Publicación:
Quitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicas

dc.contributor.authorMunera, Marlonspa
dc.contributor.authorContreras, Neyderspa
dc.contributor.authorSanchez, Andresspa
dc.contributor.authorSanchez, Jorgespa
dc.contributor.authorEmiliani, Yulianaspa
dc.date.accessioned2023-10-15T00:00:00Z
dc.date.accessioned2024-09-05T20:35:03Z
dc.date.available2023-10-15T00:00:00Z
dc.date.available2024-09-05T20:35:03Z
dc.date.issued2023-10-15
dc.description.abstractIntroducción: las quitinasas son enzimas modificadoras de quitina y se han reportado como alérgenos en plantas y poco en animales, aunque poseen reactividad cruzada debido a su alta conservación. Objetivo: explorar el potencial alergénico y el mimetismo molecular entre quitinasas de fuentes alergénicas comunes mediante bioinformática. Métodos: se utilizaron ElliPro y BepiPred para predecir epítopos de células B y T. Se realizaron estudios filogenéticos, de identidad y de conservación estructural con MEGA 5, PRALINE y Consurf. Se obtuvieron modelos 3D de quitinasas no reportadas en el Protein Data Bank mediante Swiss model. La capacidad de unión de ligandos se exploró con AutoDock Vina, utilizando Bisdionina C, Bisdionina F y Montelukast como ligandos. Resultados: la quitinasa de P. americana (Per a 12) comparte un 44% de identidad con homólogos en P. vannamei, ácaros e insectos, y una identidad moderada con la quitinasa humana. Se reveló una alta homología estructural. Un epítopo lineal entre los residuos 127 y 144 está altamente conservado en todas las quitinasas. Se predijeron tres epítopos de células T conservados. Las simulaciones de acoplamiento molecular revelaron el sitio activo y el potencial de unión de varios ligandos, identificando residuos críticos. Conclusión: proponemos a las quitinasas como un nuevo grupo potencial de panalérgenos, explicando casos de sensibilización a varias fuentes alérgenas. Dado su homología con proteínas humanas, merece una exploración inmunológica para apoyar su implicación en la respuesta autoinmune.spa
dc.description.abstractIntroduction: chitinases are chitin-modifying enzymes that have been reported as allergens in plants and, to a lesser extent, in animals, though they possess cross-reactivity due to their high conservation. Objectives:  to explore the allergenic potential and molecular mimicry among chitinases from common allergenic sources using bioinformatics. Methods: ElliPro and BepiPred were used to predict B and T cell epitopes. Phylogenetic, identity, and structural conservation studies were conducted using MEGA 5, PRALINE, and Consurf. 3D models of chitinases not reported in the Protein Data Bank were obtained using Swiss model. Ligand binding capacity was explored with AutoDock Vina, using Bisdionin C, Bisdionin F, and Montelukast as ligands. Results: the chitinase from P. americana (Per a 12) shares 44% identity with homologs in P. vannamei, mites, and insects, and moderate identity with human chitinase. High structural homology was revealed. A linear epitope between residues 127 and 144 is highly conserved in all chitinases. Three conserved T cell epitopes were predicted. Molecular docking simulations revealed the active site and ligand-binding potential, identifying critical residues. Conclusions: we propose chitinases as a potential new group of panallergens, explaining sensitization cases to various allergenic sources. Given their homology to human proteins, they deserve immunological exploration to support their implication in autoimmune responses.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.32997/rcb-2023-4769
dc.identifier.eissn2389-7252
dc.identifier.issn2215-7840
dc.identifier.urihttps://hdl.handle.net/11227/17963
dc.identifier.urlhttps://doi.org/10.32997/rcb-2023-4769
dc.language.isospaspa
dc.publisherUniversidad de Cartagenaspa
dc.relation.bitstreamhttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/4769/3732
dc.relation.citationendpage169
dc.relation.citationissue4spa
dc.relation.citationstartpage154
dc.relation.citationvolume12spa
dc.relation.ispartofjournalRevista Ciencias Biomédicasspa
dc.relation.referencesOyeleye A, Normi Yahaya M. Chitinase: diversity, limitations, and trends in engineering for suitable applications. Bioscience Reports. 2018;38(4): BSR2018032300.spa
dc.relation.referencesRathore AS, Gupta RD. Chitinases from Bacteria to Human: Properties, Applications, and Future Perspectives. Enzyme Research. 2015; 2015:8.spa
dc.relation.referencesO'Riordain G, Radauer C, Hoffmann-Sommergruber K, Adhami F, Peterbauer CK, Blanco C, et al. Cloning and molecular characterization of the Hevea brasiliensis allergen Hev b 11, a class I chitinase. Clin Exp Allergy. 2002;32(3):455-62.spa
dc.relation.referencesBlanco C, Diaz-Perales A, Collada C, Sanchez-Monge R, Aragoncillo C, Castillo R, et al. Class I chitinases as potential panallergens involved in the latex-fruit syndrome. J Allergy Clin Immunol. 1999;103(3 Pt 1):507-13.spa
dc.relation.referencesVolpicella M, Leoni C, Fanizza I, Placido A, Pastorello EA, Ceci LR. Overview of plant chitinases identified as food allergens. J Agric Food Chem. 2014;62(25):5734-42.spa
dc.relation.referencesHamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, et al. Chitinases: An update. J Pharm Bioallied Sci. 2013;5(1):21-9.spa
dc.relation.referencesFang Y, Long C, Bai X, Liu W, Rong M, Lai R, et al. Two new types of allergens from the cockroach, Periplaneta americana. Allergy. 2015;70(12):1674-8.spa
dc.relation.referencesResch Y, Blatt K, Malkus U, Fercher C, Swoboda I, Focke-Tejkl M, et al. Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen. PLoS One. 2016;11(8): e0160641.spa
dc.relation.referencesPomés A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Current allergy and asthma reports. 2017;17(4):25-.spa
dc.relation.referencesPomes A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Curr Allergy Asthma Rep. 2017;17(4):25.spa
dc.relation.referencesHuss K, Adkinson NF, Jr., Eggleston PA, Dawson C, Van Natta ML, Hamilton RG. House dust mite and cockroach exposure are strong risk factors for positive allergy skin test responses in the Childhood Asthma Management Program. J Allergy Clin Immunol. 2001;107(1):48-54.spa
dc.relation.referencesHradetzky S, Werfel T, Rösner LM. Autoallergy in atopic dermatitis. Allergo J Int. 2015;24(1):16-22.spa
dc.relation.referencesPettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13): 1605-12.spa
dc.relation.referencesLiu T, Chen L, Ma Q, Shen X, Yang Q. Structural insights into chitinolytic enzymes and inhibition mechanisms of selective inhibitors. Curr Pharm Des. 2014;20(5): 754-70.spa
dc.relation.referencesBerman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1): 235-42.spa
dc.relation.referencesKim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016;44(D1): D1202-13.spa
dc.relation.referencesBIOVIA DS. Discovery Studio Modeling Environment, Release 2017: San Diego: Dassault Systèmes; 2016.spa
dc.relation.referencesTrott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2): 455-61.spa
dc.relation.referencesDallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263: 243-50.spa
dc.relation.referencesContreras-Puentes N, Mercado-Camargo J, Alvíz-Amador A. In silico study of ginsenoside analogues as possible BACE1 inhibitors involved in Alzheimer's disease [version 1; peer review: 1 approved]. F1000Research. 2019;8(1169).spa
dc.relation.referencesDeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter On Protein Crystallography. 2002;40.spa
dc.relation.referencesBIOVIA DS. Discovery Studio Visualizaer, 4.5: San Diego: Dassault Systèmes; 2016spa
dc.relation.referencesYang Z, Zhao J, Wei N, Feng M, Xian M, Shi X, et al. Cockroach is a major cross-reactive allergen source in shrimp-sensitized rural children in southern China. Allergy. 2018;73(3): 585-92.spa
dc.relation.referencesMúnera M, Gómez L, Puerta L. El camarón como una fuente de alérgenos. Biomédica. 2013;33: 161-78.spa
dc.relation.referencesFernandez-Caldas E, Puerta L, Caraballo L. Mites and allergy. Chem Immunol Allergy. 2014;100: 234-42.spa
dc.relation.referencesRoesner LM, Ernst M, Chen W, Begemann G, Kienlin P, Raulf MK, et al. Human thioredoxin, a damage-associated molecular pattern and Malassezia-crossreactive autoallergen, modulates immune responses via the C-type lectin receptors Dectin-1 and Dectin-2. Scientific Reports. 2019;9(1): 11210.spa
dc.relation.referencesFluckiger S, Mittl PR, Scapozza L, Fijten H, Folkers G, Grutter MG, et al. Comparison of the crystal structures of the human manganese superoxide dismutase and the homologous Aspergillus fumigatus allergen at 2-A resolution. J Immunol. 2002;168(3): 1267-72.spa
dc.relation.referencesRadauer C, Adhami F, Fürtler I, Wagner S, Allwardt D, Scala E, et al. Latex-allergic patients sensitized to the major allergen hevein and hevein-like domains of class I chitinases show no increased frequency of latex-associated plant food allergy. Mol Immunol. 2011;48(4): 600-9.spa
dc.relation.referencesO'Riordain G, Radauer C, Hoffmann-Sommergruber K, Adhami F, Peterbauer CK, Blanco C, et al. Cloning and molecular characterization of the Hevea brasiliensis allergen Hev b 11, a class I chitinase. Clinical & Experimental Allergy. 2002;32(3): 455-62.spa
dc.relation.referencesMcGowan EC, Peng R, Salo PM, Zeldin DC, Keet CA. Cockroach, dust mite, and shrimp sensitization correlations in the National Health and Nutrition Examination Survey. Ann Allergy Asthma Immunol. 2019;122(5): 536-8.e1.spa
dc.relation.referencesDrabner B, Reineke U, Schneider-Mergener J, Humphreys RE, Hartmann S, Lucius R. Identification of T helper cell-recognized epitopes in the chitinase of the filarial nematode Onchocerca volvulus. Vaccine. 2002;20(31-32): 3685-94.spa
dc.relation.referencesJoshi MB, Rogers ME, Shakarian AM, Yamage M, Al-Harthi SA, Bates PA, et al. Molecular characterization, expression, and in vivo analysis of LmexCht1: the chitinase of the human pathogen, Leishmania mexicana. J Biol Chem. 2005;280(5): 3847-61.spa
dc.relation.referencesLanger RC, Li F, Popov V, Kurosky A, Vinetz JM. Monoclonal antibody against the Plasmodium falciparum chitinase, PfCHT1, recognizes a malaria transmission-blocking epitope in Plasmodium gallinaceum ookinetes unrelated to the chitinase PgCHT1. Infect Immun. 2002;70(3): 1581-90.spa
dc.relation.referencesShen N, Zhang H, Ren Y, He R, Xu J, Li C, et al. A chitinase-like protein from Sarcoptes scabiei as a candidate anti-mite vaccine that contributes to immune protection in rabbits. Parasit Vectors. 2018;11(1): 599.spa
dc.relation.referencesAlrifai M, Marsh LM, Dicke T, Kılıç A, Conrad ML, Renz H, et al. Compartmental and temporal dynamics of chronic inflammation and airway remodelling in a chronic asthma mouse model. PLoS One. 2014;9(1): e85839.spa
dc.relation.referencesBoot RG, Blommaart EF, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem. 2001;276(9): 6770-8.spa
dc.relation.referencesOkawa K, Ohno M, Kashimura A, Kimura M, Kobayashi Y, Sakaguchi M, et al. Loss and Gain of Human Acidic Mammalian Chitinase Activity by Nonsynonymous SNPs. Mol Biol Evol. 2016;33(12): 3183-93.spa
dc.relation.referencesKim LK, Morita R, Kobayashi Y, Eisenbarth SC, Lee CG, Elias J, et al. AMCase is a crucial regulator of type 2 immune responses to inhaled house dust mites. Proc Natl Acad Sci U S A. 2015;112(22): E2891-9.spa
dc.relation.referencesSutherland TE, Andersen OA, Betou M, Eggleston IM, Maizels RM, van Aalten D, et al. Analyzing airway inflammation with chemical biology: dissection of acidic mammalian chitinase function with a selective drug-like inhibitor. Chem Biol. 2011;18(5): 569-79.spa
dc.relation.referencesAndersen OA, Nathubhai A, Dixon MJ, Eggleston IM, van Aalten DM. Structure-based dissection of the natural product cyclopentapeptide chitinase inhibitor argifin. Chem Biol. 2008;15(3): 295-301.spa
dc.relation.referencesHirose T, Sunazuka T, Sugawara A, Endo A, Iguchi K, Yamamoto T, et al. Chitinase inhibitors: extraction of the active framework from natural argifin and use of in situ click chemistry. J Antibiot (Tokyo). 2009;62(5):277-82.spa
dc.relation.referencesHirose T, Sunazuka T, Omura S. Recent development of two chitinase inhibitors, Argifin and Argadin, produced by soil microorganisms. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(2): 85-102.spa
dc.relation.referencesMazur M, Olczak J, Olejniczak S, Koralewski R, Czestkowski W, Jedrzejczak A, et al. Targeting Acidic Mammalian chitinase Is Effective in Animal Model of Asthma. J Med Chem. 2018;61(3): 695-710.spa
dc.relation.referencesLanglois A, Ferland C, Tremblay GM, Laviolette M. Montelukast regulates eosinophil protease activity through a leukotriene-independent mechanism. J Allergy Clin Immunol. 2006;118(1):113-9.spa
dc.relation.referencesMazur M, Dymek B, Koralewski R, Sklepkiewicz P, Olejniczak S, Mazurkiewicz M, et al. Development of Dual Chitinase Inhibitors as Potential New Treatment for Respiratory System Diseases. J Med Chem. 2019;62(15): 7126-45.spa
dc.rightsMarlon Munera, Neyder Contreras, Andres Sanchez, Jorge Sanchez, Yuliana Emiliani - 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/4769spa
dc.subjectalérgenospa
dc.subjectquitinasasspa
dc.subjectreactividad cruzadaspa
dc.subjectbioinformáticaspa
dc.subjectepitopespa
dc.subjectacoplamiento molecularspa
dc.subjectallergeneng
dc.subjectchitinaseeng
dc.subjectcross reactivityeng
dc.subjectbioinformaticseng
dc.subjectepitopeeng
dc.subjectdockingeng
dc.titleQuitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicasspa
dc.title.translatedChitinases as a new group of pan allergens: an in silico approach to their structural and immunological basiseng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublicationspa

Archivos

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: