Publicación:
Alginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénica

dc.contributor.authorGiraldo Hoyos, Juliana Maríaspa
dc.contributor.authorTrochêz Wilchez, Diana Fernandaspa
dc.contributor.authorValencia Serna, Julianaspa
dc.contributor.authorZapata Linares, Nataliaspa
dc.contributor.authorLondoño Peláez, Carolinaspa
dc.contributor.authorPineda Molina, Catalinaspa
dc.date.accessioned2020-12-21 00:00:00
dc.date.available2020-12-21 00:00:00
dc.date.issued2020-12-21
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.32997/rcb-2011-3049
dc.identifier.eissn2389-7252
dc.identifier.issn2215-7840
dc.identifier.urihttps://hdl.handle.net/11227/13326
dc.identifier.urlhttps://doi.org/10.32997/rcb-2011-3049
dc.language.isospaspa
dc.publisherUniversidad de Cartagenaspa
dc.relation.bitstreamhttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3049/2580
dc.relation.citationeditionNúm. 2 , Año 2011spa
dc.relation.citationendpage209
dc.relation.citationissue2spa
dc.relation.citationstartpage201
dc.relation.citationvolume2spa
dc.relation.ispartofjournalRevista Ciencias Biomédicasspa
dc.relation.referencesPu LLQ, Cui X, Fink BF, Gao D, Vasconez HC. Adipose aspirates as a source for human processed lipoaspirate cells after optimal cryopreservation. Plast. Reconstr. Surg. 2006;117(6):1845- 1850.spa
dc.relation.referencesRinge J, Kaps C, Burmester G-R, Sittinger M. Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften. 2002;89(8):338-351.spa
dc.relation.referencesZuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002;13(12):4279-4295.spa
dc.relation.referencesSchäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25(4):818-827.spa
dc.relation.referencesZuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228.spa
dc.relation.referencesMizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH. Myogenic differentiation by human processed lipoaspirate cells. Plast. Reconstr. Surg. 2002;109(1):199-209; discussion 210-211.spa
dc.relation.referencesHuang JI, Beanes SR, Zhu M, Lorenz HP, Hedrick MH, Benhaim P. Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast. Reconstr. Surg. 2002;109(3):1033- 1041; discussion 1042-1043.spa
dc.relation.referencesHuang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, et al. Chondrogenic potential of multipotential cells from human adipose tissue. Plast. Reconstr. Surg. 2004;113(2):585-594.spa
dc.relation.referencesWeinzierl K, Hemprich A, Frerich B. Bone engineering with adipose tissue derived stromal cells. J Craniomaxillofac Surg. 2006;34(8):466-471.spa
dc.relation.referencesAshjian PH, Elbarbary AS, Edmonds B, DeUgarte D, Zhu M, Zuk PA, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast. Reconstr. Surg. 2003;111(6):1922-1931.spa
dc.relation.referencesPineda Molina C, Londoño Peláez C. Obtención de células madre del tejido adiposo y su potencial de diferenciación osteogénico. Revista Ingeniería Biomédica. 2009;3(5):58-65.spa
dc.relation.referencesKilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 2010;107(11):4872-4877.spa
dc.relation.referencesAwad HA, Halvorsen Y-DC, Gimble JM, Guilak F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 2003;9(6):1301-1312.spa
dc.relation.referencesBetre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27(1):91-99.spa
dc.relation.referencesErickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem. Biophys. Res. Commun. 2002;290(2):763-769.spa
dc.relation.referencesZapata NM, Zuluaga NJ, Betancur SN, López LE. Cultivo de tejido cartilaginoso articular: acercamiento conceptual. Revista EIA. 2007;8:117-129.spa
dc.relation.referencesJin X bing, Sun Y sheng, Zhang K, Wang J, Shi T ping, Ju X dong, et al. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviralmediated transfer of hTGF beta2. Biomaterials. 2007;28(19):2994-3003.spa
dc.relation.referencesLee JW, Kim YH, Kim S-H, Han SH, Hahn SB. Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med. J. 2004 30;45 Suppl:41-47.spa
dc.relation.referencesBonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lasselin C, et al. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 1994;212(1):97-104.spa
dc.relation.referencesStensvaag V, Furmanek T, Lønning K, Terzis AJA, Bjerkvig R, Visted T. Cryopreservation of alginate-encapsulated recombinant cells for antiangiogenic therapy. Cell Transplant. 2004;13(1):35-44.spa
dc.relation.referencesHerrler A, Eisner S, Bach V, Weissenborn U, Beier HM. Cryopreservation of spermatozoa in alginic acid capsules. Fertil. Steril. 2006;85(1):208-213.spa
dc.relation.referencesBhakta G, Lee KH, Magalhães R, Wen F, Gouk SS, Hutmacher DW, et al. Cryopreservation of alginate-fibrin beads involving bone marrow derived mesenchymal stromal cells by vitrification. Biomaterials. 2009;30(3):336-343.spa
dc.relation.referencesGarcía F, Zapata NM, López LE, Londoño Peláez C. Caracterización de una fuente celular bovina multipotente y su potencial aplicación como modelo para la evaluación de biomateriales. 2008;spa
dc.relation.referencesFuentes Lacouture MF. Optimización del sistema de cultivo y caracterización de células madre mesenquimales obtenidas a partir de médula ósea humana [Trabajo de grado]. Colombia (BOG): Pontificia Universidad Javeriana; 2008. 83 p.spa
dc.relation.referencesFreshney I. Culture of Animal Cells: A manual of basic technique fifth edition. 5th ed. New York: Wiley & Liss; 2005.spa
dc.relation.referencesWilson A, Butler PE, Seifalian AM. Adipose-derived stem cells for clinical applications: a review. Cell Prolif. 2011;44(1):86-98.spa
dc.relation.referencesTakata A, Otsuka M, Kogiso T, Kojima K, Yoshikawa T, Tateishi R, et al. Direct differentiation of hepatic cells from human induced pluripotent stem cells using a limited number of cytokines. Hepatol Int [Internet]. 2011 [cited 2011];Available from: http://www.springerlink.com/index/10.1007/s12072-011-9251-5spa
dc.relation.referencesHsieh-Bonassera ND, Wu I, Lin JK, Schumacher BL, Chen AC, Masuda K, et al. Expansion and redifferentiation of chondrocytes from osteoarthritic cartilage: cells for human cartilage tissue engineering. Tissue Eng Part A. 2009;15(11):3513-3523.spa
dc.relation.referencesLittle CJ, Bawolin NK, Chen D. Mechanical Properties of Natural Cartilage and Tissue Engineered Constructs. Tissue Engineering Part B: Reviews. 2011;110316043918076.spa
dc.relation.referencesSugii S, Kida Y, Berggren WT, Evans RM. Feeder-dependent and feeder-independent iPS cell derivation from human and mouse adipose stem cells. Nat Protoc. 2011;6(3):346-358.spa
dc.relation.referencesGoh BC, Thirumala S, Kilroy G, Devireddy RV, Gimble JM. Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability. J Tissue Eng Regen Med. 2007;1(4):322-324.spa
dc.relation.referencesGuyomard C, Rialland L, Fremond B, Chesne C, Guillouzo A. Influence of alginate gel entrapment and cryopreservation on survival and xenobiotic metabolism capacity of rat hepatocytes. Toxicol. Appl. Pharmacol. 1996;141(2):349-356.spa
dc.relation.referencesRialland L, Guyomard C, Scotte M, Chesné C, Guillouzo A. Viability and drug metabolism capacity of alginate-entrapped hepatocytes after cryopreservation. Cell Biol. Toxicol. 2000;16(2):105-116.spa
dc.relation.referencesMalpique R, Ehrhart F, Katsen-Globa A, Zimmermann H, Alves PM. Cryopreservation of adherent cells: strategies to improve cell viability and function after thawing. Tissue Eng Part C Methods. 2009;15(3):373-386.spa
dc.rightsRevista Ciencias Biomédicas - 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3049spa
dc.subjectCélulas madre. Biomateriales. Tejido adiposo. Diferenciación celularspa
dc.titleAlginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénicaspa
dc.title.translatedAlginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénicaeng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: