Datos de Contacto
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...
dc.contributor.advisor | Reyes Ramos, Niradiz | |
dc.contributor.author | Bettín Martínez, Alfonso Carlos | |
dc.date.accessioned | 2016-11-30T20:42:43Z | |
dc.date.available | 2016-11-30T20:42:43Z | |
dc.date.issued | 2016 | |
dc.description | Tesis (Doctor en Ciencias Biomédicas). -- Universidad de Cartagena, Instituto de Investigaciones Inmunológicas, 2016 | es |
dc.description.abstract | El cáncer de próstata (CaP) es el segundo tumor maligno diagnosticado a nivel mundial; en Colombia, es la segunda causa de muerte en hombres mayores de 65 años. Actualmente, los métodos para el diagnóstico y pronóstico son inadecuados. En los últimos años un gran número de nuevos marcadores potenciales para el CaP se han descubierto, sin embargo, aún se encuentran en fase de experimentación, por lo que se recomienda continuar investigando en este campo. En este sentido, este estudio evaluó el potencial del proteoglicano fibromodulina como nuevo biomarcador del CaP en dos etapas: en la primera, validó el perfil de expresión del transcrito FMOD en líneas celulares con diferentes fenotipos metastásicos y en muestras clínicas comerciales de CaP y tejido benigno, y en biopsias de pacientes lo evaluó a nivel de transcrito y proteína. La segunda etapa, evaluó los niveles proteicos en suero y orina de individuos sanos, con CaP y otros desordenes prostáticos; luego, se calcularon las características operativas como nuevo biomarcador. La línea LNCaP tuvo una expresión de FMOD significativamente mayor que la línea PC-3 de fenotipo altamente agresivo (p=0.0001), comparado con la línea no tumorigénica (PWR-1E). En las muestras clínicas comerciales fue mayor en individuos con cáncer (n=10) vs sin cáncer (grupo normal, HPB y prostatitis (n=38)) (p = 0.0284). En la cohorte de 90 pacientes, los niveles del transcrito FMOD fueron mayores en el grupo de CaP vs HPB (p=0.003). La tinción inmunohistoquímica de la proteína fibromodulina fue más intensa en los acinos glandulares malignos que en los benignos adyacentes dentro de la misma muestra. | es |
dc.format.medium | application/pdf | |
dc.identifier.citation | TD616.0758 / B466 | es |
dc.identifier.uri | https://hdl.handle.net/11227/3661 | |
dc.identifier.uri | http://dx.doi.org/10.57799/11227/94 | |
dc.language.iso | spa | es |
dc.publisher | Universidad de Cartagena | es |
dc.rights.access | openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Proteoglicano fibromodolino - Investigaciones | es |
dc.subject | Próstata - Cáncer - Investigaciones | es |
dc.subject | Próstata - Cáncer - Diagnóstico | es |
dc.subject | Fibromodulina - Investigaciones | es |
dc.subject | Proteina fibromodulina - Investigacion | es |
dc.subject | Próstata - Marcadores bioquímicos | es |
dc.title | Evaluación del proteoglicano fibromodulina (FMOD) como nuevo biomarcador del cáncer de próstata | es |
dc.type | Trabajo de grado - Doctorado | spa |
dcterms.references | Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458: p. 719-24. DOI: 10.1038/nature07943. | |
dcterms.references | Chakravarthi BV, Nepal S, Varambally S. Genomic and Epigenomic Alterations in Cancer. Am J Pathol. 2016;186: p. 1724-35. DOI: 10.1016/j.ajpath.2016.02.023. | |
dcterms.references | Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Jr., Kinzler KW. Cancer genome landscapes. Science. 2013;339: p. 1546-58. DOI: 10.1126/science.1235122. | |
dcterms.references | Valdes-Mora F, Clark SJ. Prostate cancer epigenetic biomarkers: nextgeneration technologies. Oncogene. 2015;34: p. 1609-18. DOI: 10.1038/onc.2014.111. | |
dcterms.references | Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66: p. 7-30. DOI: 10.3322/caac.21332. | |
dcterms.references | Instituto de Nacional de Cancerología. Anuario estadístico 2012. Consultado: enero de 2016. Disponible en:http://www.cancer.gov.co/files/libros/archivos/ANUARIO p. | |
dcterms.references | Oon SF, Pennington SR, Fitzpatrick JM, Watson RW. Biomarker research in prostate cancer-towards utility, not futility. Nat Rev Urol. 2011;8: p. 131-8. | |
dcterms.references | Ilic D, Neuberger MM, Djulbegovic M, Dahm P. Screening for prostate cancer. Cochrane Database Syst Rev. 2013;1: p. CD004720. DOI: 10.1002/14651858.CD004720.pub3. | |
dcterms.references | Carroll PR, Whitson JM, Cooperberg MR. Serum prostate-specific antigen for the early detection of prostate cancer: always, never, or only sometimes? J Clin Oncol. 2010;29: p. 345-7. DOI: 10.1200/JCO.2010.32.5308. | |
dcterms.references | Castelblanco D GJF, Trujillo Ordóñez C. análisis retrospectivo de las biopsias de próstata realizadas en la Clínica de Próstata del Hospital universitario Fundación santa Fe de Bogotá. urología colombiana. 2011;XX: p. 27-33. | |
dcterms.references | Velonas VM, Woo HH, Remedios CG, Assinder SJ. Current status of biomarkers for prostate cancer. Int J Mol Sci. 2013;14: p. 11034-60. DOI: 10.3390/ijms140611034. | |
dcterms.references | Reyes I, Tiwari R, Geliebter J, Reyes N. DNA microarray analysis reveals metastasis-associated genes in rat prostate cancer cell lines. Biomedica. 2007;27: p. 190-203. DOI: S0120-41572007000800006. | |
dcterms.references | Lucarelli G, Rutigliano M, Bettocchi C, Palazzo S, Vavallo A, Galleggiante V, et al. Spondin-2, a secreted extracellular matrix protein, is a novel diagnostic biomarker for prostate cancer. J Urol. 2013;190: p. 2271- 7. DOI: 10.1016/j.juro.2013.05.004. | |
dcterms.references | Ferro M, Buonerba C, Terracciano D, Lucarelli G, Cosimato V, Bottero D, et al. Biomarkers in localized prostate cancer. Future Oncol. 2016;12: p. 399-411. DOI: 10.2217/fon.15.318. | |
dcterms.references | Costa-Pinheiro P, Patel HR, Henrique R, Jeronimo C. Biomarkers and personalized risk stratification for patients with clinically localized prostate cancer. Expert Rev Anticancer Ther. 2015;14: p. 1349-58. DOI: 10.1586/14737140.2014.952288. | |
dcterms.references | Chakravarti S. Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconj J. 2002;19: p. 287-93. DOI: 10.1023/A:1025348417078. | |
dcterms.references | Chen S, Oldberg A, Chakravarti S, Birk DE. Fibromodulin regulates collagen fibrillogenesis during peripheral corneal development. Dev Dyn. 2010;239: p. 844-54. DOI: 10.1002/dvdy.22216. | |
dcterms.references | Viola M, Bartolini B, Sonaggere M, Giudici C, Tenni R, Tira ME. Fibromodulin interactions with type I and II collagens. Connect Tissue Res. 2007;48: p. 141-8. DOI: 10.1080/03008200701276133. | |
dcterms.references | Hildebrand A, Romaris M, Rasmussen LM, Heinegard D, Twardzik DR, Border WA, et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J. 1994;302 ( Pt 2): p. 527-34. | |
dcterms.references | Soo C, Hu FY, Zhang X, Wang Y, Beanes SR, Lorenz HP, et al. Differential expression of fibromodulin, a transforming growth factor-beta modulator, in fetal skin development and scarless repair. Am J Pathol. 2000;157: p. 423-33. DOI: S0002-9440(10)64555-5. | |
dcterms.references | Adini I, Ghosh K, Adini A, Chi ZL, Yoshimura T, Benny O, et al. Melanocyte-secreted fibromodulin promotes an angiogenic microenvironment. J Clin Invest. 2014;124: p. 425-36. DOI: 10.1172/JCI69404 | |
dcterms.references | Sjoberg A, Onnerfjord P, Morgelin M, Heinegard D, Blom AM. The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J Biol Chem. 2005;280: p. 32301-8. DOI: 10.1074/jbc.M504828200. | |
dcterms.references | Jelinek DF, Tschumper RC, Stolovitzky GA, Iturria SJ, Tu Y, Lepre J, et al. Identification of a global gene expression signature of B-chronic lymphocytic leukemia. Mol Cancer Res. 2003;1: p. 346-61. | |
dcterms.references | Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194: p. 1625-38. | |
dcterms.references | Mayr C, Bund D, Schlee M, Moosmann A, Kofler DM, Hallek M, et al. Fibromodulin as a novel tumor-associated antigen (TAA) in chronic lymphocytic leukemia (CLL), which allows expansion of specific CD8+ autologous T lymphocytes. Blood. 2005;105: p. 1566-73. DOI: 10.1182/blood-2004-04-1233. | |
dcterms.references | Garusi E, Rossi S, Perris R. Antithetic roles of proteoglycans in cancer. Cell Mol Life Sci. 2011;69: p. 553-79. DOI: 10.1007/s00018-011-0816-1. | |
dcterms.references | Iozzo RV, Sanderson RD. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med. 2011;15: p. 1013-31. DOI: 10.1111/j.1582-4934.2010.01236.x. | |
dcterms.references | Edwards IJ. Proteoglycans in prostate cancer. Nat Rev Urol. 2012;9: p. 196-206. DOI: 10.1038/nrurol.2012.19. | |
dcterms.references | Suhovskih AV, Mostovich LA, Kunin IS, Boboev MM, Nepomnyashchikh GI, Aidagulova SV, et al. Proteoglycan expression in normal human prostate tissue and prostate cancer. ISRN Oncol. 2013;2013: p. 680136. DOI: 10.1155/2013/680136. | |
dcterms.references | Hayward SW, Cunha GR. The prostate: development and physiology. Radiol Clin North Am. 2000;38: p. 1-14. | |
dcterms.references | Instituto Nacional de Cancerología ESE. Guía de práctica clínica (GPC) para la detección temprana, diagnóstico, tratamiento, seguimiento y rehabilitación de pacientes con diagnóstico de cáncer de colon y recto. consultado: nero de 2016. Disponible en:http://gpc.minsalud.gov.co/Documents/Guias-PDFRecursos/Colon/GPC_Prof_Sal_Ca_colon.pdf: p. | |
dcterms.references | Maya R. Rodríguez-López, y IBB-C, Bermúdez-Velásquez. S. Patologías benignas de la próstata: prostatitis e hiperplasia benigna. Rev Biomed. 2007;18: p. 47-59. | |
dcterms.references | Collins MM, Stafford RS, O'Leary MP, Barry MJ. How common is prostatitis? A national survey of physician visits. J Urol. 1998;159: p. 1224-8. | |
dcterms.references | Fong YK, Milani S, Djavan B. Natural history and clinical predictors of clinical progression in benign prostatic hyperplasia. Curr Opin Urol. 2005;15: p. 35-8. | |
dcterms.references | Eaton CL. Aetiology and pathogenesis of benign prostatic hyperplasia. Curr Opin Urol. 2003;13: p. 7-10. DOI: 10.1097/01.mou.0000049392.71470.38. | |
dcterms.references | Salinas Sanchez AS, Hernanez Millan IR, Segura Martin M, Lorenzo Romero JG, Lopez Torres Hidalgo J, Virseda Rodriguez JA. [Impact of prostatic symptoms in patients with prostatic benign hyperplasia]. Arch Esp Urol. 2000;53: p. 212-24. | |
dcterms.references | José Luis Poveda Matiza NJAR, María Paula Sáenz Becerra y Fabián Pompilio Daza Almendrales. Evolución de la mortalidad por cáncer de próstata en Colombia: estudio ecológico. Revista Urología Colombiana. 2014;23: p. 3-10. | |
dcterms.references | Kijvikai K. Digital rectal examination, serum prostatic specific antigen or transrectal ultrasonography: the best tool to guide the treatment of men with benign prostatic hyperplasia. Curr Opin Urol. 2009;19: p. 44-8. DOI: 10.1097/MOU.0b013e32831743d0. | |
dcterms.references | Uribe Arcila Juan Fernando. Cáncer de Próstata ¿Qué es el antígeno prostático específico? (La biología del PSA). urología colombiana. 2007;XVI: p. 37-46. | |
dcterms.references | Tricoli JV, Schoenfeldt M, Conley BA. Detection of prostate cancer and predicting progression: current and future diagnostic markers. Clin Cancer Res. 2004;10: p. 3943-53. DOI: 10.1158/1078-0432.CCR-03-0200. | |
dcterms.references | Nogueira L, Corradi R, Eastham JA. Other biomarkers for detecting prostate cancer. BJU Int. 2009;105: p. 166-9. DOI: 10.1111/j.1464- 410X.2009.09088.x. | |
dcterms.references | Andriole GL, Crawford ED, Grubb RL, 3rd, Buys SS, Chia D, Church TR, et al. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 2009;360: p. 1310-9. DOI: 10.1056/NEJMoa0810696. | |
dcterms.references | Schroder FH, Roobol MJ. Re: Prostate cancer screening in the Prostate, Lung, Colorectal and Ovarian cancer screening trial: update on findings from the initial four rounds of screening in a randomized trial. BJU Int. 2009;103: p. 143-4. DOI: 10.1111/j.1464-410X.2008.08257.x. | |
dcterms.references | Stamey TA, Caldwell M, McNeal JE, Nolley R, Hemenez M, Downs J. The prostate specific antigen era in the United States is over for prostate cancer: what happened in the last 20 years? J Urol. 2004;172: p. 1297-301. DOI: 00005392-200410000-00018. | |
dcterms.references | Steuber T, O'Brien MF, Lilja H. Serum markers for prostate cancer: a rational approach to the literature. Eur Urol. 2008;54: p. 31-40. DOI: 10.1016/j.eururo.2008.01.034. | |
dcterms.references | Bickers B, Aukim-Hastie C. New molecular biomarkers for the prognosis and management of prostate cancer--the post PSA era. Anticancer Res. 2009;29: p. 3289-98. | |
dcterms.references | Shariat SF, Semjonow A, Lilja H, Savage C, Vickers AJ, Bjartell A. Tumor markers in prostate cancer I: blood-based markers. Acta Oncol. 2011;50 Suppl 1: p. 61-75. DOI: 10.3109/0284186X.2010.542174. | |
dcterms.references | Mart, nez CH, Chalasani V, Chin J. Molecular biomarkers in prostate cancer. Expert Opinion on Medical Diagnostics. 2009;3: p. 345-353 | |
dcterms.references | Kitagawa Y, Izumi K, Sawada K, Mizokami A, Nakashima K, Koshida K, et al. Age-specific reference range of prostate-specific antigen and prostate cancer detection in population-based screening cohort in Japan: verification of Japanese Urological Association Guideline for prostate cancer. Int J Urol. 2014;21: p. 1120-5. DOI: 10.1111/iju.12523. | |
dcterms.references | Kosaka T, Mizuno R, Shinojima T, Miyajima A, Kikuchi E, Tanaka N, et al. The implications of prostate-specific antigen density to predict clinically significant prostate cancer in men </= 50 years. Am J Clin Exp Urol. 2014;2: p. 332-6. | |
dcterms.references | Thompson IM, Ankerst DP, Chi C, Lucia MS, Goodman PJ, Crowley JJ, et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA. 2005;294: p. 66-70. DOI: 10.1001/jama.294.1.66. | |
dcterms.references | Senior K. Age-specific PSA screening better. Lancet Oncol. 2007;8: p. 378. | |
dcterms.references | Oesterling JE. Age-specific reference ranges for serum PSA. N Engl J Med. 1996;335: p. 345-6. DOI:10.1056/NEJM199608013350511. | |
dcterms.references | Hofner T, Pfitzenmaier J, Alrabadi A, Pahernik S, Hadaschik B, Wagener N, et al. PSA density lower cutoff value as a tool to exclude pathologic upstaging in initially diagnosed unilateral prostate cancer: impact on hemiablative focal therapy. World J Urol. 2011;DOI: 10.1007/s00345- 010-0631-6. | |
dcterms.references | Yousra S, Rafik E, Manel M, Kacem M. [Contribution of PSA and its density in the diagnosis and tracking of the prostate cancer]. Ann Biol Clin (Paris). 2010;68: p. 585-93. DOI: 10.1684/abc.2010.0481. | |
dcterms.references | Liu S, Lu JJ, Fu Q, Zhang H, Gao DX, Liu Z. Total PSA, PSA density and biopsy Gleason score in predicting the pathologic stage of prostate cancer. Zhonghua Nan Ke Xue. 2010;16: p. 415-9. | |
dcterms.references | Swoboda A, Luboldt HJ, Rubben H, Borgermann C. [Free/total PSA ratio in clinical and ambulatory application. Are different cutoffs justified?]. Urologe A. 2009;48: p. 1002, 1004, 1006-7. DOI: 10.1007/s00120-009- 2075-4. | |
dcterms.references | Yokomizo Y, Miyoshi Y, Nakaigawa N, Makiyama K, Ogawa T, Yao M, et al. Free PSA/total PSA ratio increases the detection rate of prostate cancer in twelve-core biopsy. Urol Int. 2009;82: p. 280-5. DOI: 10.1159/000209358 | |
dcterms.references | Pepe P, Aragona F. Incidence of insignificant prostate cancer using free/total PSA: results of a case-finding protocol on 14,453 patients. Prostate Cancer Prostatic Dis. 2010;13: p. 316-9. DOI: 10.1038/pcan.2010.29. | |
dcterms.references | van der Kwast TH, Lopes C, Santonja C, Pihl CG, Neetens I, Martikainen P, et al. Guidelines for processing and reporting of prostatic needle biopsies. J Clin Pathol. 2003;56: p. 336-40 | |
dcterms.references | Nash PA, Bruce JE, Indudhara R, Shinohara K. Transrectal ultrasound guided prostatic nerve blockade eases systematic needle biopsy of the prostate. J Urol. 1996;155: p. 607-9. | |
dcterms.references | Epstein JI. An update of the Gleason grading system. J Urol. 2010;183: p. 433-40. DOI: 10.1016/j.juro.2009.10.046. | |
dcterms.references | Sarkar S, Das S. A Review of Imaging Methods for Prostate Cancer Detection. Biomed Eng Comput Biol. 2016;7: p. 1-15. DOI: 10.4137/BECB.S34255. | |
dcterms.references | Flaig TW, Nordeen SK, Lucia MS, Harrison GS, Glode LM. Conference report and review: current status of biomarkers potentially associated with prostate cancer outcomes. J Urol. 2007;177: p. 1229-37. DOI: 10.1016/j.juro.2006.11.032. | |
dcterms.references | Verma M, Srivastava S. New cancer biomarkers deriving from NCI early detection research. Recent Results Cancer Res. 2003;163: p. 72-84; discussion 264-6. | |
dcterms.references | Winget MD, Baron JA, Spitz MR, Brenner DE, Warzel D, Kincaid H, et al. Development of common data elements: the experience of and recommendations from the early detection research network. Int J Med Inform. 2003;70: p. 41-8. DOI: S1386505603000054. | |
dcterms.references | Bensalah K, Montorsi F, Shariat SF. Challenges of cancer biomarker profiling. Eur Urol. 2007;52: p. 1601-9. DOI: 10.1016/j.eururo.2007.09.036. | |
dcterms.references | Balistreri CR, Candore G, Lio D, Carruba G. Prostate cancer: from the pathophysiologic implications of some genetic risk factors to translation in personalized cancer treatments. Cancer Gene Ther. 2014;21: p. 2-11. DOI: 10.1038/cgt.2013.77. | |
dcterms.references | Shariat SF, Canto EI, Kattan MW, Slawin KM. Beyond prostate-specific antigen: new serologic biomarkers for improved diagnosis and management of prostate cancer. Rev Urol. 2004;6: p. 58-72. | |
dcterms.references | Shariat SF, Karakiewicz PI, Roehrborn CG, Kattan MW. An updated catalog of prostate cancer predictive tools. Cancer. 2008;113: p. 3075-99. DOI: 10.1002/cncr.23908. | |
dcterms.references | Villari D, Nesi G, Della Melina A, Palli D, Ceroti M, Castigli M, et al. Radical retropubic prostatectomy for prostate cancer with microscopic bladder neck involvement: survival and prognostic implications. BJU Int. 2010;105: p. 946-50. DOI: 10.1111/j.1464-410X.2009.08914.x. | |
dcterms.references | Stratton KL, Chang SS. Locally advanced prostate cancer: the role of surgical management. BJU Int. 2009;104: p. 449-54. DOI: 10.1111/j.1464- 410X.2009.08741.x. | |
dcterms.references | Magklara A, Scorilas A, Catalona WJ, Diamandis EP. The combination of human glandular kallikrein and free prostate-specific antigen (PSA) enhances discrimination between prostate cancer and benign prostatic hyperplasia in patients with moderately increased total PSA. Clin Chem. 1999;45: p. 1960-6. | |
dcterms.references | Dhir R, Vietmeier B, Arlotti J, Acquafondata M, Landsittel D, Masterson R, et al. Early identification of individuals with prostate cancer in negative biopsies. J Urol. 2004;171: p. 1419-23. DOI: 10.1097/01.ju.0000116545.94813.27. | |
dcterms.references | Duffy MJ. Urokinase-type plasminogen activator: a potent marker of metastatic potential in human cancers. Biochem Soc Trans. 2002;30: p. 207-10. DOI: 10.1042/. | |
dcterms.references | Hirano D, Minei S, Sugimoto S, Yamaguchi K, Yoshikawa T, Hachiya T, et al. Implications of circulating chromogranin A in prostate cancer. Scand J Urol Nephrol. 2007;41: p. 297-301. DOI: 10.1080/00365590701303934. | |
dcterms.references | Whitaker HC, Warren AY, Eeles R, Kote-Jarai Z, Neal DE. The potential value of microseminoprotein-beta as a prostate cancer biomarker and therapeutic target. Prostate. 2010;70: p. 333-40. DOI: 10.1002/pros.21059. | |
dcterms.references | Mahn R, Heukamp LC, Rogenhofer S, von Ruecker A, Muller SC, Ellinger J. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology. 2011;77: p. 1265 e9-16. DOI: 10.1016/j.urology.2011.01.020. | |
dcterms.references | Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC, et al. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate. 2012;72: p. 1469-77. DOI: 10.1002/pros.22499. | |
dcterms.references | Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457: p. 910-4. DOI: 10.1038/nature07762. | |
dcterms.references | Ferro M, Lucarelli G, Bruzzese D, Perdona S, Mazzarella C, Perruolo G, et al. Improving the prediction of pathologic outcomes in patients undergoing radical prostatectomy: the value of prostate cancer antigen 3 (PCA3), prostate health index (phi) and sarcosine. Anticancer Res. 2015;35: p. 1017-23. | |
dcterms.references | Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59: p. 5975-9. | |
dcterms.references | Hessels D, Schalken JA. The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol. 2009;6: p. 255-61. DOI: nrurol.2009.40 [pii] 10.1038/nrurol.2009.40. | |
dcterms.references | Liu GX, Guo HQ, Li XG, Gan WD, Zeng LQ, Shi HL, et al. [Detection of DD3 mRNA in the urine of prostate cancer patients and its clinical significance]. Zhonghua Nan Ke Xue. 2007;13: p. 511-3. | |
dcterms.references | Groskopf J, Aubin SM, Deras IL, Blase A, Bodrug S, Clark C, et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem. 2006;52: p. 1089-95. DOI: 10.1373/clinchem.2005.063289. | |
dcterms.references | Meng FJ, Shan A, Jin L, Young CY. The expression of a variant prostatespecific antigen in human prostate. Cancer Epidemiol Biomarkers Prev. 2002;11: p. 305-9. | |
dcterms.references | Hessels D, Klein Gunnewiek JM, van Oort I, Karthaus HF, van Leenders GJ, van Balken B, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 2003;44: p. 8-15; discussion 15-6. DOI: S030228380300201X [pii]. | |
dcterms.references | Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310: p. 644-8. DOI: 10.1126/science.1117679. | |
dcterms.references | Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007;448: p. 595-9. DOI: 10.1038/nature06024. | |
dcterms.references | Hessels D, Smit FP, Verhaegh GW, Witjes JA, Cornel EB, Schalken JA. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin Cancer Res. 2007;13: p. 5103-8. DOI: 10.1158/1078-0432.CCR-07-0700. | |
dcterms.references | Cao DL, Ye DW, Zhang HL, Zhu Y, Wang YX, Yao XD. A multiplex model of combining gene-based, protein-based, and metabolite-based with positive and negative markers in urine for the early diagnosis of prostate cancer. Prostate. 2011;71: p. 700-10. DOI: 10.1002/pros.21286. | |
dcterms.references | Salami SS, Schmidt F, Laxman B, Regan MM, Rickman DS, Scherr D, et al. Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol Oncol. 2013;31: p. 566-71. DOI: 10.1016/j.urolonc.2011.04.001. | |
dcterms.references | Dozmorov MG, Hurst RE, Culkin DJ, Kropp BP, Frank MB, Osban J, et al. Unique patterns of molecular profiling between human prostate cancer LNCaP and PC-3 cells. Prostate. 2009;69: p. 1077-90. DOI: 10.1002/pros.20960. | |
dcterms.references | Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, Papsidero L, et al. The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog Clin Biol Res. 1980;37: p. 115-32. | |
dcterms.references | Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, et al. LNCaP model of human prostatic carcinoma. Cancer Res. 1983;43: p. 1809-18. | |
dcterms.references | Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 1979;17: p. 16-23. | |
dcterms.references | Sankpal UT, Abdelrahim M, Connelly SF, Lee CM, Madero-Visbal R, Colon J, et al. Small molecule tolfenamic acid inhibits PC-3 cell proliferation and invasion in vitro, and tumor growth in orthotopic mouse model for prostate cancer. Prostate. 2012;72: p. 1648-58. DOI: 10.1002/pros.22518. | |
dcterms.references | Webber MM, Bello D, Kleinman HK, Wartinger DD, Williams DE, Rhim JS. Prostate specific antigen and androgen receptor induction and characterization of an immortalized adult human prostatic epithelial cell line. Carcinogenesis. 1996;17: p. 1641-6. | |
dcterms.references | Fukuhara S, Chang I, Mitsui Y, Chiyomaru T, Yamamura S, Majid S, et al. Functional role of DNA mismatch repair gene PMS2 in prostate cancer cells. Oncotarget. 2015;6: p. 16341-51. DOI: 10.18632/oncotarget.3854. | |
dcterms.references | Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010;339: p. 237-46. DOI: 10.1007/s00441-009-0821-y. | |
dcterms.references | Schaefer L, Iozzo RV. Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem. 2008;283: p. 21305-9. DOI: 10.1074/jbc.R800020200. | |
dcterms.references | Cattaruzza S, Nicolosi PA, Perris R. Proteoglycans in the control of tumor growth and metastasis formation. Connect Tissue Res. 2008;49: p. 225-9. DOI: 10.1080/03008200802143448. | |
dcterms.references | Iozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 2010;277: p. 3864-75. DOI: 10.1111/j.1742- 4658.2010.07797.x. | |
dcterms.references | Friedl A. Proteoglycans: master modulators of paracrine fibroblastcarcinoma cell interactions. Semin Cell Dev Biol. 2010;21: p. 66-71. DOI: 10.1016/j.semcdb.2009.11.013. | |
dcterms.references | Iozzo RV. The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem. 1999;274: p. 18843-6. | |
dcterms.references | Antonsson P, Heinegard D, Oldberg A. Structure and deduced amino acid sequence of the human fibromodulin gene. Biochim Biophys Acta. 1993;1174: p. 204-6. DOI: 0167-4781(93)90117-V. | |
dcterms.references | Kalamajski S, Oldberg A. Fibromodulin binds collagen type I via Glu-353 and Lys-355 in leucine-rich repeat 11. J Biol Chem. 2007;282: p. 26740-5. DOI: 10.1074/jbc.M704026200 | |
dcterms.references | Arnold K, Kiefer F, Kopp J, Battey JN, Podvinec M, Westbrook JD, et al. The Protein Model Portal. J Struct Funct Genomics. 2009;10: p. 1-8. DOI: 10.1007/s10969-008-9048-5. | |
dcterms.references | Scott PG, McEwan PA, Dodd CM, Bergmann EM, Bishop PN, Bella J. Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan. Proc Natl Acad Sci U S A. 2004;101: p. 15633-8. DOI: 10.1073/pnas.0402976101. | |
dcterms.references | Scott PG, Dodd CM, Bergmann EM, Sheehan JK, Bishop PN. Crystal structure of the biglycan dimer and evidence that dimerization is essential for folding and stability of class I small leucine-rich repeat proteoglycans. J Biol Chem. 2006;281: p. 13324-32. DOI: 10.1074/jbc.M513470200. | |
dcterms.references | Sztrolovics R, Chen XN, Grover J, Roughley PJ, Korenberg JR. Localization of the human fibromodulin gene (FMOD) to chromosome 1q32 and completion of the cDNA sequence. Genomics. 1994;23: p. 715-7. DOI: 10.1006/geno.1994.1567. | |
dcterms.references | Svensson L, Aszodi A, Reinholt FP, Fassler R, Heinegard D, Oldberg A. Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J Biol Chem. 1999;274: p. 9636- 47. | |
dcterms.references | Honardoust D, Varkey M, Marcoux Y, Shankowsky HA, Tredget EE. Reduced decorin, fibromodulin, and transforming growth factor-beta3 in deep dermis leads to hypertrophic scarring. J Burn Care Res. 2012;33: p. 218-27. DOI: 10.1097/BCR.0b013e3182335980. | |
dcterms.references | Lee YH, Schiemann WP. Fibromodulin suppresses nuclear factor-kappaB activity by inducing the delayed degradation of IKBA via a JNK-dependent pathway coupled to fibroblast apoptosis. J Biol Chem. 2011;286: p. 6414-22. DOI: 10.1074/jbc.M110.168682. | |
dcterms.references | Geng Y, McQuillan D, Roughley PJ. SLRP interaction can protect collagen fibrils from cleavage by collagenases. Matrix Biol. 2006;25: p. 484-91. DOI: 10.1016/j.matbio.2006.08.259. | |
dcterms.references | Bevilacqua MA, Iovine B, Zambrano N, D'Ambrosio C, Scaloni A, Russo T, et al. Fibromodulin gene transcription is induced by ultraviolet irradiation, and its regulation is impaired in senescent human fibroblasts. J Biol Chem. 2005;280: p. 31809-17. DOI: 10.1074/jbc.M414677200. | |
dcterms.references | Iovine B, Nino M, Irace C, Bevilacqua MA, Monfrecola G. Ultraviolet B and A irradiation induces fibromodulin expression in human fibroblasts in vitro. Biochimie. 2009;91: p. 364-72. DOI: 10.1016/j.biochi.2008.10.017. | |
dcterms.references | Mikaelsson E, Danesh-Manesh AH, Luppert A, Jeddi-Tehrani M, Rezvany MR, Sharifian RA, et al. Fibromodulin, an extracellular matrix protein: characterization of its unique gene and protein expression in B-cell chronic lymphocytic leukemia and mantle cell lymphoma. Blood. 2005;105: p. 4828-35. DOI: 10.1182/blood-2004-10-3941. | |
dcterms.references | Choudhury A, Derkow K, Daneshmanesh AH, Mikaelsson E, Kiaii S, Kokhaei P, et al. Silencing of ROR1 and FMOD with siRNA results in apoptosis of CLL cells. Br J Haematol. 2010;151: p. 327-35. DOI: 10.1111/j.1365-2141.2010.08362.x. | |
dcterms.references | DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44: p. 837-45 | |
dcterms.references | Klotz L, Emberton M. Management of low risk prostate cancer-active surveillance and focal therapy. Nat Rev Clin Oncol. 2014;11: p. 324-34. DOI: 10.1038/nrclinonc.2014.73. | |
dcterms.references | Melichar B. PSA, PCA3 and the phi losophy of prostate cancer management. Clin Chem Lab Med. 2013;51: p. 707-12. DOI: 10.1515/cclm2013-0156. | |
dcterms.references | Garusi E, Rossi S, Perris R. Antithetic roles of proteoglycans in cancer. Cell Mol Life Sci. 2012;69: p. 553-79. DOI: 10.1007/s00018-011-0816-1. | |
dcterms.references | Munkley J, Mills IG, Elliott DJ. The role of glycans in the development and progression of prostate cancer. Nat Rev Urol. 2016;DOI: 10.1038/nrurol.2016.65 | |
dcterms.references | Schonherr E, Sunderkotter C, Iozzo RV, Schaefer L. Decorin, a novel player in the insulin-like growth factor system. J Biol Chem. 2005;280: p. 15767-72. DOI: 10.1074/jbc.M500451200. | |
dcterms.references | Schaefer L, Iozzo RV. Small leucine-rich proteoglycans, at the crossroad of cancer growth and inflammation. Curr Opin Genet Dev. 2012;22: p. 56-7. DOI: 10.1016/j.gde.2011.12.002. | |
dcterms.references | Hu Y, Sun H, Owens RT, Wu J, Chen YQ, Berquin IM, et al. Decorin suppresses prostate tumor growth through inhibition of epidermal growth factor and androgen receptor pathways. Neoplasia. 2009;11: p. 1042-53. | |
dcterms.references | Seidler DG, Goldoni S, Agnew C, Cardi C, Thakur ML, Owens RT, et al. Decorin protein core inhibits in vivo cancer growth and metabolism by hindering epidermal growth factor receptor function and triggering apoptosis via caspase-3 activation. J Biol Chem. 2006;281: p. 26408-18. DOI: 10.1074/jbc.M602853200. | |
dcterms.references | Datta MW, Hernandez AM, Schlicht MJ, Kahler AJ, DeGueme AM, Dhir R, et al. Perlecan, a candidate gene for the CAPB locus, regulates prostate cancer cell growth via the Sonic Hedgehog pathway. Mol Cancer. 2006;5: p. 9. DOI: 10.1186/1476-4598-5-9. | |
dcterms.references | Arichi N, Mitsui Y, Hiraki M, Nakamura S, Hiraoka T, Sumura M, et al. Versican is a potential therapeutic target in docetaxel-resistant prostate cancer. Oncoscience. 2015;2: p. 193-204. | |
dcterms.references | Sakko AJ, Ricciardelli C, Mayne K, Tilley WD, Lebaron RG, Horsfall DJ. Versican accumulation in human prostatic fibroblast cultures is enhanced by prostate cancer cell-derived transforming growth factor beta1. Cancer Res. 2001;61: p. 926-30. | |
dcterms.references | Ricciardelli C, Mayne K, Sykes PJ, Raymond WA, McCaul K, Marshall VR, et al. Elevated levels of versican but not decorin predict disease progression in early-stage prostate cancer. Clin Cancer Res. 1998;4: p. 963- 71. | |
dcterms.references | Szarvas T, Reis H, Vom Dorp F, Tschirdewahn S, Niedworok C, Nyirady P, et al. Soluble syndecan-1 (SDC1) serum level as an independent preoperative predictor of cancer-specific survival in prostate cancer. Prostate. 2016;DOI: 10.1002/pros.23186. | |
dcterms.references | Fujii T, Shimada K, Tatsumi Y, Fujimoto K, Konishi N. Syndecan-1 responsive microRNA-126 and 149 regulate cell proliferation in prostate cancer. Biochem Biophys Res Commun. 2015;456: p. 183-9. DOI: 10.1016/j.bbrc.2014.11.056. | |
dcterms.references | Shimada K, Anai S, Fujii T, Tanaka N, Fujimoto K, Konishi N. Syndecan1 (CD138) contributes to prostate cancer progression by stabilizing tumourinitiating cells. J Pathol. 2013;231: p. 495-504. DOI: 10.1002/path.4271. | |
dcterms.references | Chen D, Adenekan B, Chen L, Vaughan ED, Gerald W, Feng Z, et al. Syndecan-1 expression in locally invasive and metastatic prostate cancer. Urology. 2004;63: p. 402-7. DOI: 10.1016/j.urology.2003.08.036. | |
dcterms.references | Mondal B, Patil V, Shwetha SD, Sravani K, Hegde AS, Arivazhagan A, et al. Integrative functional genomic analysis identifies epigenetically regulated fibromodulin as an essential gene for glioma cell migration. Oncogene. 2016;DOI: 10.1038/onc.2016.176. | |
dcterms.references | Peehl DM. Primary cell cultures as models of prostate cancer development. Endocr Relat Cancer. 2005;12: p. 19-47. DOI: 10.1677/erc.1.00795. | |
dcterms.references | Welsbie DS, Xu J, Chen Y, Borsu L, Scher HI, Rosen N, et al. Histone deacetylases are required for androgen receptor function in hormonesensitive and castrate-resistant prostate cancer. Cancer Res. 2009;69: p. 958-66. DOI: 10.1158/0008-5472.CAN-08-2216. | |
dcterms.references | Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, et al. A hierarchical network of transcription factors governs androgen receptordependent prostate cancer growth. Mol Cell. 2007;27: p. 380-92. DOI: 10.1016/j.molcel.2007.05.041. | |
dcterms.references | Heemers HV, Schmidt LJ, Sun Z, Regan KM, Anderson SK, Duncan K, et al. Identification of a clinically relevant androgen-dependent gene signature in prostate cancer. Cancer Res. 2011;71: p. 1978-88. DOI: 10.1158/0008-5472.CAN-10-2512. | |
dcterms.references | Vellaichamy A, Sreekumar A, Strahler JR, Rajendiran T, Yu J, Varambally S, et al. Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases. PLoS One. 2009;4: p. e7075. DOI: 10.1371/journal.pone.0007075. | |
dcterms.references | Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, GarciaEcheverria C, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A. 2009;106: p. 268-73. DOI: 10.1073/pnas.0810956106. | |
dcterms.references | Hughes-Fulford M, Li CF, Boonyaratanakornkit J, Sayyah S. Arachidonic acid activates phosphatidylinositol 3-kinase signaling and induces gene expression in prostate cancer. Cancer Res. 2006;66: p. 1427-33. DOI: 10.1158/0008-5472.CAN-05-0914. | |
dcterms.references | Drake JM, Strohbehn G, Bair TB, Moreland JG, Henry MD. ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Biol Cell. 2009;20: p. 2207-17. DOI: 10.1091/mbc.E08-10-1076. | |
dcterms.references | Kovalenko PL, Zhang Z, Cui M, Clinton SK, Fleet JC. 1,25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1. BMC Genomics. 2010;11: p. 26. DOI: 10.1186/1471-2164-11-26. | |
dcterms.references | O'Connell K, Prencipe M, O'Neill A, Corcoran C, Rani S, Henry M, et al. The use of LC-MS to identify differentially expressed proteins in docetaxelresistant prostate cancer cell lines. Proteomics. 2012;12: p. 2115-26. DOI: 10.1002/pmic.201100489. | |
dcterms.references | Sardana G, Jung K, Stephan C, Diamandis EP. Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. J Proteome Res. 2008;7: p. 3329-38. DOI: 10.1021/pr8003216. | |
dcterms.references | Gong Y, Chippada-Venkata UD, Oh WK. Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers (Basel). 2014;6: p. 1298-327. DOI: 10.3390/cancers6031298 | |
dcterms.references | Webber MM, Bello D, Quader S. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications Part 2. Tumorigenic cell lines. Prostate. 1997;30: p. 58-64. | |
dcterms.references | Johnson IR, Parkinson-Lawrence EJ, Butler LM, Brooks DA. Prostate cell lines as models for biomarker discovery: performance of current markers and the search for new biomarkers. Prostate. 2014;74: p. 547-60. DOI: 10.1002/pros.22777. | |
dcterms.references | Bennett NC, Hooper JD, Johnson DW, Gobe GC. Expression profiles and functional associations of endogenous androgen receptor and caveolin-1 in prostate cancer cell lines. Prostate. 2014;74: p. 478-87. DOI: 10.1002/pros.22767 | |
dcterms.references | NickKholgh B, Fang X, Winters SM, Raina A, Pandya KS, Gyabaah K, et al. Cell line modeling to study biomarker panel in prostate cancer. Prostate. 2016;76: p. 245-58. DOI: 10.1002/pros.23116. | |
dcterms.references | Zhou JR, Yu L, Zerbini LF, Libermann TA, Blackburn GL. Progression to androgen-independent LNCaP human prostate tumors: cellular and molecular alterations. Int J Cancer. 2004;110: p. 800-6. DOI: 10.1002/ijc.20206. | |
dcterms.references | Achbarou A, Kaiser S, Tremblay G, Ste-Marie LG, Brodt P, Goltzman D, et al. Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res. 1994;54: p. 2372-7. | |
dcterms.references | Saraon P, Cretu D, Musrap N, Karagiannis GS, Batruch I, Drabovich AP, et al. Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Mol Cell Proteomics. 2013;12: p. 1589-601. DOI: 10.1074/mcp.M112.023887. | |
dcterms.references | Jeet V, Tevz G, Lehman M, Hollier B, Nelson C. Elevated YKL40 is associated with advanced prostate cancer (PCa) and positively regulates invasion and migration of PCa cells. Endocr Relat Cancer. 2014;21: p. 723- 37. DOI: 10.1530/ERC-14-0267. | |
dcterms.references | Lee SL, Yu D, Wang C, Saba R, Liu S, Trpkov K, et al. ERG Expression in Prostate Needle Biopsy: Potential Diagnostic and Prognostic Implications. Appl Immunohistochem Mol Morphol. 2015;23: p. 499-505. DOI: 10.1097/PAI.0000000000000119. | |
dcterms.references | Andrews C, Humphrey PA. Utility of ERG versus AMACR expression in diagnosis of minimal adenocarcinoma of the prostate in needle biopsy tissue. Am J Surg Pathol. 2014;38: p. 1007-12. DOI: 10.1097/PAS.0000000000000205 | |
dcterms.references | Korbakis D, Gregorakis AK, Scorilas A. Quantitative analysis of human kallikrein 5 (KLK5) expression in prostate needle biopsies: an independent cancer biomarker. Clin Chem. 2009;55: p. 904-13. DOI: 10.1373/clinchem.2008.103788. | |
dcterms.references | Hoogland AM, Bottcher R, Verhoef E, Jenster G, van Leenders GJ. Gene-expression analysis of gleason grade 3 tumor glands embedded in low- and high-risk prostate cancer. Oncotarget. 2016;DOI: 10.18632/oncotarget.9344. | |
dcterms.references | Antonio Serafin LB, Pedro Fernandez, Daniel Achel & John Akudugu, The potential of PAI-1 expression in needle biopsies as a predictive marker for prostate cancer,. Cogent Medicine. 2016.;3: 1183275.: p. | |
dcterms.references | Vela-Navarrete R. [Comment to: <<Relation between prostate gland volume and some histological markers of malignancy>>]. Actas Urol Esp. 2012;36: p. 91-2. DOI: 0.1016/j.acuro.2011.10.006. | |
dcterms.references | Babaian RJ, Miyashita H, Evans RB, Ramirez EI. The distribution of prostate specific antigen in men without clinical or pathological evidence of prostate cancer: relationship to gland volume and age. J Urol. 1992;147: p. 837-40. | |
dcterms.references | Benson MC, Whang IS, Pantuck A, Ring K, Kaplan SA, Olsson CA, et al. Prostate specific antigen density: a means of distinguishing benign prostatic hypertrophy and prostate cancer. J Urol. 1992;147: p. 815-6. | |
dcterms.references | Gregg JL, Brown KE, Mintz EM, Piontkivska H, Fraizer GC. Analysis of gene expression in prostate cancer epithelial and interstitial stromal cells using laser capture microdissection. BMC Cancer. 2010;10: p. 165. DOI: 10.1186/1471-2407-10-165. | |
dcterms.references | Jia Z, Wang Y, Sawyers A, Yao H, Rahmatpanah F, Xia XQ, et al. Diagnosis of prostate cancer using differentially expressed genes in stroma. Cancer Res. 2011;71: p. 2476-87. DOI: 10.1158/0008-5472.CAN-10-2585. | |
dcterms.references | Jhavar S, Bartlett J, Kovacs G, Corbishley C, Dearnaley D, Eeles R, et al. Biopsy tissue microarray study of Ki-67 expression in untreated, localized prostate cancer managed by active surveillance. Prostate Cancer Prostatic Dis. 2009;12: p. 143-7. DOI: 10.1038/pcan.2008.47. | |
dcterms.references | Xue D, Zhou CX, Shi YB, Lu H, He XZ. MD-miniRNA could be a more accurate biomarker for prostate cancer screening compared with serum prostate-specific antigen level. Tumour Biol. 2015;36: p. 3541-7. DOI: 10.1007/s13277-014-2990-x. | |
dcterms.references | Reichard CA, Stephenson AJ, Klein EA. Molecular markers in urologic oncology: prostate cancer. Curr Opin Urol. 2016;26: p. 225-30. DOI: 10.1097/MOU.0000000000000273. | |
dcterms.references | Murphy L, Prencipe M, Gallagher WM, Watson RW. Commercialized biomarkers: new horizons in prostate cancer diagnostics. Expert Rev Mol Diagn. 2015;15: p. 491-503. DOI: 10.1586/14737159.2015.1011622. | |
dcterms.references | Saini S. PSA and beyond: alternative prostate cancer biomarkers. Cell Oncol (Dordr). 2016;39: p. 97-106. DOI: 10.1007/s13402-016-0268-6. | |
dcterms.references | Coelho FF, Guimaraes FL, Cabral WL, Salles PG, Mateo EC, Nogueira e Nogueira LM, et al. Expression of PCA3 and PSA genes as a biomarker for differential diagnosis of nodular hyperplasia and prostate cancer. Genet Mol Res. 2015;14: p. 13519-31. DOI: 10.4238/2015.October.28.13. | |
