol [Internet]. 2011 Feb 1;127(2):AB224. Available from: https://doi.org/10.1016/j.jaci.2010.12.891 | |
dcterms.references | Allswede DM, Yolken RH, Buka SL, Cannon TD. Cytokine concentrations throughout pregnancy and risk for psychosis in adult offspring: a longitudinal case-control study. The lancet Psychiatry. 2020 Mar;7(3):254–61. | |
dcterms.references | Gücer F, Balkanli-Kaplan P, Yüksel M, Sayin NC, Yüce MA, Yardim T. Maternal serum levels of tumor necrosis factor-alpha and interleukin-2 receptor in threatened abortion: a comparison with normal and pathologic pregnancies. Fertil Steril. 2001 Oct;76(4):707–11. | |
dcterms.references | Kawilarang S, Suwiyoga IK, Suwardewa TG. Elevated Serum Ferritin and Interleukin-6 Level as the Risk Factor in Preterm Labor. Indones J Obstet Gynecol. 2019;7(2). | |
dcterms.references | Casart YC, Tarrazzi K, Camejo MI. Serum levels of interleukin-6, interleukin- 1beta and human chorionic gonadotropin in pre-eclamptic and normal pregnancy. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2007 May;23(5):300–3. | |
dcterms.references | Col Madendag I, Eraslan Sahin M, Madendag Y, Sahin E, Demir MB, Acmaz B, et al. The Effect of Iron Deficiency Anemia Early in the Third Trimester on Small for Gestational Age and Birth Weight: A Retrospective Cohort Study on Iron Deficiency Anemia and Fetal Weight. Biomed Res Int. 2019;2019. | |
dcterms.references | World Health Organization, Of DLMD-R under the supervision, Peña-Rosas JP, Dr Gulmezoglu M, Dr Martines J, Dr Matthews M, et al. Guideline : Daily iron and folic acid supplementation in pregnant women [Internet]. World Health Organization. 2012. p. 3–4. Available from: https://apps.who.int/iris/bitstream/handle/10665/77770/9789241501996_eng. pdf | |
dcterms.references | Colciencias M de S y PS-. Guías de práctica clínica para la prevencion, detección temprana y tratamiento de las complicaciones del embarazo, parto o puerperio. Guías No. 11-15. Guías de práctica clínica. 2013. p. 222–62. | |
dcterms.references | WHO. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. Vitamin and Mineral Nutrition Information System. In: Vitamin and Mineral Nutrition Information System [Internet]. 2011. p. 1–5. Available from: http://www.who.int/vmnis/indicators/serum_ferritin.pdf | |
dcterms.references | Toblli JE, Cao G, Angerosa LO and M. Effects of Iron Polymaltose Complex, Ferrous Fumarate and Ferrous Sulfate Treatments in Anemic Pregnant Rats, Their Fetuses and Placentas [Internet]. Vol. 12, Inflammation & Allergy - Drug Targets (Discontinued). 2013. p. 190–8. Available from: http://www.eurekaselect.com/node/111310/article | |
dcterms.references | Viteri FE, Casanueva E, Tolentino MC, Díaz-Francés J, Erazo AB. Antenatal iron supplements consumed daily produce oxidative stress in contrast to weekly supplementation in Mexican non-anemic women. Reprod Toxicol. 2012 Aug;34(1):125–32. | |
dcterms.references | Khambalia A, Collins C, Roberts CL, Morris J, Powell K, Tasevski V, et al. Iron deficiency in early pregnancy using serum ferritin and soluble transferrin receptor concentrations are associated with pregnancy and birth outcomes. Eur J Clin Nutr. 2015 Sep 16;70. | |
dcterms.references | Khambalia AZ, Collins CE, Roberts CL, Morris JM, Powell KL, Tasevski V, et al. High maternal serum ferritin in early pregnancy and risk of spontaneous preterm birth. Br J Nutr. 2015;114(3):455–61. | |
dcterms.references | Little MP, Brocard P, Elliott P, Steer PJ. Hemoglobin concentration in pregnancy and perinatal mortality: a London-based cohort study. Am J Obstet Gynecol. 2005 Jul;193(1):220–6. | |
dcterms.references | Stephansson O, Dickman PW, Johansson A, Cnattingius S. Maternal hemoglobin concentration during pregnancy and risk of stillbirth. JAMA. 2000 Nov;284(20):2611–7. | |
dcterms.references | Gonzales GF, Tapia V, Fort AL. Maternal and perinatal outcomes in second hemoglobin measurement in nonanemic women at first booking: effect of altitude of residence in peru. ISRN Obstet Gynecol. 2012;2012:368571. | |
dcterms.references | Zhang X, Wu M, Zhong C, Huang L, Zhang Y, Chen R, et al. Association between maternal plasma ferritin concentration, iron supplement use, and the risk of gestational diabetes: a prospective cohort study. Am J Clin Nutr [Internet]. 2021 May 21; Available from: https://doi.org/10.1093/ajcn/nqab162 | |
dcterms.references | Rawal S, Hinkle SN, Bao W, Zhu Y, Grewal J, Albert PS, et al. A longitudinal study of iron status during pregnancy and the risk of gestational diabetes: findings from a prospective, multiracial cohort. Diabetologia. 2017;60(2):249– 57. | |
dcterms.references | Puerto A, Trojan A, Alvis-Zakzuk NR, López-Saleme R, Edna-Estrada F, Alvarez A, et al. Iron status in late pregnancy is inversely associated with birth weight in Colombia. Public Health Nutr. 2021 Apr;1–29. | |
dcterms.references | Gonzales GF, Steenland K, Tapia V. Maternal hemoglobin level and fetal outcome at low and high altitudes. Am J Physiol Regul Integr Comp Physiol. 2009 Nov;297(5):R1477-85. | |
dcterms.references | Mwangi MN, Echoka E, Knijff M, Kaduka L, Werema BG, Kinya FM, et al. Iron Status of Kenyan Pregnant Women after Adjusting for Inflammation Using BRINDA Regression Analysis and Other Correction Methods. Vol. 11, Nutrients . 2019. | |
dcterms.references | Yuan X, Gao Y, Zhou W, Long W, Liu J, Wang H, et al. Effect of the inflammatory response on serum indices of iron status in late pregnancy. J Trace Elem Med Biol [Internet]. 2020;61:126516. Available from: https://www.sciencedirect.com/science/article/pii/S0946672X2030081X | |
dcterms.references | Santosa Q, Muntafiah A, Rujito L. Iron Status of Newborns in Maternal Inflammation Status Differences. 2020. 194–201 p. | |
dcterms.references | World Health Organization. Low Birth weight [Internet]. Nutrition and nutrition- related health and development data. 2021. Available from: https://www.who.int/data/nutrition/nlis/info/low-birth-weight | |
dcterms.references | World Health Organization. Newborns with low birth weight (%) [Internet]. WHO Statistical Information System (WHOSIS). 2006 [cited 2021 May 9]. p. 1–2. Available from: https://www.who.int/whosis/whostat2006NewbornsLowBirthWeight.pdf | |
dcterms.references | González-Jimenez J, Rocha Buelvas A. Risk factors associated with low birth weight in the Americas: literature review. Rev la Fac Med [Internet]. 2018;66:255–60. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120- 00112018000200255&nrm=iso | |
dcterms.references | Nimi T, Fraga S, Costa D, Campos P, Barros H. Prenatal care and pregnancy outcomes: A cross-sectional study in Luanda, Angola. Int J Gynaecol Obstet Off organ Int Fed Gynaecol Obstet. 2016 Nov;135 Suppl:S72–8. | |
dcterms.references | Jafari F, Eftekhar H, Pourreza A, Mousavi J. Socio-economic and medical determinants of low birth weight in Iran: 20 years after establishment of a primary healthcare network. Public Health [Internet]. 2010;124(3):153–8. Available from: https://www.sciencedirect.com/science/article/pii/S0033350610000223 | |
