Publicación:
Caracterización de factores inmunológicos y microbiológicos asociados a la colonización e infección por Staphylococcus aureus

dc.contributor.advisorReyes Ramos, Niradiz
dc.contributor.authorMontes Guevara, Oscar Alonso
dc.date.accessioned2023-02-15T14:56:29Z
dc.date.available2023-02-15T14:56:29Z
dc.date.issued2023
dc.description.abstractStaphylococcus aureus (S. aureus) es un colonizador y patógeno humano eficaz. Sin embargo, los mecanismos moleculares e inmunológicos involucrados en la interacción de S. aureus con el hospedero durante la colonización y la infección no se conocen por completo. No obstante, esto requiere una comprensión adecuada de los determinantes involucrados en la colonización e infección de su hospedero. Esta tesis tuvo como objetivo central realizar la caracterización de varios factores inmunológicos y microbiológicos que han sido previamente asociados a la colonización e infección por S. aureus, en una población de pacientes con diagnóstico confirmado de infección por esta bacteria e individuos controles sanos de la ciudad de Cartagena de Indias y áreas geográficas circunvecinas. Parte de los resultados derivados de este trabajo han sido publicados en tres artículos en revistas indexadas internacionalmente. En el artículo 1 (publicado), el análisis del microbioma nasal de individuos sanos reveló que la diversidad bacteriana y fúngica es más abundante en las personas colonizadas por S. aureus que en los no portadores, asimismo se corroboró que muchas especies micóticas están conviviendo dentro del vestíbulo nasal sano en una biomasa y riqueza sustanciales. En el artículo 2 (publicado), se detalla la primera representación de la distribución poblacional de SARM y SASM responsables de infecciones atendidas en el hospital pediátrico participante, donde se identificaron los clones epidémicos más prevalentes en la población en estudio, ST8-SARM-IVc, ST923-SARM-IVa y ST8-SARM-IVa. En el artículo 3 (manuscrito en preparación), en pacientes con celulitis comparados con portadores y no-portadores sanos de S. aureus, se detectaron niveles séricos de tres quimiocinas proinflamatorias, IL-8, RANTES, y MDC, significativamente elevadas en estos pacientes. Estos hallazgos aportan información nueva sobre la participación potencial de algunas quimiocinas proinflamatorias en los procesos de colonización e infección por S. aureus. En el artículo 4 (manuscrito en preparación), la producción de biopelículas por aislados clínicos SARM y SASM fue significativamente mayor en comparación con la producida por aislamientos colonizantes. El análisis de la relación entre la capacidad de formación de biopelículas y el perfil de varios genes previamente asociados al proceso de producción de biopelículas, permitió detectar diferencias significativas entre los dos grupos de aislamientos, encontrándose una mayor frecuencia del gen ica A en el grupo de aislamientos clínicos. En el artículo 5 (publicado), en el análisis del genoma secuenciado del aislamiento COL52-A5 obtenido de un individuo sano colonizado persistentemente, se encontró numerosos factores de virulencia y resistencia. El esclarecimiento de cuáles son las características genómicas de esta bacteria que favorecen el transporte persistente en individuos sanos requiere que se realice un análisis comparativo detallado de los genomas secuenciados de un número adecuado de cepas persistentes e intermitentes. En el artículo 6 (manuscrito en preparación), las evidencias de este trabajo sugieren que HLADRB1*07:01:01 pudiera estar implicado en la susceptibilidad al transporte nasal de S. aureus en individuos sanos colonizados con esta bacteria. Se requieren estudios adicionales con un tamaño muestral mayor para verificar los hallazgos encontrados. En consecuencia, los resultados alcanzados en la elaboración de esta tesis destacan las complejidades de los mecanismos involucrados en la interacción de la bacteria S. aureus con el hospedero humano. Se requieren estudios adicionales para lograr un mayor esclarecimiento de los factores involucrados en los procesos de colonización e infección llevados a cabo por esta bacteria en las poblaciones humanas.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor(a) en Ciencias Biomédicasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://hdl.handle.net/11227/15960
dc.identifier.urihttp://dx.doi.org/10.57799/11227/96
dc.language.isospaspa
dc.publisherUniversidad de Cartagenaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.programDoctorado en Ciencias Biomédicasspa
dc.rightsDerechos Reservados - Universidad de Cartagena, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcInmunología
dc.subject.armarcInmunología molecular
dc.subject.armarcDescontaminación biológica
dc.subject.armarcEstafilococos
dc.titleCaracterización de factores inmunológicos y microbiológicos asociados a la colonización e infección por Staphylococcus aureusspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.referencesCervantes-García E, García-González R, Salazar-Schettino PM. Características generales del Staphylococcus aureus. Revista Mexicana de Patología Clínica y Medicina de Laboratorio. 2014;61(1):28-40.spa
dcterms.referencesde Souza Lemos A, de Souza ACMF, Karas B, Calixto CM, Meijerink CI, Nascimento FC, et al. Prevalence of Staphylococcus aureus and MRSA among Medical students: a literature review. Research, Society and Development. 2021;10(11):e347101119536-espa
dcterms.referencesKoneman EW, Allen SD, Janda W, Schreckenberger P, Winn W. Diagnostic microbiology. The nonfermentative gram-negative bacilli Philedelphia: Lippincott-Raven Publishers. 1997:253-320.spa
dcterms.referencesKuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. The Lancet. 2001;357(9264):1225-40spa
dcterms.referencesLiu L, Wang Y, Bojer MS, Andersen PS, Ingmer H. High persister cell formation by clinical Staphylococcus aureus strains belonging to clonal complex 30. Microbiology. 2020;166(7):654-8.spa
dcterms.referencesvan Belkum A. Staphylococcal colonization and infection: homeostasis versus disbalance of human (innate) immunity and bacterial virulence. Current opinion in infectious diseases. 2006;19(4):339-44spa
dcterms.referencesvan Belkum A. Staphylococcal colonization and infection: homeostasis versus disbalance of human (innate) immunity and bacterial virulence. Current opinion in infectious diseases. 2006;19(4):339-44spa
dcterms.referencesSakr A, Bregeon F, Mege JL, Rolain JM, Blin O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front Microbiol. 2018;9:2419.spa
dcterms.referencesMulcahy ME, McLoughlin RM. Host-Bacterial Crosstalk Determines Staphylococcus aureus Nasal Colonization. Trends Microbiol. 2016;24(11):872-86.spa
dcterms.referencesModak R, Das Mitra S, Vasudevan M, Krishnamoorthy P, Kumar M, Bhat AV, et al. Epigenetic response in mice mastitis: Role of histone H3 acetylation and microRNA(s) in the regulation of host inflammatory gene expression during Staphylococcus aureus infection. Clin Epigenetics. 2014;6(1):12.spa
dcterms.referencesLiu Q, Mazhar M, Miller LS. Immune and Inflammatory Reponses to Staphylococcus aureus Skin Infections. Curr Dermatol Rep. 2018;7(4):338-49.spa
dcterms.references. Nair D, Memmi G, Hernandez D, Bard J, Beaume M, Gill S, et al. Whole-genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J Bacteriol. 2011;193(9):2332-5.spa
dcterms.referencesSakr A, Brégeon F, Mège J-L, Rolain J-M, Blin O. Staphylococcus aureus nasal colonization: an update on mechanisms, epidemiology, risk factors, and subsequent infections. Frontiers in microbiology. 2018;9:2419.spa
dcterms.referencesWertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet. 2004;364(9435):703-5.spa
dcterms.referencesLiu GY. Molecular pathogenesis of Staphylococcus aureus infection. Pediatr Res. 2009;65(5 Pt 2):71R7R.spa
dcterms.referencesÁlvarez A, Fernández L, Gutiérrez D, Iglesias B, Rodríguez A, García P. Methicillin-resistant Staphylococcus aureus in hospitals: Latest trends and treatments based on bacteriophages. Journal of Clinical Microbiology. 2019;57(12):e01006-19.spa
dcterms.referencesMagill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate pointprevalence survey of health care–associated infections. New England Journal of Medicine. 2014;370(13):1198- 208.spa
dcterms.referencesJones MJ, Donegan NP, Mikheyeva IV, Cheung AL. Improving transformation of Staphylococcus aureus belonging to the CC1, CC5 and CC8 clonal complexes. PloS one. 2015;10(3).spa
dcterms.referencesChoo EJ. Community-Associated Methicillin-Resistant Staphylococcus aureus in Nosocomial Infections. Infect Chemother. 2017;49(2):158-9spa
dcterms.referencesKateete DP, Bwanga F, Seni J, Mayanja R, Kigozi E, Mujuni B, et al. CA-MRSA and HA-MRSA coexist in community and hospital settings in Uganda. Antimicrobial Resistance & Infection Control. 2019;8(1):1-9.spa
dcterms.referencesEnright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of clinical microbiology. 2000;38(3):1008-15.spa
dcterms.referencesGrundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med. 2010;7(1):e1000215.spa
dcterms.referencesJian Y, Zhao L, Zhao N, Lv HY, Liu Y, He L, et al. Increasing prevalence of hypervirulent ST5 methicillin susceptible Staphylococcus aureus subtype poses a serious clinical threat. Emerg Microbes Infect. 2021;10(1):109-22.spa
dcterms.referencesMcCarthy H, Rudkin JK, Black NS, Gallagher L, O'Neill E, O'Gara JP. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol. 2015;5:1.spa
dcterms.referencesVázquez Núñez JC. Eficacia inhibitoria entre el extracto metanólico de Plantago major (llantén) y clindamicina en colonias de Staphylococcus aureus (ATCC 25923) in vitro. 2018.spa
dcterms.referencesSalgado BAB. Surface colonisation and survival of Staphylococcus aureus: The University of Liverpool (United Kingdom); 2019.spa
dcterms.referencesMulcahy ME, McLoughlin RM. Host–bacterial crosstalk determines Staphylococcus aureus nasal colonization. Trends in microbiology. 2016;24(11):872-86.spa
dcterms.referencesKluytmans J, Van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clinical microbiology reviews. 1997;10(3):505-20.spa
dcterms.referencesNouwen JL, Ott A, Kluytmans-Vandenbergh MF, Boelens HA, Hofman A, Van Belkum A, et al. Predicting the Staphylococcus aureus nasal carrier state: derivation and validation of a “culture rule”. Clinical Infectious Diseases. 2004;39(6):806-11.spa
dcterms.referencesNouwen JL, Ott A, Kluytmans-Vandenbergh MF, Boelens HA, Hofman A, Van Belkum A, et al. Predicting the Staphylococcus aureus nasal carrier state: derivation and validation of a “culture rule”. Clinical Infectious Diseases. 2004;39(6):806-11.spa
dcterms.referencesvan Belkum A, Verkaik NJ, De Vogel CP, Boelens HA, Verveer J, Nouwen JL, et al. Reclassification of Staphylococcus aureus nasal carriage types. The Journal of infectious diseases. 2009;199(12):1820-6spa
dcterms.referencesFlores R, Villarroel JL, Valenzuela F. Enfrentamiento de las infecciones de piel en el adulto. Revista Médica Clínica Las Condes. 2021;32(4):429-41.spa
dcterms.referencesLamaro-Cardoso J, de Lencastre H, Kipnis A, Pimenta FC, Oliveira LS, Oliveira RM, et al. Molecular epidemiology and risk factors for nasal carriage of Staphylococcus aureus and methicillin-resistant S. aureus in infants attending day care centers in Brazil. Journal of clinical microbiology. 2009;47(12):3991-7.spa
dcterms.referencesEllis MW, Griffith ME, Jorgensen JH, Hospenthal DR, Mende K, Patterson JE. Presence and molecular epidemiology of virulence factors in methicillin-resistant Staphylococcus aureus strains colonizing and infecting soldiers. Journal of clinical microbiology. 2009;47(4):940-5.spa
dcterms.referencesLear A, McCord G, Peiffer J, Watkins RR, Parikh A, Warrington S. Incidence of Staphylococcus aureus nasal colonization and soft tissue infection among high school football players. The Journal of the American Board of Family Medicine. 2011;24(4):429-35.spa
dcterms.referencesSaxena S, Goyal R, Das S, Mathur M, Talwar V. Prevalence of methicillin-resistant Staphylococcus aureus colonization among healthcare workers and healthy community residents. Journal of Health, Population and Nutrition. 2002:279-80.spa
dcterms.referencesCohn LA, Middleton JR. A veterinary perspective on methicillin‐resistant staphylococci. Journal of veterinary emergency and critical care. 2010;20(1):31-45.spa
dcterms.referencesRivera Romero FJ. Portafolio de la experiencia durante el Internado Médico en el período junio 2021 a febrero 2022 en los establecimientos de salud: Hospital Nacional Dos de Mayo y Centro Materno Infantil Ollantay.spa
dcterms.referencesCastillo Higgins MV. Prevalencia de bacteriemia y sus complicaciones por Staphylococcus aureus en pacientes atendidos en el Hospital Roberto Gilbert Elizalde en el período enero 2018-diciembre 2019. 2020.spa
dcterms.referencesSollid JUE, Furberg AS, Hanssen AM, Johannessen M. Staphylococcus aureus: determinants of human carriage. Infection, genetics and evolution. 2014;21:531-41.spa
dcterms.referencesGraham III PL, Lin SX, Larson EL. A US population-based survey of Staphylococcus aureus colonization. Annals of internal medicine. 2006;144(5):318-25.spa
dcterms.referencesLebon A, Labout J, Verbrugh HA, Jaddoe V, Hofman A, van Wamel W, et al. Dynamics and determinants of Staphylococcus aureus carriage in infancy: the Generation R Study. Bacterial carriage in infancy Risk factors and consequences The Generation R study. 2010;46(10):43.spa
dcterms.referencesPastacaldi C, Lewis P, Howarth P. Staphylococci and staphylococcal superantigens in asthma and rhinitis: a systematic review and meta‐analysis. Allergy. 2011;66(4):549-55spa
dcterms.referencesCrum-Cianflone NF, Shadyab AH, Weintrob A, Hospenthal DR, Lalani T, Collins G, et al. Association of methicillin-resistant Staphylococcus aureus (MRSA) colonization with high-risk sexual behaviors in persons infected with human immunodeficiency virus (HIV). Medicine. 2011;90(6):379-89.spa
dcterms.referencesRuimy R, Angebault C, Djossou F, Dupont C, Epelboin L, Jarraud S, et al. Are host genetics the predominant determinant of persistent nasal Staphylococcus aureus carriage in humans? The Journal of infectious diseases. 2010;202(6):924-34.spa
dcterms.referencesVerkaik NJ, de Vogel CP, Boelens HA, Grumann D, Hoogenboezem T, Vink C, et al. Anti-staphylococcal humoral immune response in persistent nasal carriers and noncarriers of Staphylococcus aureus. The Journal of infectious diseases. 2009;199(5):625-32.spa
dcterms.referencesEmonts M, Uitterlinden AG, Nouwen JL, Kardys I, Maat MPd, Melles DC, et al. Host polymorphisms in interleukin 4, complement factor H, and C-reactive protein associated with nasal carriage of Staphylococcus aureus and occurrence of boils. The Journal of infectious diseases. 2008;197(9):1244-53.spa
dcterms.referencesNurjadi D, Herrmann E, Hinderberger I, Zanger P. Impaired β-defensin expression in human skin links DEFB1 promoter polymorphisms with persistent Staphylococcus aureus nasal carriage. The Journal of infectious diseases. 2013;207(4):666-74.spa
dcterms.referencesZanger P, Nurjadi D, Vath B, Kremsner PG. Persistent nasal carriage of Staphylococcus aureus is associated with deficient induction of human β-defensin 3 after sterile wounding of healthy skin in vivo. Infection and immunity. 2011;79(7):2658-62.spa
dcterms.referencesVuononvirta J, Toivonen L, Gröndahl-Yli-Hannuksela K, Barkoff A-M, Lindholm L, Mertsola J, et al. Nasopharyngeal bacterial colonization and gene polymorphisms of mannose-binding lectin and toll-like receptors 2 and 4 in infants. PLoS One. 2011;6(10):e26198.spa
dcterms.referencesMessaritakis I, Samonis G, Dimopoulou D, Maraki S, Papadakis J, Daraki V, et al. Staphylococcus aureus nasal carriage might be associated with vitamin D receptor polymorphisms in type 2 diabetes. Clinical Microbiology and Infection. 2014;20(9):920-5.spa
dcterms.referencesKrishna S, Miller LS, editors. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Seminars in immunopathology; 2012: Springer.spa
dcterms.referencesKotpal R, Bhalla P, Dewan R, Kaur R. Incidence and risk factors of nasal carriage of Staphylococcus aureus in HIV-infected individuals in comparison to HIV-uninfected individuals: a case–control study. Journal of the International Association of Providers of AIDS Care (JIAPAC). 2016;15(2):141-7.spa
dcterms.referencesBassetti S, Wasmer S, Hasler P, Vogt T, Nogarth D, Frei R, et al. Staphylococcus aureus in patients with rheumatoid arthritis under conventional and anti-tumor necrosis factor-alpha treatment. The Journal of rheumatology. 2005;32(11):2125-9.spa
dcterms.referencesMidorikawa K, Ouhara K, Komatsuzawa H, Kawai T, Yamada S, Fujiwara T, et al. Staphylococcus aureus susceptibility to innate antimicrobial peptides, β-defensins and CAP18, expressed by human keratinocytes. Infection and immunity. 2003;71(7):3730-9.spa
dcterms.referencesGröne A. Keratinocytes and cytokines. Veterinary immunology and immunopathology. 2002;88(1-2):1-12.spa
dcterms.referencesSimanski M, Rademacher F, Schröder L, Schumacher HM, Gläser R, Harder J. IL-17A and IFN-γ synergistically induce RNase 7 expression via STAT3 in primary keratinocytes. PloS one. 2013;8(3):e59531.spa
dcterms.referencesLei J, Sun L, Huang S, Zhu C, Li P, He J, et al. The antimicrobial peptides and their potential clinical applications. American journal of translational research. 2019;11(7):3919.spa
dcterms.referencesIwamoto K, Moriwaki M, Miyake R, Hide M. Staphylococcus aureus in atopic dermatitis: Strain-specific cell wall proteins and skin immunity. Allergology International. 2019;68(3):309-15.spa
dcterms.referencesKisich KO, Howell MD, Boguniewicz M, Heizer HR, Watson NU, Leung DY. The constitutive capacity of human keratinocytes to kill Staphylococcus aureus is dependent on β-defensin 3. Journal of Investigative Dermatology. 2007;127(10):2368-80.spa
dcterms.referencesZanger P, Holzer J, Schleucher R, Scherbaum H, Schittek B, Gabrysch S. Severity of Staphylococcus aureus infection of the skin is associated with inducibility of human β-defensin 3 but not human β-defensin 2. Infection and immunity. 2010;78(7):3112-7spa
dcterms.referencesYamasaki K, Gallo RL. Antimicrobial peptides in human skin disease. European journal of dermatology. 2008;18(1):11-21.spa
dcterms.referencesNoore J, Noore A, Li B. Cationic antimicrobial peptide LL-37 is effective against both extra-and intracellular Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2013;57(3):1283-90.spa
dcterms.referencesMukherjee S, Karmakar S, Babu SPS. TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. Brazilian Journal of Infectious Diseases. 2016;20:193-204.spa
dcterms.referencesConti F, Spinelli FR, Alessandri C, Valesini G. Toll-like receptors and lupus nephritis. Clinical reviews in allergy & immunology. 2011;40(3):192-8.spa
dcterms.referencesZecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunology letters. 2013;150(1-2):12-22.spa
dcterms.referencesFoster TJ. The MSCRAMM family of cell-wall-anchored surface proteins of gram-positive cocci. Trends in microbiology. 2019;27(11):927-41.spa
dcterms.referencesMuñoz LC, Pinilla G, Navarrete J. Biopelícula en Staphylococcus spp.: estructura, genética y control. Enfermedades Infecciosas y Microbiología. 2019;37(1):18-29.spa
dcterms.referencesLacey KA, Geoghegan JA, McLoughlin RM. The role of Staphylococcus aureus virulence factors in skin infection and their potential as vaccine antigens. Pathogens. 2016;5(1):22.spa
dcterms.referencesRasheed NA, Hussein NR. Staphylococcus aureus: an overview of discovery, characteristics, epidemiology, virulence factors and antimicrobial sensitivity. European Journal of Molecular & Clinical Medicine. 2021;8(3):1160-83.spa
dcterms.referencesAdhikari RP, Ajao AO, Aman MJ, Karauzum H, Sarwar J, Lydecker AD, et al. Lower antibody levels to Staphylococcus aureus exotoxins are associated with sepsis in hospitalized adults with invasive S. aureus infections. The Journal of infectious diseases. 2012;206(6):915-23.spa
dcterms.referencesGnanamani A, Hariharan P, Paul-Satyaseela M. Staphylococcus aureus: Overview of bacteriology, clinical diseases, epidemiology, antibiotic resistance and therapeutic approach. Frontiers in Staphylococcus aureus. 2017;4:28.spa
dcterms.referencesHabeeb A, Hussein NR, Assafi MS, Al-Dabbagh SA. Methicillin resistant Staphylococcus aureus nasal colonization among secondary school students at Duhok City-Iraq. Journal of Microbiology and Infectious Diseases. 2014;4(02):59-63.spa
dcterms.referencesOtto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annual review of microbiology. 2010;64:143-62.spa
dcterms.referencesEvangelista SdS, Oliveira ACd. Staphylococcus aureus meticilino resistente adquirido na comunidade: um problema mundial. Revista Brasileira de Enfermagem. 2015;68:136-43.spa
dcterms.referencesKöck R, Becker K, Cookson B, van Gemert-Pijnen J, Harbarth S, Kluytmans J, et al. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Eurosurveillance. 2010;15(41):19688.spa
dcterms.referencesBassetti M, Nicco E, Mikulska M. Why is community-associated MRSA spreading across the world and how will it change clinical practice? International journal of antimicrobial agents. 2009;34:S15-S9.spa
dcterms.referencesMegevand C, Gervaix A, Heininger U, Berger C, Aebi C, Vaudaux B, et al. Molecular epidemiology of the nasal colonization by methicillin-susceptible Staphylococcus aureus in Swiss children. Clinical microbiology and infection. 2010;16(9):1414-20.spa
dcterms.referencesWu K, Conly J, McClure J-A, Kurwa HA, Zhang K. Arginine catabolic mobile element in evolution and pathogenicity of the community-associated methicillin-resistant Staphylococcus aureus strain USA300. Microorganisms. 2020;8(2):275.spa
dcterms.referencesDavid MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clinical microbiology reviews. 2010;23(3):616-87.spa
dcterms.referencesTenover FC, Tickler IA, Goering RV, Kreiswirth BN, Mediavilla JR, Persing DH, et al. Characterization of nasal and blood culture isolates of methicillin-resistant Staphylococcus aureus from patients in United States hospitals. Antimicrobial agents and chemotherapy. 2012;56(3):1324-30.spa
dcterms.referencesdel Rosario G, Marisol T. Epidemiología de infecciones por estafilococos aureus en pacientes ingresados en la Unidad de Cuidados Intensivos Pediátricos del Hospital del Niños Dr. Roberto Gilbert Elizalde periodo julio 2008 a junio 2010. 2015.spa
dcterms.referencesTong SY, Davis JS, Eichenberger E, Holland TL, Fowler Jr VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical microbiology reviews. 2015;28(3):603-61.spa
dcterms.referencesLowy FD. Staphylococcus aureus infections. New England journal of medicine. 1998;339(8):520-32.spa
dcterms.referencesTam K, Torres VJ. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiology spectrum. 2019;7(2):7.2. 16.spa
dcterms.referencesSeiti Yamada Yoshikawa F, Feitosa de Lima J, Notomi Sato M, Álefe Leuzzi Ramos Y, Aoki V, Leao Orfali R. Exploring the role of Staphylococcus aureus toxins in atopic dermatitis. Toxins. 2019;11(6):321.spa
dcterms.referencesCeccarelli F, Perricone C, Olivieri G, Cipriano E, Spinelli FR, Valesini G, et al. Staphylococcus aureus nasal carriage and autoimmune diseases: from pathogenic mechanisms to disease susceptibility and phenotype. International Journal of Molecular Sciences. 2019;20(22):5624.spa
dcterms.referencesKusch H, Engelmann S. Secrets of the secretome in Staphylococcus aureus. International Journal of Medical Microbiology. 2014;304(2):133-41.spa
dcterms.referencesSpaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clinical microbiology reviews. 2013;26(3):422-47.spa
dcterms.referencesCosta AR, Batistão DW, Ribas RM, Sousa AM, Pereira MO, Botelho CM. Staphylococcus aureus virulence factors and disease. 2013spa
dcterms.referencesCui L, Morris A, Ghedin E. The human mycobiome in health and disease. Genome Med. BioMed. Central; 2013.spa
dcterms.referencesSpuesens EB, Fraaij PL, Visser EG, Hoogenboezem T, Hop WC, van Adrichem LN, et al. Carriage of Mycoplasma pneumoniae in the upper respiratory tract of symptomatic and asymptomatic children: an observational study. PLoS medicine. 2013;10(5):e1001444.spa
dcterms.referencesXiomara M-C, Ayronis V-GA, Luisa N-BM, Carolina M-E. Estudio observacional de la microbiota intestinal aeróbica. Kasmera. 2020;48(2):e48231547spa
dcterms.referencesBrown AF, Leech JM, Rogers TR, McLoughlin RM. Staphylococcus aureus colonization: modulation of host immune response and impact on human vaccine design. Frontiers in immunology. 2014;4:507.spa
dcterms.referencesWagner Mackenzie B, Chang K, Zoing M, Jain R, Hoggard M, Biswas K, et al. Longitudinal study of the bacterial and fungal microbiota in the human sinuses reveals seasonal and annual changes in diversity. Scientific reports. 2019;9(1):1-10.spa
dcterms.referencesLaux C, Peschel A, Krismer B. Staphylococcus aureus colonization of the human nose and interaction with other microbiome members. Microbiology Spectrum. 2019;7(2):7.2. 34.spa
dcterms.referencesHardy BL, Merrell DS. Friend or foe: interbacterial competition in the nasal cavity. Journal of Bacteriology. 2021;203(5):e00480-20.spa
dcterms.referencesMatthew F, Zinnia L, Gwendolyn S, Osher Ngo Yung L, Marianna I, Fonseca D, et al. Interactions of the bacteriome, virome and immune system in the nose. FEMS Microbes. 2022.spa
dcterms.referencesMuthukrishnan G, Lamers RP, Ellis A, Paramanandam V, Persaud AB, Tafur S, et al. Longitudinal genetic analyses of Staphylococcus aureus nasal carriage dynamics in a diverse population. BMC infectious diseases. 2013;13(1):1-13.spa
dcterms.referencesKildow BJ, Conradie JP, Robson RL. Nostrils of healthy volunteers are independent with regard to Staphylococcus aureus carriage. Journal of clinical microbiology. 2012;50(11):3744-6.spa
dcterms.referencesNakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Science translational medicine. 2017;9(378):eaah4680.spa
dcterms.referencesSevern MM, Horswill AR. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nature Reviews Microbiology. 2022:1-15.spa
dcterms.referencesSimor AE. Staphylococcal decolonisation: an effective strategy for prevention of infection? The Lancet infectious diseases. 2011;11(12):952-62.spa
dcterms.referencesUehara Y, Nakama H, Agematsu K, Uchida M, Kawakami Y, Fattah AA, et al. Bacterial interference among nasal inhabitants: eradication of Staphylococcus aureus from nasal cavities by artificial implantation of Corynebacterium sp. Journal of Hospital Infection. 2000;44(2):127-33spa
dcterms.referencesGlück U, Gebbers J-O. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and β-hemolytic streptococci). The American journal of clinical nutrition. 2003;77(2):517-20.spa
dcterms.referencesBroeker BM, Holtfreter S, Bekeredjian-Ding I. Immune control of Staphylococcus aureus–regulation and counter-regulation of the adaptive immune response. International journal of medical microbiology. 2014;304(2):204-14.spa
dcterms.referencesHarrison LM, Morris JA, Lauder RM, Telford DR. Staphylococcal pyrogenic toxins in infant urine samples: a possible marker of transient bacteraemia. Journal of clinical pathology. 2009;62(8):735-8.spa
dcterms.referencesBurian M, Grumann D, Holtfreter S, Wolz C, Goerke C, Bröker B. Expression of staphylococcal superantigens during nasal colonization is not sufficient to induce a systemic neutralizing antibody response in humans. European journal of clinical microbiology & infectious diseases. 2012;31(3):251-6.spa
dcterms.referencesBuchan KD, Foster SJ, Renshaw SA. Staphylococcus aureus: setting its sights on the human innate immune system. Microbiology. 2019;165(4):367-85.spa
dcterms.referencesVerkaik NJ, Lebon A, de Vogel CP, Hooijkaas H, Verbrugh HA, Jaddoe VW, et al. Induction of antibodies by Staphylococcus aureus nasal colonization in young children. Clinical microbiology and infection. 2010;16(8):1312-7.spa
dcterms.referencesPrevaes SM, van Wamel WJ, de Vogel CP, Veenhoven RH, van Gils EJ, van Belkum A, et al. Nasopharyngeal colonization elicits antibody responses to staphylococcal and pneumococcal proteins that are not associated with a reduced risk of subsequent carriage. Infection and immunity. 2012;80(6):2186-93.spa
dcterms.referencesColque-Navarro P, Jacobsson G, Andersson R, Flock J-I, Möllby R. Levels of antibody against 11 Staphylococcus aureus antigens in a healthy population. Clinical and Vaccine Immunology. 2010;17(7):1117- 23.spa
dcterms.referencesArcher NK, Harro JM, Shirtliff ME. Clearance of Staphylococcus aureus nasal carriage is T cell dependent and mediated through interleukin-17A expression and neutrophil influx. Infection and immunity. 2013;81(6):2070-5spa
dcterms.referencesDesai R, Pannaraj PS, Agopian J, Sugar CA, Liu GY, Miller LG. Survival and transmission of communityassociated methicillin-resistant Staphylococcus aureus from fomites. American journal of infection control. 2011;39(3):219-25.spa
dcterms.referencesVon Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. New England Journal of Medicine. 2001;344(1):11-6.spa
dcterms.referencesSenn L, Clerc O, Zanetti G, Basset P, Prod’hom G, Gordon NC, et al. The stealthy superbug: the role of asymptomatic enteric carriage in maintaining a long-term hospital outbreak of ST228 methicillin-resistant Staphylococcus aureus. MBio. 2016;7(1):e02039-15.spa
dcterms.referencesDavis KA, Stewart JJ, Crouch HK, Florez CE, Hospenthal DR. Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clinical Infectious Diseases. 2004;39(6):776-82.spa
dcterms.referencesO’Callaghan RJ. The pathogenesis of Staphylococcus aureus eye infections. Pathogens. 2018;7(1):9spa
dcterms.referencesStryjewski ME, Chambers HF. Skin and soft-tissue infections caused by community-acquired methicillinresistant Staphylococcus aureus. Clinical Infectious Diseases. 2008;46(Supplement_5):S368-S77.spa
dcterms.referencesInoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM, Wang Y, et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nature medicine. 2011;17(10):1310-4.spa
dcterms.referencesInoshima N, Wang Y, Wardenburg JB. Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. The Journal of investigative dermatology. 2012;132(5):1513.spa
dcterms.referencesPopov LM, Marceau CD, Starkl PM, Lumb JH, Shah J, Guerrera D, et al. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin. Proceedings of the National Academy of Sciences. 2015;112(46):14337-42.spa
dcterms.referencesShah J, Rouaud F, Guerrera D, Vasileva E, Popov LM, Kelley WL, et al. A dock-and-lock mechanism clusters ADAM10 at cell-cell junctions to promote α-toxin cytotoxicity. Cell reports. 2018;25(8):2132-47. e7.spa
dcterms.referencesCheung GY, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12(1):547-69.spa
dcterms.referencesOtto M. Staphylococcal biofilms. Microbiology spectrum. 2018;6(4):6.4. 27.spa
dcterms.referencesSchlievert PM, Davis CC. Device-associated menstrual toxic shock syndrome. Clinical microbiology reviews. 2020;33(3):e00032-19.spa
dcterms.referencesFisher EL, Otto M, Cheung GY. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Frontiers in microbiology. 2018;9:436.spa
dcterms.referencesOno HK, Hirose S, Narita K, Sugiyama M, Asano K, Hu D-L, et al. Histamine release from intestinal mast cells induced by staphylococcal enterotoxin A (SEA) evokes vomiting reflex in common marmoset. PLoS pathogens. 2019;15(5):e1007803.spa
dcterms.referencesMcCullers JA. The co-pathogenesis of influenza viruses with bacteria in the lung. Nature Reviews Microbiology. 2014;12(4):252-62.spa
dcterms.referencesMorens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. The Journal of infectious diseases. 2008;198(7):962-70.spa
dcterms.referencesNakamura Y, Oscherwitz J, Cease KB, Chan SM, Muñoz-Planillo R, Hasegawa M, et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397-401.spa
dcterms.referencesLiu H, Archer NK, Dillen CA, Wang Y, Ashbaugh AG, Ortines RV, et al. Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses. Cell host & microbe. 2017;22(5):653-66. e5spa
dcterms.referencesHodille E, Cuerq C, Badiou C, Bienvenu F, Steghens J-P, Cartier R, et al. Delta hemolysin and phenolsoluble modulins, but not alpha hemolysin or panton-valentine leukocidin, induce mast cell activation. Frontiers in cellular and infection microbiology. 2016;6:180.spa
dcterms.referencesKhatoon Z, McTiernan CD, Suuronen EJ, Mah T-F, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12):e01067.spa
dcterms.referencesThomer L, Schneewind O, Missiakas D. Pathogenesis of Staphylococcus aureus bloodstream infections. Annual Review of Pathology: Mechanisms of Disease. 2016;11:343-64.spa
dcterms.referencesThammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nature Reviews Microbiology. 2015;13(9):529-43.spa
dcterms.referencesThomer L, Schneewind O, Missiakas D. Pathogenesis of Staphylococcus aureus bloodstream infections. Annual review of pathology. 2016;11:343.spa
dcterms.referencesTam K. Elucidating the Role of Staphylococcus aureus Leukocidins in Immune Evasion and Their Potential as Vaccine Antigens: New York University; 2020.spa
dcterms.referencesLekstrom-Himes JA, Gallin JI. Immunodeficiency diseases caused by defects in phagocytes. New England Journal of Medicine. 2000;343(23):1703-14.spa
dcterms.referencesPollitt EJ, Szkuta PT, Burns N, Foster SJ. Staphylococcus aureus infection dynamics. PLoS pathogens. 2018;14(6):e1007112.spa
dcterms.referencesSurewaard BG, Deniset JF, Zemp FJ, Amrein M, Otto M, Conly J, et al. Identification and treatment of the Staphylococcus aureus reservoir in vivo. Journal of Experimental Medicine. 2016;213(7):1141-51spa
dcterms.referencesVélez Tobón GJ, Rocha Arrieta YC, Arias Sierra AA, López Quintero JÁ. Función del sistema NADPH oxidasa en la formación de trampas extracelulares de los neutrófilos (NETs). Revista Cubana de Hematología, Inmunología y Hemoterapia. 2016;32(1):43-56.spa
dcterms.referencesDe Jong NW, Van Kessel KP, Van Strijp JA. Immune evasion by Staphylococcus aureus. Microbiology spectrum. 2019;7(2):7.2. 20.spa
dcterms.referencesRigby KM, DeLeo FR, editors. Neutrophils in innate host defense against Staphylococcus aureus infections. Seminars in immunopathology; 2012: Springer.spa
dcterms.referencesKlevens R. Active bacterial core surveillance (ABCs) MRSA investigators. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Jama. 2007;298:1763-71.spa
dcterms.referencesBoyle-Vavra S, Li X, Alam MT, Read TD, Sieth J, Cywes-Bentley C, et al. USA300 and USA500 clonal lineages of Staphylococcus aureus do not produce a capsular polysaccharide due to conserved mutations in the cap5 locus. MBio. 2015;6(2):e02585-14.spa
dcterms.referencesSchaffer AC, Lee JC. Staphylococcal vaccines and immunotherapies. Infectious disease clinics of North America. 2009;23(1):153-71.spa
dcterms.referencesThakker M, Park J-S, Carey V, Lee JC. Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infection and immunity. 1998;66(11):5183-9.spa
dcterms.referencesCramton SE, Gerke C, Schnell NF, Nichols WW, Götz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infection and immunity. 1999;67(10):5427- 33.spa
dcterms.referencesVuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, et al. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. Journal of Biological Chemistry. 2004;279(52):54881-6.spa
dcterms.referencesCerca N, Jefferson KK, Maira-Litrán T, Pier DB, Kelly-Quintos C, Goldmann DA, et al. Molecular basis for preferential protective efficacy of antibodies directed to the poorly acetylated form of staphylococcal polyN-acetyl-β-(1-6)-glucosamine. Infection and immunity. 2007;75(7):3406-13.spa
dcterms.referencesVuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cellular microbiology. 2004;6(3):269-75.spa
dcterms.referencesFitzpatrick F, Humphreys H, O'Gara JP. Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. Journal of clinical microbiology. 2005;43(4):1973-6.spa
dcterms.referencesSkurnik D, Cywes-Bentley C, Pier GB. The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG. Expert review of vaccines. 2016;15(8):1041-53.spa
dcterms.referencesCrosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus aggregation and coagulation mechanisms, and their function in host–pathogen interactions. Advances in applied microbiology. 2016;96:1-41.spa
dcterms.referencesCheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS pathogens. 2010;6(8):e1001036.spa
dcterms.referencesFriedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature. 2003;425(6957):535-9.spa
dcterms.referencesMcAdow M, Kim HK, DeDent AC, Hendrickx AP, Schneewind O, Missiakas DM. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS pathogens. 2011;7(10):e1002307.spa
dcterms.referencesFitzgerald JR, Loughman A, Keane F, Brennan M, Knobel M, Higgins J, et al. Fibronectin‐binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcγRIIa receptor. Molecular microbiology. 2006;59(1):212-30.spa
dcterms.referencesOtto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual review of medicine. 2013;64:175-88.spa
dcterms.referencesLe KY, Dastgheyb S, Ho TV, Otto M. Molecular determinants of staphylococcal biofilm dispersal and structuring. Frontiers in cellular and infection microbiology. 2014;4:167.spa
dcterms.referencesBoles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS pathogens. 2008;4(4):e1000052.spa
dcterms.referencesPeriasamy S, Joo H-S, Duong AC, Bach T-HL, Tan VY, Chatterjee SS, et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proceedings of the National Academy of Sciences. 2012;109(4):1281-6.spa
dcterms.referencesMoormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Molecular microbiology. 2017;104(3):365-76.spa
dcterms.referencesIdrees M, Sawant S, Karodia N, Rahman A. Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. International Journal of Environmental Research and Public Health. 2021;18(14):7602.spa
dcterms.referencesNourbakhsh F, Namvar AE. Detection of genes involved in biofilm formation in Staphylococcus aureus isolates. GMS Hygiene and infection control. 2016;11.spa
dcterms.referencesForsgren A, Sjöquist J. “Protein a” from S. aureus: I. Pseudo-immune reaction with human γ-globulin. The Journal of Immunology. 1966;97(6):822-7.spa
dcterms.referencesGoodyear CS, Silverman GJ. Death by a B cell superantigen: in vivo VH-targeted apoptotic supraclonal B cell deletion by a staphylococcal toxin. The Journal of experimental medicine. 2003;197(9):1125-39.spa
dcterms.referencesPauli NT, Kim HK, Falugi F, Huang M, Dulac J, Henry Dunand C, et al. Staphylococcus aureus infection induces protein A–mediated immune evasion in humans. Journal of Experimental Medicine. 2014;211(12):2331-9.spa
dcterms.referencesAtkins K, Burman J, Chamberlain E. van den Elsen JM. S Aureus IgG-binding Proteins SpA and Sbi: Host Specificity and Mechanisms of Immune Complex Formation Mol Immunol. 2008;45(6):1600-11.spa
dcterms.referencesZhang L, Jacobsson K, Vasi J, Lindberg M, Frykberg L. A second IgG-binding protein in Staphylococcus aureus. Microbiology. 1998;144(4):985-91spa
dcterms.referencesItoh S, Hamada E, Kamoshida G, Yokoyama R, Takii T, Onozaki K, et al. Staphylococcal superantigenlike protein 10 (SSL10) binds to human immunoglobulin G (IgG) and inhibits complement activation via the classical pathway. Molecular immunology. 2010;47(4):932-8.spa
dcterms.referencesLambris JD, Ricklin D, Geisbrecht BV. Complement evasion by human pathogens. Nature Reviews Microbiology. 2008;6(2):132- 42.spa
dcterms.referencesvon Köckritz-Blickwede M, Konrad S, Foster S, Gessner JE, Medina E. Protective role of complement C5a in an experimental model of Staphylococcus aureus bacteremia. Journal of innate immunity. 2010;2(1):87- 92.spa
dcterms.referencesRooijakkers SH, Ruyken M, Roos A, Daha MR, Presanis JS, Sim RB, et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nature immunology. 2005;6(9):920-7.spa
dcterms.referencesJongerius I, Garcia BL, Geisbrecht BV, van Strijp JA, Rooijakkers SH. Convertase inhibitory properties of Staphylococcal extracellular complement-binding protein. Journal of Biological Chemistry. 2010;285(20):14973-9.spa
dcterms.referencesKang M, Ko Y-P, Liang X, Ross CL, Liu Q, Murray BE, et al. Collagen-binding microbial surface components recognizing adhesive matrix molecule (MSCRAMM) of Gram-positive bacteria inhibit complement activation via the classical athway. Journal of biological chemistry. 2013;288(28):20520-31.spa
dcterms.referencesSharp JA, Echague CG, Hair PS, Ward MD, Nyalwidhe JO, Geoghegan JA, et al. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. PloS one. 2012;7(5):e38407.spa
dcterms.referencesZhang Y, Wu M, Hang T, Wang C, Yang Y, Pan W, et al. Staphylococcus aureus SdrE captures complement factor H's C-terminus via a novel ‘close, dock, lock and latch'mechanism for complement evasion. Biochemical Journal. 2017;474(10):1619-31.spa
dcterms.referencesWoehl JL, Stapels DA, Garcia BL, Ramyar KX, Keightley A, Ruyken M, et al. The extracellular adherence protein from Staphylococcus aureus inhibits the classical and lectin pathways of complement by blocking formation of the C3 proconvertase. The journal of immunology. 2014;193(12):6161-71.spa
dcterms.referencesDubin G. Extracellular proteases of Staphylococcus spp. 2002.spa
dcterms.referencesLaarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SH. Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. The Journal of Immunology. 2011;186(11):6445-53.spa
dcterms.referencesRousseaux J, Rousseaux-Prévost R, Bazin H, Biserte G. Proteolysis of rat IgG subclasses by Staphylococcus aureus V8 proteinase. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology. 1983;748(2):205-12.spa
dcterms.referencesBongers S, Hellebrekers P, Leenen LP, Koenderman L, Hietbrink F. Intracellular penetration and effects of antibiotics on Staphylococcus aureus inside human neutrophils: a comprehensive review. Antibiotics. 2019;8(2):54.spa
dcterms.referencesDickson KB, Zhou J. Role of reactive oxygen species and iron in host defense against infection. Frontiers in Bioscience-Landmark. 2020;25(8):1600-16.spa
dcterms.referencesGigon L, Yousefi S, Karaulov A, Simon H-U. Mechanisms of toxicity mediated by neutrophil and eosinophil granule proteins. Allergology international. 2021;70(1):30-8.spa
dcterms.referencesKobayashi SD, Malachowa N, DeLeo FR. Neutrophils and bacterial immune evasion. Journal of Innate Immunity. 2018;10(5-6):432-41.spa
dcterms.referencesVilchis-Landeros MM, Matuz-Mares D, Vázquez-Meza H. Regulation of metabolic processes by hydrogen peroxide generated by NADPH oxidases. Processes. 2020;8(11):1424.spa
dcterms.referencesKlebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front‐line defender against phagocytosed microorganisms. Journal of leukocyte biology. 2013;93(2):185-98.spa
dcterms.referencesClauditz A, Resch A, Wieland K-P, Peschel A, Götz F. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infection and immunity. 2006;74(8):4950- 3.spa
dcterms.referencesPelz A, Wieland K-P, Putzbach K, Hentschel P, Albert K, Götz F. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. Journal of Biological Chemistry. 2005;280(37):32493-8.spa
dcterms.referencesMandell G. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal--leukocyte interaction. The Journal of clinical investigation. 1975;55(3):561-6.spa
dcterms.referencesClements MO, Watson SP, Foster SJ. Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. Journal of bacteriology. 1999;181(13):3898-903.spa
dcterms.referencesCosgrove K, Coutts G, Jonsson I-M, Tarkowski A, Kokai-Kun JF, Mond JJ, et al. Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. Journal of bacteriology. 2007;189(3):1025-35.spa
dcterms.referencesRichardson AR, Libby SJ, Fang FC. A nitric oxide–inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science. 2008;319(5870):1672-6.spa
dcterms.referencesJoo H-S, Otto M. Mechanisms of resistance to antimicrobial peptides in staphylococci. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2015;1848(11):3055-61spa
dcterms.referencesBera A, Herbert S, Jakob A, Vollmer W, Götz F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O‐acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Molecular microbiology. 2005;55(3):778-87.spa
dcterms.referencesPapayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons. Trends in immunology. 2009;30(11):513-21.spa
dcterms.referencesJann NJ, Schmaler M, Kristian SA, Radek KA, Gallo RL, Nizet V, et al. Neutrophil antimicrobial defense against Staphylococcus aureus is mediated by phagolysosomal but not extracellular trap‐associated cathelicidin. Journal of leukocyte biology. 2009;86(5):1159-69.spa
dcterms.referencesBerends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. Journal of innate immunity. 2010;2(6):576-86.spa
dcterms.referencesThammavongsa V, Missiakas DM, Schneewind O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science. 2013;342(6160):863-6.spa
dcterms.referencesBerube BJ, Bubeck Wardenburg J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins. 2013;5(6):1140-66.spa
dcterms.referencesAlonzo III F, Torres VJ. The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiology and Molecular Biology Reviews. 2014;78(2):199-230.spa
dcterms.referencesCheung GY, Joo H-S, Chatterjee SS, Otto M. Phenol-soluble modulins–critical determinants of staphylococcal virulence. FEMS microbiology reviews. 2014;38(4):698-719..spa
dcterms.referencesCraven RR, Gao X, Allen IC, Gris D, Wardenburg JB, McElvania-TeKippe E, et al. Staphylococcus aureus α-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PloS one. 2009;4(10):e7446.spa
dcterms.referencesSuttorp N, Habben E. Effect of staphylococcal alpha-toxin on intracellular Ca2+ in polymorphonuclear leukocytes. Infection and immunity. 1988;56(9):2228-34.spa
dcterms.referencesAlonzo III F, Kozhaya L, Rawlings SA, Reyes-Robles T, DuMont AL, Myszka DG, et al. CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature. 2013;493(7430):51-5.spa
dcterms.referencesSpaan AN, Henry T, Van Rooijen WJ, Perret M, Badiou C, Aerts PC, et al. The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell host & microbe. 2013;13(5):584-94.spa
dcterms.referencesDuMont AL, Yoong P, Day CJ, Alonzo III F, McDonald WH, Jennings MP, et al. Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proceedings of the National Academy of Sciences. 2013;110(26):10794-9.spa
dcterms.referencesYamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, et al. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proceedings of the National Academy of Sciences. 2011;108(42):17314-9.spa
dcterms.referencesVandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerging infectious diseases. 2003;9(8):978.spa
dcterms.referencesSpaan AN, Reyes-Robles T, Badiou C, Cochet S, Boguslawski KM, Yoong P, et al. Staphylococcus aureus targets the Duffy antigen receptor for chemokines (DARC) to lyse erythrocytes. Cell host & microbe. 2015;18(3):363-70.spa
dcterms.referencesWang R, Braughton KR, Kretschmer D, Bach T-HL, Queck SY, Li M, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nature medicine. 2007;13(12):1510-4.spa
dcterms.referencesKretschmer D, Gleske A-K, Rautenberg M, Wang R, Köberle M, Bohn E, et al. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell host & microbe. 2010;7(6):463-73.spa
dcterms.referencesNakagawa S, Matsumoto M, Katayama Y, Oguma R, Wakabayashi S, Nygaard T, et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell host & microbe. 2017;22(5):667-77. e5.spa
dcterms.referencesBerlon NR, Qi R, Sharma-Kuinkel BK, Joo H-S, Park LP, George D, et al. Clinical MRSA isolates from skin and soft tissue infections show increased in vitro production of phenol soluble modulins. Journal of Infection. 2015;71(4):447-57.spa
dcterms.referencesGrosz M, Kolter J, Paprotka K, Winkler AC, Schäfer D, Chatterjee SS, et al. Cytoplasmic replication of S taphylococcus aureus upon phagosomal escape triggered by phenol‐soluble modulin α. Cellular microbiology. 2014;16(4):451-65.spa
dcterms.referencesMünzenmayer L, Geiger T, Daiber E, Schulte B, Autenrieth SE, Fraunholz M, et al. Influence of Sae‐ regulated and Agr‐regulated factors on the escape of Staphylococcus aureus from human macrophages. Cellular microbiology. 2016;18(8):1172-83.spa
dcterms.referencesKobayashi SD, Malachowa N, Whitney AR, Braughton KR, Gardner DJ, Long D, et al. Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. Journal of Infectious Diseases. 2011;204(6):937-41.spa
dcterms.referencesLi M, Cheung GY, Hu J, Wang D, Joo H-S, DeLeo FR, et al. Comparative analysis of virulence and toxin expression of global community-associated methicillin-resistant Staphylococcus aureus strains. Journal of Infectious Diseases. 2010;202(12):1866-76.spa
dcterms.referencesDiep BA, Le VT, Badiou C, Le HN, Pinheiro MG, Duong AH, et al. IVIG-mediated protection against necrotizing pneumonia caused by MRSA. Science translational medicine. 2016;8(357):357ra124-357ra124.spa
dcterms.referencesWilliams MR, Costa SK, Zaramela LS, Khalil S, Todd DA, Winter HL, et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Science translational medicine. 2019;11(490):eaat8329.spa
dcterms.referencesPiewngam P, Zheng Y, Nguyen TH, Dickey SW, Joo H-S, Villaruz AE, et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature. 2018;562(7728):532-7.spa
dcterms.referencesTurner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology. 2019;17(4):203-18.spa
dcterms.referencesTenover FC, McDougal LK, Goering RV, Killgore G, Projan SJ, Patel JB, et al. Characterization of a Strain of Community-AssociatedMethicillin-Resistant Staphylococcus aureus WidelyDisseminated in the UnitedStates. Journal of clinical microbiology. 2006;44(1):108-18.spa
dcterms.referencesPopovich KJ, Snitkin ES, Hota B, Green SJ, Pirani A, Aroutcheva A, et al. Genomic and epidemiological evidence for community origins of hospital-onset methicillin-resistant Staphylococcus aureus bloodstream infections. The Journal of infectious diseases. 2017;215(11):1640-7.spa
dcterms.referencesTenover FC, Goering RV. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. Journal of Antimicrobial Chemotherapy. 2009;64(3):441-6.spa
dcterms.referencesHageman JC, Uyeki TM, Francis JS, Jernigan DB, Wheeler JG, Bridges CB, et al. Severe communityacquired pneumonia due to Staphylococcus aureus, 2003–04 influenza season. Emerging infectious diseases. 2006;12(6):894spa