dcterms.references | Coelho FF, Guimaraes FL, Cabral WL, Salles PG, Mateo EC, Nogueira e Nogueira LM, et al. Expression of PCA3 and PSA genes as a biomarker for differential diagnosis of nodular hyperplasia and prostate cancer. Genet Mol Res. 2015;14: p. 13519-31. DOI: 10.4238/2015.October.28.13. | |
dcterms.references | Lazzeri M, Haese A, Abrate A, de la Taille A, Redorta JP, McNicholas T, et al. Clinical performance of serum prostate-specific antigen isoform [- 2]proPSA (p2PSA) and its derivatives, %p2PSA and the prostate health index (PHI), in men with a family history of prostate cancer: results from a multicentre European study, the PROMEtheuS project. BJU Int. 2013;112: p. 313-21. DOI: 10.1111/bju.12217. | |
dcterms.references | Stephan C, Cammann H, Jung K. Re: Scott A. Tomlins, John R. Day, Robert J. Lonigro, et al. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol. In press. http://dx.doi.org/10.1016/j.eururo.2015.04.039. Eur Urol. 2015;68: p. e106-7. DOI: 10.1016/j.eururo.2015.07.028. | |
dcterms.references | Tomlins SA, Day JR, Lonigro RJ, Hovelson DH, Siddiqui J, Kunju LP, et al. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol. 2015;DOI: 10.1016/j.eururo.2015.04.039. | |
dcterms.references | Blume-Jensen P, Berman DM, Rimm DL, Shipitsin M, Putzi M, Nifong TP, et al. Development and clinical validation of an in situ biopsy-based multimarker assay for risk stratification in prostate cancer. Clin Cancer Res. 2015;21: p. 2591-600. DOI: 10.1158/1078-0432.CCR-14-2603. | |
dcterms.references | Kim MJ, Choi NY, Lee EK, Kang MS. Identification of novel markers that outperform EpCAM in quantifying circulating tumor cells. Cell Oncol (Dordr). 2014;37: p. 235-43. DOI: 10.1007/s13402-014-0178-4. | |
dcterms.references | Gordanpour A, Nam RK, Sugar L, Seth A. MicroRNAs in prostate cancer: from biomarkers to molecularly-based therapeutics. Prostate Cancer Prostatic Dis. 2012;15: p. 314-9. DOI: 10.1038/pcan.2012.3. | |
dcterms.references | Lai NS, Wu DG, Fang XG, Lin YC, Chen SS, Li ZB, et al. Serum microRNA-210 as a potential noninvasive biomarker for the diagnosis and prognosis of glioma. Br J Cancer. 2015;112: p. 1241-6. DOI: 10.1038/bjc.2015.91. | |
dcterms.references | Koppers-Lalic D, Hackenberg M, Menezes R, Misovic B, Wachalska M, Geldof A, et al. Noninvasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget. 2016;DOI: 10.18632/oncotarget.8124. | |
dcterms.references | Royo F, Zuniga-Garcia P, Torrano V, Loizaga A, Sanchez-Mosquera P, Ugalde-Olano A, et al. Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer. Oncotarget. 2016;7: p. 6835-46. DOI: 10.18632/oncotarget.6899. | |
dcterms.references | Brett SI, Kim Y, Biggs CN, Chin JL, Leong HS. Extracellular vesicles such as prostate cancer cell fragments as a fluid biopsy for prostate cancer. Prostate Cancer Prostatic Dis. 2015;18: p. 213-20. DOI: 10.1038/pcan.2015.17. | |
dcterms.references | Giusti I, Dolo V. Extracellular vesicles in prostate cancer: new future clinical strategies? Biomed Res Int. 2014;2014: p. 561571. DOI: 10.1155/2014/561571. | |
dcterms.references | Wei JT. Urinary biomarkers for prostate cancer. Curr Opin Urol. 2015;25: p. 77-82. DOI: 10.1097/MOU.0000000000000133. | |
dcterms.references | Heger Z, Gumulec J, Ondrak A, Skoda J, Zitka Z, Cernei N, et al. Influence of Long-Distance Bicycle Riding on Serum/Urinary Biomarkers of Prostate Cancer. Int J Mol Sci. 2016;17: p. DOI: 10.3390/ijms17030377 | |
dcterms.references | Tosoian JJ, Ross AE, Sokoll LJ, Partin AW, Pavlovich CP. Urinary Biomarkers for Prostate Cancer. Urol Clin North Am. 2016;43: p. 17-38. DOI: 10.1016/j.ucl.2015.08.003. | |
dcterms.references | Nguyen HG, Welty CJ, Cooperberg MR. Diagnostic associations of gene expression signatures in prostate cancer tissue. Curr Opin Urol. 2015;25: p. 65-70. DOI: 10.1097/MOU.0000000000000131. | |
dcterms.references | Lin J, Huang Y, Zhang L, Tang W, Li X, Wang X, et al. Evaluation of serum granulysin as a potential biomarker for nasopharyngeal carcinoma. Clin Chim Acta. 2016;454: p. 72-6. DOI: 10.1016/j.cca.2015.12.035. | |
dcterms.references | Reis IM, Ramachandran K, Speer C, Gordian E, Singal R. Serum GADD45a methylation is a useful biomarker to distinguish benign vs malignant prostate disease. Br J Cancer. 2015;113: p. 460-8. DOI: 10.1038/bjc.2015.240. | |
dcterms.references | Dijkstra S, Birker IL, Smit FP, Leyten GH, de Reijke TM, van Oort IM, et al. Prostate cancer biomarker profiles in urinary sediments and exosomes. J Urol. 2014;191: p. 1132-8. DOI: 10.1016/j.juro.2013.11.001. | |
dcterms.references | Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst. 2001;93: p. 1054-61. | |
dcterms.references | Makarov DV, Loeb S, Getzenberg RH, Partin AW. Biomarkers for prostate cancer. Annu Rev Med. 2009;60: p. 139-51. DOI: 10.1146/annurev.med.60.042307.110714 | |
dcterms.references | Parekh DJ, Ankerst DP, Troyer D, Srivastava S, Thompson IM. Biomarkers for prostate cancer detection. J Urol. 2007;178: p. 2252-9. DOI: 10.1016/j.juro.2007.08.055. | |
dcterms.references | Reyes N, Benedetti I, Bettin A, Rebollo J, Geliebter J. The small leucine rich proteoglycan fibromodulin is overexpressed in human prostate epithelial cancer cell lines in culture and human prostate cancer tissue. Cancer Biomark. 2016;16: p. 191-202. DOI: 10.3233/CBM-150555. | |
dcterms.references | Bettin A, Reyes I, Reyes N. Gene expression profiling of prostate cancerassociated genes identifies fibromodulin as potential novel biomarker for prostate cancer. Int J Biol Markers. 2015;0. DOI: 10.5301/jbm.5000184. | |
dspace.entity.type | Publication |
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...