dcterms.references | Silva TRSR da. Fatores de risco maternos não biológicos para o baixo peso ao nascer na América Latina: revisão sistemática de literatura com meta- análise . Vol. 10, Einstein (São Paulo) . scielo ; 2012. p. 380–5. | |
dcterms.references | Cnattingius S, Forman MR, Berendes HW, Isotalo L. Delayed childbearing and risk of adverse perinatal outcome. A population-based study. JAMA. 1992 Aug;268(7):886–90. | |
dcterms.references | Castaño-Díez C, Álvarez-Castaño LS, Caicedo-Velásquez B, Ruiz-Buitrago IC, Valencia-Aguirre S. Tendencia del bajo peso al nacer en recién nacidos a término y su relación con la pobreza y el desarrollo municipal en Colombia. 2000-2014 . Vol. 47, Revista chilena de nutrición . scielocl ; 2020. p. 22–30. | |
dcterms.references | Monjezi M, Rostami S, Moradi Kal Boland M, Cheraghian B. Survey of the Relationship Between Mother’s Chronic Diseases and Low Birth Weight in Infants, Ahvaz, South of Iran, 2014. Jundishapur J Chronic Dis Care [Internet]. 2017;6(2):e38259. Available from: https://sites.kowsarpub.com/jjcdc/articles/14207.html | |
dcterms.references | Fink JC, Schwartz SM, Benedetti TJ, Stehman-Breen CO. Increased risk of adverse maternal and infant outcomes among women with renal disease. Paediatr Perinat Epidemiol. 1998 Jul;12(3):277–87. | |
dcterms.references | Paige DM, Augustyn M, Adih WK, Witter F, Chang J. Bacterial vaginosis and preterm birth: a comprehensive review of the literature. J Nurse Midwifery. 1998;43(2):83–9. | |
dcterms.references | 133. Tellapragada C, Eshwara VK, Bhat P, Acharya S, Kamath A, Bhat S, et al. Risk Factors for Preterm Birth and Low Birth Weight Among Pregnant Indian Women: A Hospital-based Prospective Study. J Prev Med Public Health. 2016 May;49(3):165–75. | |
dcterms.references | Girma S, Fikadu T, Agdew E, Haftu D, Gedamu G, Dewana Z, et al. Factors associated with low birthweight among newborns delivered at public health facilities of Nekemte town, West Ethiopia: A case control study. BMC Pregnancy Childbirth. 2019;19(1):1–6. | |
dcterms.references | Han Z, Mulla S, Beyene J, Liao G, McDonald SD. Maternal underweight and the risk of preterm birth and low birth weight: a systematic review and meta- analyses. Int J Epidemiol. 2011 Feb;40(1):65–101. | |
dcterms.references | World Health Organization. Born too soon. The Global Action Report on Preterm Birth. Vol. 25, Neuroendocrinology Letters. 2012. 133–136 p. | |
dcterms.references | Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet (London, England). 2008 Jan;371(9606):75–84. | |
dcterms.references | Xiao R, Sorensen TK, Frederick IO, El-Bastawissi A, King IB, Leisenring WM, et al. Maternal second-trimester serum ferritin concentrations and subsequent risk of preterm delivery. Paediatr Perinat Epidemiol. 2002 Oct;16(4):297–304. | |
dcterms.references | Saha CK, Jain V, Gupta I, Varma N. Serum ferritin level as a marker of preterm labor. Int J Gynaecol Obstet Off organ Int Fed Gynaecol Obstet. 2000 Nov;71(2):107–11. | |
dcterms.references | World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity [Internet]. Vitamin and Mineral Nutrition Information System. 2011. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Haemoglobi n+concentrations+for+the+diagnosis+of+anaemia+and+assessment+of+sev erity#1 | |
dcterms.references | World Health Organization. WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations. 2020. | |
dcterms.references | Villar J, Ismail LC, Victora CG, Ohuma EO, Bertino E, Altman DG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: The Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):857–68. | |
dcterms.references | Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. Package ‘corrplot.’ Statistician. 2017;56:316–24. | |
dcterms.references | Ragsdale HB, Kuzawa CW, Borja JB, Avila JL, McDade TW. Regulation of inflammation during gestation and birth outcomes: Inflammatory cytokine balance predicts birth weight and length. Am J Hum Biol Off J Hum Biol Counc. 2019 May;31(3):e23245. | |
dcterms.references | Forero Y, Galindo M, Hernández J, Benjumea M, Bermúdez J, Zea M, et al. Encuesta Nacional de Situación Nutricional ENSIN 2015 [Internet]. Documento general de análisis Encuesta Nacional de la Situación Nutricional en Colombia- ENSIN 2015. 2015. Available from: https://www.icbf.gov.co/bienestar/nutricion/encuesta-nacional-situacion- nutricional#ensin3 | |
dcterms.references | Mahamoud NK, Mwambi B, Oyet C, Segujja F, Webbo F, Okiria JC, et al. Prevalence of Anemia and Its Associated Socio-Demographic Factors Among Pregnant Women Attending an Antenatal Care Clinic at Kisugu Health Center IV, Makindye Division, Kampala, Uganda. J Blood Med. 2020;11:13–8. | |
dcterms.references | Okia CC, Aine B, Kiiza R, Omuba P, Wagubi R, Muwanguzi E, et al. Prevalence, Morphological Classification, And Factors Associated With Anemia Among Pregnant Women Accessing Antenatal Clinic At Itojo Hospital, South Western Uganda. J Blood Med. 2019;10:351–7. | |
dcterms.references | Zhang Q, Ananth C V., Rhoads GG, Li Z. The Impact of Maternal Anemia on Perinatal Mortality: A Population-based, Prospective Cohort Study in China. Ann Epidemiol. 2009;19(11):793–9. | |
dcterms.references | Meng Lu Z, Goldenberg RL, Cliver S, Cutter G, Blankson M. The relationship between maternal hematocrit and pregnancy outcomes. Obstet Gynecol. 1991;77(190). | |
dcterms.references | Chang S-C, O’Brien KO, Nathanson MS, Mancini J, Witter FR. Hemoglobin concentrations influence birth outcomes in pregnant African-American adolescents. J Nutr. 2003;133(7):2348–55. | |
dcterms.references | Rahmati S, Azami M, Badfar G, Parizad N, Sayehmiri K. The relationship between maternal anemia during pregnancy with preterm birth: a systematic review and meta-analysis. J Matern neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. 2020 Aug;33(15):2679–89. | |
dcterms.references | Rahmati S, Delpishe A, Azami M, Hafezi Ahmadi MR, Sayehmiri K. Maternal Anemia during pregnancy and infant low birth weight: A systematic review and Meta-analysis. Int J Reprod Biomed. 2017 Mar;15(3):125–34. | |
dcterms.references | Symington EA, Baumgartner J, Malan L, Wise AJ, Ricci C, Zandberg L, et al. Maternal iron-deficiency is associated with premature birth and higher birth weight despite routine antenatal iron supplementation in an urban South African setting: The NuPED prospective study. PLoS One. 2019;14(9):e0221299. | |
dcterms.references | Fowkes FJI, Moore KA, Opi DH, Simpson JA, Langham F, Stanisic DI, et al. Iron deficiency during pregnancy is associated with a reduced risk of adverse birth outcomes in a malaria-endemic area in a longitudinal cohort study. BMC Med. 2018;16(1):156. | |
dcterms.references | Chu FC, Shen-Wen Shao S, Lo LM, Hsieh TT an., Hung TH. Association between maternal anemia at admission for delivery and adverse perinatal outcomes. J Chin Med Assoc. 2020;83(4):402–7. | |
dcterms.references | Blankson ML, Goldenberg RL, Cutter G, Cliver SP. The relationship between maternal hematocrit and pregnancy outcome: black-white differences. J Natl Med Assoc [Internet]. 1993 Feb;85(2):130–4. Available from: https://pubmed.ncbi.nlm.nih.gov/8441188 | |
dcterms.references | Sovizi B, Kermani Mokhar H, Eftekhari Yazdi M. The Relationship between Maternal Haemoglobin and Haematocrit with Low Birth Weight and Preterm Labour. J Midwifery Reprod Heal [Internet]. 2019;7(1):1584–90. Available from: https://jmrh.mums.ac.ir/article_12036.html | |
dcterms.references | Mohamed MA, Ahmad T, MacRi C, Aly H. Racial disparities in maternal hemoglobin concentrations and pregnancy outcomes. J Perinat Med. 2012;40(2):141–9. | |
dcterms.references | Kang W, Barad A, Clark AG, Wang Y, Lin X, Gu Z, et al. Ethnic Differences in Iron Status. Adv Nutr [Internet]. 2021 Oct 1;12(5):1838–53. Available from: https://doi.org/10.1093/advances/nmab035 | |
dcterms.references | De Haas S, Ghossein‐Doha C, Van Kuijk SMJ, Van Drongelen J, Spaanderman MEA. Physiological adaptation of maternal plasma volume during pregnancy: a systematic review and meta‐analysis. Ultrasound Obstet Gynecol. 2017;49(2):177–87. | |
dcterms.references | Ziaei S, Norrozi M, Faghihzadeh S, Jafarbegloo E. A randomised placebo‐ controlled trial to determine the effect of iron supplementation on pregnancy outcome in pregnant women with haemoglobin≥ 13.2 g/dl. BJOG An Int J Obstet Gynaecol. 2007;114(6):684–8. | |
dcterms.references | Chang CL, Yang JM, Wang KG. What kind of maternal factor might predict poor perinatal outcome in severe preeclampsia?: a study based on doppler velocimetry. Zhonghua Yi Xue Za Zhi (Taipei). 1995 Dec;56(6):404–10. | |
dcterms.references | von Tempelhoff G-F, Heilmann L, Rudig L, Pollow K, Hommel G, Koscielny J. Mean maternal second-trimester hemoglobin concentration and outcome of pregnancy: a population-based study. Clin Appl Thromb Off J Int Acad Clin Appl Thromb. 2008 Jan;14(1):19–28. | |
dcterms.references | Gernand AD, Christian P, Schulze KJ, Shaikh S, Labrique AB, Shamim AA, et al. Maternal nutritional status in early pregnancy is associated with body water and plasma volume changes in a pregnancy cohort in rural Bangladesh. J Nutr. 2012;142(6):1109–15. | |
dcterms.references | Vaughan JE, Walsh SW. Oxidative stress reproduces placental abnormalities of preeclampsia. Hypertens Pregnancy. 2002;21(3):205–23. | |
dcterms.references | Buxton MA, Meraz-Cruz N, Sanchez BN, Gronlund CJ, Foxman B, Vadillo- Ortega F, et al. Air pollution and inflammation: Findings from concurrent repeated measures of systemic and reproductive tract cytokines during term pregnancy in Mexico City. Sci Total Environ [Internet]. 2019/05/05. 2019 Sep 1;681:235–41. Available from: https://pubmed.ncbi.nlm.nih.gov/31103661 | |
dcterms.references | Gomez-Lopez N, Vadillo-Perez L, Nessim S, Olson DM, Vadillo-Ortega F. Choriodecidua and amnion exhibit selective leukocyte chemotaxis during term human labor. Am J Obstet Gynecol. 2011 Apr;204(4):364.e9-16. | |
dcterms.references | Gomez-Lopez N, Estrada-Gutierrez G, Jimenez-Zamudio L, Vega-Sanchez R, Vadillo-Ortega F. Fetal membranes exhibit selective leukocyte chemotaxic activity during human labor. J Reprod Immunol. 2009 Jun;80(1–2):122–31. | |
dcterms.references | Takeda J, Fang X, Olson DM. Pregnant human peripheral leukocyte migration during several late pregnancy clinical conditions: a cross-sectional observational study. BMC Pregnancy Childbirth [Internet]. 2017 Jan 10;17(1):16. Available from: https://pubmed.ncbi.nlm.nih.gov/28068953 | |
dcterms.references | Ruscitti P, Di Benedetto P, Berardicurti O, Panzera N, Grazia N, Lizzi AR, et al. Pro-inflammatory properties of H-ferritin on human macrophages, ex vivo and in vitro observations. Sci Rep. 2020 Jul;10(1):12232. | |
dcterms.references | Bode JG, Albrecht U, Häussinger D, Heinrich PC, Schaper F. Hepatic acute phase proteins - Regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. Eur J Cell Biol [Internet]. 2012;91(6–7):496–505. Available from: http://dx.doi.org/10.1016/j.ejcb.2011.09.008 | |
dcterms.references | Sobotta S, Raue A, Huang X, Vanlier J, Jünger A, Bohl S, et al. Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib. Front Physiol [Internet]. 2017 Oct 9;8:775. Available from: https://pubmed.ncbi.nlm.nih.gov/29062282 | |
dcterms.references | Zhang Z, Yang Y, Hill MA, Wu J. Does C-reactive protein contribute to atherothrombosis via oxidant-mediated release of pro-thrombotic factors and activation of platelets? Front Physiol [Internet]. 2012 Nov 16;3:433. Available from: https://pubmed.ncbi.nlm.nih.gov/23162475 | |
dcterms.references | Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, et al. IL- 6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113(9):1271–6. | |
dcterms.references | Rivera S, Nemeth E, Gabayan V, Lopez MA, Farshidi D, Ganz T. Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood. 2005;106(6):2196–200. | |
dcterms.references | Elliott CL, Loudon JA, Brown N, Slater DM, Bennett PR, Sullivan MH. IL-1beta and IL-8 in human fetal membranes: changes with gestational age, labor, and culture conditions. Am J Reprod Immunol. 2001 Oct;46(4):260–7. | |
dcterms.references | Singh N, Herbert B, Sooranna G, Shah NM, Das A, Sooranna SR, et al. Is there an inflammatory stimulus to human term labour? PLoS One. 2021;16(8):e0256545. | |
dcterms.references | Rajagopal SP, Hutchinson JL, Dorward DA, Rossi AG, Norman JE. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone. Mol Hum Reprod [Internet]. 2015 Aug 1;21(8):672–86. Available from: https://doi.org/10.1093/molehr/gav027 | |
dcterms.references | Spence T, Allsopp PJ, Yeates AJ, Mulhern MS, Strain JJ, McSorley EM. Maternal Serum Cytokine Concentrations in Healthy Pregnancy and Preeclampsia. Zakar T, editor. J Pregnancy [Internet]. 2021;2021:6649608. Available from: https://doi.org/10.1155/2021/6649608 | |
dcterms.references | Burns C, Hall ST, Smith R, Blackwell C. Cytokine Levels in Late Pregnancy: Are Female Infants Better Protected Against Inflammation? Front Immunol [Internet]. 2015;6. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2015.00318 | |
dcterms.references | de Steenwinkel FDO, Hokken-Koelega ACS, de Man YA, de Rijke YB, de Ridder MAJ, Hazes JMW, et al. Circulating maternal cytokines influence fetal growth in pregnant women with rheumatoid arthritis. Ann Rheum Dis. 2013 Dec;72(12):1995–2001. | |
dcterms.references | Yeates AJ, McSorley EM, Mulhern MS, Spence T, Crowe W, Grzesik K, et al. Associations between maternal inflammation during pregnancy and infant birth outcomes in the Seychelles Child Development Study. J Reprod Immunol. 2020 Feb;137:102623. | |
dcterms.references | CURRY AE, VOGEL IDA, DREWS C, SCHENDEL D, SKOGSTRAND K, FLANDERS WD, et al. Mid-pregnancy maternal plasma levels of interleukin 2, 6, and 12, tumor necrosis factor-alpha, interferon-gamma, and granulocyte- macrophage colony-stimulating factor and spontaneous preterm delivery. Acta Obstet Gynecol Scand [Internet]. 2007 Sep 1;86(9):1103–10. Available from: https://doi.org/10.1080/00016340701515423 | |
dcterms.references | Varner MW, Esplin MS. Current understanding of genetic factors in preterm birth. BJOG. 2005 Mar;112 Suppl 1:28–31. | |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...