dcterms.referencesToleman MS, Reuter S, Coll F, Harrison EM, Blane B, Brown NM, et al. Systematic surveillance detects multiple silent introductions and household transmission of methicillin-resistant Staphylococcus aureus USA300 in the East of England. The Journal of infectious diseases. 2016;214(3):447-53.spa
dcterms.referencesGlaser P, Martins-Simões P, Villain A, Barbier M, Tristan A, Bouchier C, et al. Demography and intercontinental spread of the USA300 community-acquired methicillin-resistant Staphylococcus aureus lineage. MBio. 2016;7(1):e02183-15.spa
dcterms.referencesVan der Mee-Marquet N, Poisson D-M, Lavigne J-P, Francia T, Tristan A, Vandenesch F, et al. The incidence of Staphylococcus aureus ST8-USA300 among French pediatric inpatients is rising. European Journal of Clinical Microbiology & Infectious Diseases. 2015;34(5):935-42.spa
dcterms.referencesPlanet PJ, Diaz L, Kolokotronis S-O, Narechania A, Reyes J, Xing G, et al. Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 infection in North and South America. The Journal of infectious diseases. 2015;212(12):1874-82.spa
dcterms.referencesLindsay JA, Holden MT. Staphylococcus aureus: superbug, super genome? Trends in microbiology. 2004;12(8):378-85.spa
dcterms.referencesMalachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cellular and molecular life sciences. 2010;67:3057-71.spa
dcterms.referencesPlanet PJ, Narechania A, Chen L, Mathema B, Boundy S, Archer G, et al. Architecture of a species: phylogenomics of Staphylococcus aureus. Trends in microbiology. 2017;25(2):153-66.spa
dcterms.referencesWeterings V, Bosch T, Witteveen S, Landman F, Schouls L, Kluytmans J. Next-generation sequence analysis reveals transfer of methicillin resistance to a methicillin-susceptible Staphylococcus aureus strain that subsequently caused a methicillin-resistant Staphylococcus aureus outbreak: a descriptive study. Journal of clinical microbiology. 2017;55(9):2808-16.spa
dcterms.referencesSharma-Kuinkel BK, Rude TH, Fowler VG. Pulse field gel electrophoresis. The Genetic Manipulation of Staphylococci: Springer; 2014. p. 117-30.spa
dcterms.referencesBlanc D, Francioli P, Hauser P. Poor value of pulsed-field gel electrophoresis to investigate long-term scale epidemiology of methicillin-resistant Staphylococcus aureus. Infection, Genetics and Evolution. 2002;2(2):145-8.spa
dcterms.referencesEnright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of clinical microbiology. 2000;38(3):1008-15.spa
dcterms.referencesO'Hara FP, Suaya JA, Ray GT, Baxter R, Brown ML, Mera RM, et al. spa typing and multilocus sequence typing show comparable performance in a macroepidemiologic study of Staphylococcus aureus in the United States. Microbial Drug Resistance. 2016;22(1):88-96.spa
dcterms.referencesGarcía-Álvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. The Lancet infectious diseases. 2011;11(8):595-603.spa
dcterms.referencesRoss T, Merz W, Farkosh M, Carroll K. Comparison of an automated repetitive sequence-based PCR microbial typing system to pulsed-field gel electrophoresis for analysis of outbreaks of methicillin-resistant Staphylococcus aureus. Journal of clinical microbiology. 2005;43(11):5642-7.spa
dcterms.referencesSalipante SJ, SenGupta DJ, Cummings LA, Land TA, Hoogestraat DR, Cookson BT. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. Journal of clinical microbiology. 2015;53(4):1072-9.spa
dcterms.referencesCramton SE, Schnell NF, Götz F, Brückner R. Identification of a new repetitive element in Staphylococcus aureus. Infection and immunity. 2000;68(4):2344-8.
dcterms.referencesQuelle LS, Corso A, Galas M, Sordelli DO. STAR gene restriction profile analysis in epidemiological typing of methicillin-resistant Staphylococcus aureus: description of the new method and comparison with other polymerase chain reaction (PCR)-based methods. Diagnostic microbiology and infectious disease. 2003;47(3):455-64.spa
dcterms.referencesDiep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. The Lancet. 2006;367(9512):731-9.spa
dcterms.referencesRutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A, et al. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16(10):944-5.
dcterms.referencesFrank DN, Feazel LM, Bessesen MT, Price CS, Janoff EN, Pace NR. The human nasal microbiota and Staphylococcus aureus carriage. PloS one. 2010;5(5):e10598.spa
dcterms.referencesKrismer B, Weidenmaier C, Zipperer A, Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nature reviews microbiology. 2017;15(11):675-87.spa
dcterms.referencesSelva L, Viana D, Regev-Yochay G, Trzcinski K, Corpa JM, Lasa I, et al. Killing niche competitors by remote-control bacteriophage induction. Proceedings of the National Academy of Sciences. 2009;106(4):1234-8.spa
dcterms.referencesZipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535(7613):511-6.spa
dcterms.referencesIwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465(7296):346-9.spa
dcterms.referencesSugimoto S, Iwamoto T, Takada K, Okuda K-i, Tajima A, Iwase T, et al. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. Journal of bacteriology. 2013;195(8):1645-55.spa
dcterms.referencesWollenberg MS, Claesen J, Escapa IF, Aldridge KL, Fischbach MA, Lemon KP. Propionibacteriumproduced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. MBio. 2014;5(4):e01286-14.spa
dcterms.referencesLina G, Boutite F, Tristan A, Bes M, Etienne J, Vandenesch F. Bacterial competition for human nasal cavity colonization: role of staphylococcal agr alleles. Applied and environmental microbiology. 2003;69(1):18-23spa
dcterms.referencesDall'Antonia M, Coen PG, Wilks M, Whiley A, Millar M. Competition between methicillin-sensitive andresistant Staphylococcus aureus in the anterior nares. Journal of Hospital Infection. 2005;61(1):62-7.spa
dcterms.referencesGhasemzadeh-Moghaddam H, Neela V, van Wamel W, Hamat RA, Nor Shamsudin M, Hussin NSC, et al. Nasal carriers are more likely to acquire exogenous Staphylococcus aureus strains than non-carriers. Clinical Microbiology and Infection. 2015;21(11):998. e1-. e7.spa
dcterms.referencesDe Jonge S, Atema J, Gans S, Boermeester M, Gomes S, Solomkin J, et al. Surgical site infections 1 New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16:e276-e87.spa
dcterms.referencesBrégeon F, Rolain J-M. Le résistome pulmonaire. médecine/sciences. 2015;31(11):947-50.spa
dcterms.referencesModak R, Das Mitra S, Vasudevan M, Krishnamoorthy P, Kumar M, Bhat AV, et al. Epigenetic response in mice mastitis: role of histone H3 acetylation and microRNA (s) in the regulation of host inflammatory gene expression during Staphylococcus aureus infection. Clinical epigenetics. 2014;6(1):1-15.spa
dcterms.referencesKluytmans J, Wertheim H. Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection. 2005;33(1):3-8.spa
dcterms.referencesUhlemann A-C, Knox J, Miller M, Hafer C, Vasquez G, Ryan M, et al. The environment as an unrecognized reservoir for community-associated methicillin resistant Staphylococcus aureus USA300: a casecontrol study. PLoS One. 2011;6(7):e22407.spa
dcterms.referencesChávez Vivas M, Escudero ÁM. Patógenos de importancia clínica-Prevalencia de Staphylococcus aureus aislado de estudiantes asintomáticos del Programa De Medicina de la Universidad Santiago de Cali. Universidad Santiago de cali; 2018.spa
dcterms.referencesBhatta DR, Hamal D, Shrestha R, Parajuli R, Baral N, Subramanya SH, et al. Nasal and pharyngeal colonization by bacterial pathogens: a comparative study between preclinical and clinical sciences medical students. Canadian Journal of Infectious Diseases and Medical Microbiology. 2018;2018.
dcterms.referencesCarmona-Torre F, Torrellas B, Rua M, Yuste JR, Del Pozo JL. Staphylococcus aureus nasal carriage among medical students. The Lancet Infectious Diseases. 2017;17(5):477-8.spa
dcterms.referencesde Steenhuijsen Piters WA, Sanders EA, Bogaert D. The role of the local microbial ecosystem in respiratory health and disease. Philosophical Transactions of the Royal Society B: Biological Sciences. 2015;370(1675):20140294.spa
dcterms.referencesPereira CAP. Microbiota intestinal humana y dieta. Ciencia y Tecnología. 2019;12(1):31-42.spa
dcterms.referencesBrooks AW, Priya S, Blekhman R, Bordenstein SR. Gut microbiota diversity across ethnicities in the United States. PLoS biology. 2018;16(12):e2006842spa
dcterms.referencesFettweis JM, Brooks JP, Serrano MG, Sheth NU, Girerd PH, Edwards DJ, et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology. 2014;160(Pt 10):2272
dcterms.referencesKaplan RC, Wang Z, Usyk M, Sotres-Alvarez D, Daviglus ML, Schneiderman N, et al. Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity. Genome biology. 2019;20(1):1-21.spa
dcterms.referencesPeterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH human microbiome project. Genome research. 2009;19(12):2317-23.spa
dcterms.referencesVon Elm E, Altman DG, Egger M, Pocock SJ. G0tzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147(8):573-7.spa
dcterms.referencesBettin A, Causil C, Reyes N. Molecular identification and antimicrobial susceptibility of Staphylococcus aureus nasal isolates from medical students in Cartagena, Colombia. Brazilian Journal of Infectious Diseases. 2012;16:329-34spa
dcterms.referencesUsyk M, Zolnik CP, Patel H, Levi MH, Burk RD. Novel ITS1 fungal primers for characterization of the mycobiome. MSphere. 2017;2(6):e00488-17.spa
dcterms.referencesCaporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the national academy of sciences. 2011;108(supplement_1):4516-22.spa
dcterms.referencesWang Y, Qian P-Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PloS one. 2009;4(10):e7401.spa
dcterms.referencesSchmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27(6):863-4.spa
dcterms.referencesMasella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC bioinformatics. 2012;13(1):1-7.spa
dcterms.referencesCaporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods. 2010;7(5):335-6.spa
dcterms.referencesEdgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460-1.spa
dcterms.referencesDeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimerachecked 16S rRNA gene database and workbench compatible with ARB. Applied and environmental microbiology. 2006;72(7):5069-72.spa
dcterms.referencesTang J, Iliev ID, Brown J, Underhill DM, Funari VA. Mycobiome: approaches to analysis of intestinal fungi. Journal of immunological methods. 2015;421:112-21.spa
dcterms.referencesRognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.spa
dcterms.referencesAbarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi–recent updates and future perspectives. The New Phytologist. 2010;186(2):281-5.spa
dcterms.referencesTeam RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www R-project org/. 2013.spa
dcterms.referencesMcMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS one. 2013;8(4):e61217.spa
dcterms.referencesOksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community ecology package. 2007;10(631-637):719.spa
dcterms.referencesOksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community ecology package. 2007;10(631-637):719.spa
dcterms.referencesBatdorf C. Coin-package. US; 1903.spa
dcterms.referencesReyes N, Montes O, Figueroa S, Tiwari R, Sollecito CC, Emmerich R, et al. Staphylococcus aureus nasal carriage and microbiome composition among medical students from Colombia: a cross-sectional study. F1000Research. 2020;9.spa
dcterms.referencesWickham H, Chang W. An implementation of the Grammar of Graphics. R package version. R Foundation for Statistical Computing, Vienna, Austria. 2013.spa
dcterms.referencesLee JT, Frank DN, Ramakrishnan V. Microbiome of the paranasal sinuses: update and literature review. American journal of rhinology & allergy. 2016;30(1):3-16.spa
dcterms.referencesFindley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367-70.spa
dcterms.referencesWertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. The Lancet infectious diseases. 2005;5(12):751-62.spa
dcterms.referencesWertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. The Lancet. 2004;364(9435):703-5.spa
dcterms.referencesNouwen JL, Fieren MW, Snijders S, Verbrugh HA, Van Belkum A. Persistent (not intermittent) nasal carriage ofStaphylococcus aureus is the determinant of CPD-related infections. Kidney international. 2005;67(3):1084-92.spa
dcterms.referencesStructure, function and diversity of the healthy human microbiome. nature. 2012;486(7402):207-14.spa
dcterms.referencesCostello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. science. 2009;326(5960):1694-7.spa
dcterms.referencesSáez-Nieto J, Medina-Pascual M, Carrasco G, Garrido N, Fernandez-Torres M, Villalón P, et al. Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New microbes and new infections. 2017;19:19-27.spa
dcterms.referencesPan H, Cui B, Huang Y, Yang J, Ba-Thein W. Nasal carriage of common bacterial pathogens among healthy kindergarten children in Chaoshan region, southern China: a cross-sectional study. BMC pediatrics. 2016;16(1):1-7.spa
dcterms.referencesHuse SM, Ye Y, Zhou Y, Fodor AA. A core human microbiome as viewed through 16S rRNA sequence clusters. PloS one. 2012;7(6):e34242.spa
dcterms.referencesAndersen PS, Pedersen JK, Fode P, Skov RL, Fowler Jr VG, Stegger M, et al. Influence of host genetics and environment on nasal carriage of Staphylococcus aureus in Danish middle-aged and elderly twins. The Journal of infectious diseases. 2012;206(8):1178-84.spa
dcterms.referencesLiu CM, Price LB, Hungate BA, Abraham AG, Larsen LA, Christensen K, et al. Staphylococcus aureus and the ecology of the nasal microbiome. Science advances. 2015;1(5):e1400216.spa
dcterms.referencesEckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. science. 2005;308(5728):1635-8.spa
dcterms.referencesBogaert D, Keijser B, Huse S, Rossen J, Veenhoven R, Van Gils E, et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PloS one. 2011;6(2):e17035.spa
dcterms.referencesChowdhary A, Kathuria S, Agarwal K, Sachdeva N, Singh PK, Jain S, et al., editors. Voriconazoleresistant Penicillium oxalicum: an emerging pathogen in immunocompromised hosts. Open forum infectious diseases; 2014: Oxford University Press.spa
dcterms.referencesLawley TD, Walker AW. Intestinal colonization resistance. Immunology. 2013;138(1):1-11.spa
dcterms.referencesKim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunological reviews. 2017;279(1):90-105.spa
dcterms.referencesIsles NS, Mu A, Kwong JC, Howden BP, Stinear TP. Gut microbiome signatures and host colonization with multidrug-resistant bacteria. Trends in Microbiology. 2022.spa
dcterms.referencesCremers AJ, Zomer AL, Gritzfeld JF, Ferwerda G, van Hijum SA, Ferreira DM, et al. The adult nasopharyngeal microbiome as a determinant of pneumococcal acquisition. Microbiome. 2014;2(1):1-10.spa
dcterms.referencesJones MJ, Donegan NP, Mikheyeva IV, Cheung AL. Improving transformation of Staphylococcus aureus belonging to the CC1, CC5 and CC8 clonal complexes. PLoS One. 2015;10(3):e0119487.spa
dcterms.referencesChoo EJ. Community-associated methicillin-resistant Staphylococcus aureus in nosocomial infections. Infection & chemotherapy. 2017;49(2):158-9.spa
dcterms.referencesKouyos R, Klein E, Grenfell B. Hospital-community interactions foster coexistence between methicillinresistant strains of Staphylococcus aureus. PLoS pathogens. 2013;9(2):e1003134.spa
dcterms.referencesDing W, Webb GF. Optimal control applied to community-acquired methicillin-resistant Staphylococcus aureus in hospitals. Journal of Biological Dynamics. 2017;11(sup1):65-78.spa
dcterms.referencesOcampo AM, Vélez LA, Robledo J, Jiménez JN. Cambios a lo largo del tiempo en la distribución de los complejos de clones dominantes de Staphylococcus aureus resistente a la meticilina en Medellín, Colombia. Biomédica. 2014;34:34-40.spa
dcterms.referencesHudson LO, Murphy CR, Spratt BG, Enright MC, Elkins K, Nguyen C, et al. Diversity of methicillinresistant Staphylococcus aureus (MRSA) strains isolated from inpatients of 30 hospitals in Orange County, California. PLoS One. 2013;8(4):e62117spa
dcterms.referencesBriscoe CC, Reich P, Fritz S, Coughlin CC. Staphylococcus aureus antibiotic susceptibility patterns in pediatric atopic dermatitis. Pediatric Dermatology. 2019;36(4):482-5.spa
dcterms.referencesCrandall H, Kapusta A, Killpack J, Heyrend C, Nilsson K, Dickey M, et al. Clinical and molecular epidemiology of invasive Staphylococcus aureus infection in Utah children; continued dominance of MSSA over MRSA. Plos one. 2020;15(9):e0238991.spa
dcterms.referencesSalazar-Ospina L, Jiménez JN. High frequency of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in children under 1 year old with skin and soft tissue infections. Jornal de Pediatria. 2018;94(4):380-9.spa
dcterms.referencesDeurenberg RH, Vink C, Kalenic S, Friedrich A, Bruggeman C, Stobberingh E. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clinical Microbiology and Infection. 2007;13(3):222-35.spa
dcterms.references. Cookson BD, Robinson DA, Monk AB, Murchan S, Deplano A, De Ryck R, et al. Evaluation of molecular typing methods in characterizing a European collection of epidemic methicillin-resistant Staphylococcus aureus strains: the HARMONY collection. Journal of clinical microbiology. 2007;45(6):1830-7.spa
dcterms.referencesEscobar JA, Gómez IT, Murillo MJ, Castro BE, Chavarro B, Márquez RA, et al. Design of two molecular methodologies for the rapid identification of Colombian community-acquired methicillin-resistant Staphylococcus aureus isolates. Biomedica. 2012;32(2):214-23.spa
dcterms.referencesGrundmann H, Aanensen DM, Van Den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW, et al. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecularepidemiological analysis. PLoS medicine. 2010;7(1):e1000215spa
dcterms.referencesCruz C, Moreno J, Renzoni A, Hidalgo M, Reyes J, Schrenzel J, et al. Tracking methicillin-resistant Staphylococcus aureus clones in Colombian hospitals over 7 years (1996–2003): emergence of a new dominant clone. International journal of antimicrobial agents. 2005;26(6):457-62.spa
dcterms.referencesReyes J, Rincón S, Díaz L, Panesso D, Contreras GA, Zurita J, et al. Dissemination of methicillin-resistant Staphylococcus aureus USA300 sequence type 8 lineage in Latin America. Clinical infectious diseases. 2009;49(12):1861-77spa
dcterms.referencesJimenez Quiceno JN, Ocampo Rios AM, Vanegas Munera JM, Rodriguez Tamayo EA, Mediavilla J, Chen L, et al. CC8 MRSA strains harboring SCCmec Type IVc are predominant in Colombian hospitals. 2012.spa
dcterms.referencesEscobar-Perez J, Reyes N, Marquez-Ortiz RA, Rebollo J, Pinzón H, Tovar C, et al. Emergence and spread of a new community-genotype methicillin-resistant Staphylococcus aureus clone in Colombia. BMC infectious diseases. 2017;17(1):1-10.spa
dcterms.referencesEnright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proceedings of the National Academy of Sciences. 2002;99(11):7687-92.spa
dcterms.referencesMonecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PloS one. 2011;6(4):e17936.spa
dcterms.referencesOliveira DC, Lencastre Hnd. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2002;46(7):2155-61.spa
dcterms.referencesMilheiriço C, Oliveira DC, de Lencastre H. Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus:‘SCC mec IV multiplex’. Journal of antimicrobial chemotherapy. 2007;60(1):42-8.spa
dcterms.referencesShopsin B, Gomez M, Montgomery S, Smith D, Waddington M, Dodge D, et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. Journal of clinical microbiology. 1999;37(11):3556-63.spa
dcterms.referencesHarmsen D, Claus H, Witte W, Rothganger J, Claus H, Turnwald D, et al. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. Journal of clinical microbiology. 2003;41(12):5442-8.spa
dcterms.referencesWayne P. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 2011.spa
dcterms.referencesReyes N, Rebollo J, Pinzón H, Tovar C, Moreno-Castañeda J, Corredor Rozo ZL, et al. Emergence and spread of a new community-genotype methicillin-resistant Staphylococcus aureus clone in Colombia. 2017.spa
dcterms.referencesEscobar JA, Marquez-Ortiz RA, Alvarez-Olmos MI, Leal AL, Castro BE, Vanegas N, et al. Detection of a new community genotype methicillin-resistant Staphylococcus aureus clone that is unrelated to the USA300 clone and that causes pediatric infections in Colombia. Journal of clinical microbiology. 2013;51(2):661-4.spa
dcterms.referencesChambers HF, DeLeo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology. 2009;7(9):629-41.spa
dcterms.referencesMelles DC, Gorkink RF, Boelens HA, Snijders SV, Peeters JK, Moorhouse MJ, et al. Natural population dynamics and expansion of pathogenic clones of Staphylococcus aureus. The Journal of clinical investigation. 2004;114(12):1732-40.spa
dcterms.referencesAires de Sousa M, Miragaia M, Santos Sanches I, Ávila S, Adamson I, Casagrande ST, et al. Three-year assessment of methicillin-resistant Staphylococcus aureus clones in Latin America from 1996 to 1998. Journal of clinical microbiology. 2001;39(6):2197-205.spa
dcterms.referencesAkpaka PE, Kissoon S, Rutherford C, Swanston WH, Jayaratne P. Molecular epidemiology of methicillinresistant Staphylococcus aureus isolates from regional hospitals in Trinidad and Tobago. International journal of infectious diseases. 2007;11(6):544-8.spa
dcterms.referencesSola C, Gribaudo G, Vindel A, Patrito L, Bocco JL. Identification of a novel methicillin-resistant Staphylococcus aureus epidemic clone in Cordoba, Argentina, involved in nosocomial infections. Journal of clinical microbiology. 2002;40(4):1427-35.spa
dcterms.referencesVelazquez-Meza M, Aires de Sousa M, Echaniz-Aviles G, Solorzano-Santos F, Miranda-Novales G, Silva-Sanchez J, et al. Surveillance of methicillin-resistant Staphylococcus aureus in a pediatric hospital in Mexico City during a 7-year period (1997 to 2003): clonal evolution and impact of infection control. Journal of clinical microbiology. 2004;42(8):3877-80.spa
dcterms.referencesJiménez JN, Ocampo AM, Vanegas JM, Rodriguez EA, Mediavilla JR, Chen L, et al. CC8 MRSA strains harboring SCC mec type IVc are predominant in Colombian hospitals. PLoS One. 2012;7(6):e38576.spa
dcterms.referencesMárquez-Ortiz RA, Álvarez-Olmos MI, Pérez JAE, Leal AL, Castro BE, Mariño AC, et al. USA300- related methicillin-resistant Staphylococcus aureus clone is the predominant cause of community and hospital MRSA infections in Colombian children. International Journal of Infectious Diseases. 2014;25:88-93.spa
dcterms.referencesGelatti LC, Bonamigo RR, Inoue FM, Carmo MSd, Becker AP, Castrucci FMdS, et al. Communityacquired methicillin-resistant Staphylococcus aureus carrying SCCmec type IV in southern Brazil. Revista da Sociedade Brasileira de Medicina Tropical. 2013;46:34-8.spa
dcterms.referencesAlbrecht N, Jatzwauk L, Slickers P, Ehricht R, Monecke S. Clonal replacement of epidemic methicillinresistant Staphylococcus aureus strains in a German university hospital over a period of eleven years. PLoS One. 2011;6(11):e28189.spa
dcterms.referencesMachuca MA, Sosa LM, Gonzalez CI. Molecular typing and virulence characteristic of methicillinresistant Staphylococcus aureus isolates from pediatric patients in Bucaramanga, Colombia. PloS one. 2013;8(8):e73434.spa
dcterms.referencesRasigade J-P, Laurent F, Lina G, Meugnier H, Bes M, Vandenesch F, et al. Global distribution and evolution of Panton-Valentine leukocidin-positive methicillin-susceptible Staphylococcus aureus, 1981–2007. The Journal of infectious diseases. 2010;201(10):1589-97.spa
dcterms.referencesNowakiewicz A, Ziółkowska G, Zięba P, Gnat S, Wojtanowicz-Markiewicz K, Trościańczyk A. Coagulase-positive Staphylococcus isolated from wildlife: Identification, molecular characterization and evaluation of resistance profiles with focus on a methicillin-resistant strain. Comparative Immunology, Microbiology and Infectious Diseases. 2016;44:21-8.spa
dcterms.referencesAsadollahi P, Farahani NN, Mirzaii M, Khoramrooz SS, Van Belkum A, Asadollahi K, et al. Distribution of the most prevalent spa types among clinical isolates of methicillin-resistant and-susceptible Staphylococcus aureus around the world: a review. Frontiers in microbiology. 2018;9:163.spa
dcterms.referencesBecker A, Santos O, Castrucci F, Dias C, D'AZEVEDO PA. First report of methicillin-resistant Staphylococcus aureus Cordobes/Chilean clone involved in nosocomial infections in Brazil. Epidemiology & Infection. 2012;140(8):1372-5.spa
dcterms.referencesMayor L, Ortellado J, Menacho C, Lird G, Courtier C, Gardon C, et al. Molecular characterization of methicillin-resistant Staphylococcus aureus isolates collected in Asuncion, Paraguay. Journal of clinical microbiology. 2007;45(7):2298-300.spa
dcterms.referencesJian Y, Zhao L, Zhao N, Lv H-Y, Liu Y, He L, et al. Increasing prevalence of hypervirulent ST5 methicillin susceptible Staphylococcus aureus subtype poses a serious clinical threat. Emerging Microbes & Infections. 2021;10(1):109-22.spa
dcterms.references. Gandra S, Braykov N, Laxminarayan R. Is methicillin-susceptible Staphylococcus aureus (MSSA) sequence type 398 confined to Northern Manhattan? Rising prevalence of erythromycin-and clindamycinresistant MSSA clinical isolates in the United States. Clinical infectious diseases. 2014;58(2):306-7.spa
dcterms.referencesSutter DE, Milburn E, Chukwuma U, Dzialowy N, Maranich AM, Hospenthal DR. Changing susceptibility of Staphylococcus aureus in a US pediatric population. Pediatrics. 2016;137(4).spa
dcterms.referencesYilmaz G, Aydin K, Iskender S, Caylan R, Koksal I. Detection and prevalence of inducible clindamycin resistance in staphylococci. Journal of medical microbiology. 2007;56(3):342-5.spa
dcterms.referencesMalachowa N, Kobayashi SD, Braughton KR, Whitney AR, Parnell MJ, Gardner DJ, et al. Staphylococcus aureus leukotoxin GH promotes inflammation. J Infect Dis. 2012;206(8):1185-93.spa
dcterms.referencesPozzi C, Wilk K, Lee JC, Gening M, Nifantiev N, Pier GB. Opsonic and protective properties of antibodies raised to conjugate vaccines targeting six Staphylococcus aureus antigens. PLoS One. 2012;7(10):e46648.spa
dcterms.referencesLiew YK, Awang Hamat R, van Belkum A, Chong PP, Neela V. Comparative Exoproteomics and Host Inflammatory Response in Staphylococcus aureus Skin and Soft Tissue Infections, Bacteremia, and Subclinical Colonization. Clinical and vaccine immunology : CVI. 2015;22(5):593-603.spa
dcterms.referencesKlicznik MM, Szenes-Nagy AB, Campbell DJ, Gratz IK. Taking the lead - how keratinocytes orchestrate skin T cell immunity. Immunology letters. 2018;200:43-51.spa
dcterms.referencesNgo QV, Faass L, Sahr A, Hildebrand D, Eigenbrod T, Heeg K, et al. Inflammatory Response Against Staphylococcus aureus via Intracellular Sensing of Nucleic Acids in Keratinocytes. Frontiers in immunology. 2022;13:828626.spa
dcterms.referencesBrauweiler AM, Goleva E, Leung DYM. Staphylococcus aureus Lipoteichoic Acid Damages the Skin Barrier through an IL-1-Mediated Pathway. J Invest Dermatol. 2019;139(8):1753-61 e4.spa
dcterms.referencesPham CT. Neutrophil serine proteases fine-tune the inflammatory response. The international journal of biochemistry & cell biology. 2008;40(6-7):1317-33.spa
dcterms.referencesMinejima E, Bensman J, She RC, Mack WJ, Tuan Tran M, Ny P, et al. A Dysregulated Balance of Proinflammatory and Anti-Inflammatory Host Cytokine Response Early During Therapy Predicts Persistence and Mortality in Staphylococcus aureus Bacteremia. Critical care medicine. 2016;44(4):671-9.spa
dcterms.referencesMartins JM, Longhi-Balbinot DT, Soares DM, Figueiredo MJ, Malvar Ddo C, de Melo MC, et al. Involvement of PGE2 and RANTES in Staphylococcus aureus-induced fever in rats. J Appl Physiol (1985). 2012;113(9):1456-65.spa
dcterms.referencesStrindhall J, Lindgren PE, Lofgren S, Kihlstrom E. Clinical isolates of Staphylococcus aureus vary in ability to stimulate cytokine expression in human endothelial cells. Scandinavian journal of immunology. 2005;61(1):57-62spa
dcterms.referencesMcNicholas S, Talento AF, O'Gorman J, Hannan MM, Lynch M, Greene CM, et al. Cytokine responses to Staphylococcus aureus bloodstream infection differ between patient cohorts that have different clinical courses of infection. BMC Infect Dis. 2014;14:580.spa
dcterms.referencesYamashita U, Kuroda E. Regulation of macrophage-derived chemokine (MDC, CCL22) production. Critical reviews in immunology. 2002;22(2):105-14.spa
dcterms.referencesLi Z, Levast B, Madrenas J. Staphylococcus aureus Downregulates IP-10 Production and Prevents Th1 Cell Recruitment. J Immunol. 2017;198(5):1865-74.spa
dcterms.referencesFournier B, Philpott DJ. Recognition of Staphylococcus aureus by the innate immune system. Clin Microbiol Rev. 2005;18(3):521-40.spa
dcterms.referencesNourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694-707.spa
dcterms.referencesMaruoka H, Inoue D, Takiuchi Y, Nagano S, Arima H, Tabata S, et al. IP-10/CXCL10 and MIG/CXCL9 as novel markers for the diagnosis of lymphoma-associated hemophagocytic syndrome. Annals of Hematology. 2014;93:393-401.spa
dcterms.referencesMohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. The Journal of nutritional biochemistry. 2019;66:1-16.spa
dcterms.referencesMeyer-Hoffert U, Lezcano-Meza D, Bartels J, Montes-Vizuet AR, Schröder J-M, Teran LM. Th2-and to a lesser extent Th1-type cytokines upregulate the production of both CXC (IL-8 and gro-alpha) and CC (RANTES, eotaxin, eotaxin-2, MCP-3 and MCP-4) chemokines in human airway epithelial cells. International archives of allergy and immunology. 2003;131(4):264-71.spa
dcterms.referencesDajotoy T, Andersson P, Bjartell A, Löfdahl CG, Tapper H, Egesten A. Human eosinophils produce the T cell‐attracting chemokines MIG and IP‐10 upon stimulation with IFN‐γ. Journal of leukocyte biology. 2004;76(3):685-91.spa
dcterms.referencesGroom JR, Luster AD. CXCR3 in T cell function. Experimental cell research. 2011;317(5):620-31.spa
dcterms.referencesMusini A, Chilumoju SP, Giri A. Biofilm Formation in Drug-Resistant Pathogen Staphylococcus aureus. Microbial Biofilms: CRC Press; 2022. p. 23-46.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
TESIS DOCTORAL _ OSCAR ALONSO MONTES GUEVARA _ UNICARTAGENA _ 2023.pdf
Tamaño:
7.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Cesión de derechos Óscar Montes.pdf
Tamaño:
220.8 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: