Publicación:
Estudio in sílico de análogos estructurales de anestésicos locales en el canal de sodio nav1.7 una diana farmacológica sobre la pulpa dental inflamada

dc.contributor.advisorContreras Puentes, Neyder
dc.contributor.advisorAlviz Amador, Antistio Aníbal
dc.contributor.advisorDuran Lengua, Marlene
dc.contributor.authorManzur Villalobos, Isabella
dc.date.accessioned2021-08-12T16:03:55Z
dc.date.available2021-08-12T16:03:55Z
dc.date.issued2021
dc.descriptionTesis (Magíster en Farmacología) -- Universidad de Cartagena. Facultad de Medicina. Maestría en Farmacología, 2021es
dc.description.abstractLas vías del dolor se transmiten a través de las fibras sensitivas A delta y C, donde se encuentran los canales Nav1s. Los subtipos Nav1.7, 1.8 y 1.9 se expresan y se asocian con la pulpa dental inflamada, pero existen pocos estudios computacionales que muestren su interacción con los anestésicos locales. El objetivo de este estudio fue evaluar el comportamiento de los anestésicos locales y los análogos estructurales frente al canal Nav1.7 mediante el acoplamiento y la dinámica molecular, y predecir los parámetros farmacocinéticos y toxicológicos de los ligandos más afines. Se seleccionaron 3267 ligandos para cribado virtual: 1 ligando de control (Flecainida), 10 anestésicos locales tipo amida, 3256 análogos estructurales con canal Nav1.7 humano (PDB 5EK0). Se realizó un modelo de homología del canal Nav1.7 humano para correcciones de espacios en la secuencia de aminoácidos. La validación del protocolo molecular se realizó con el complejo NavAb-Flecainida (PDB 6MVX). El acoplamiento molecular se desarrolló a través de AutoDock Vina utilizando bash scripting para calcular la energía de unión de mayor afinidad entre ligando-receptor; la simulación de dinámica molecular fue desarrollada a través del software PMEMD de AMBER16 y permitió evaluar el comportamiento y la estabilidad de complejos con la mejor afinidad. Se realizó una búsqueda predictiva de las propiedades ADME y toxicidad utilizando SwissADME, ADMETSAR y GUSAR Toxicology Prediction. En el acoplamiento molecular 92367865 presentó la mejor energía de enlace (-6,4 +0.0 Kcal/mol), seguido por 22578003 con -6.3 + 0.15 Kcal/mol, con interacciones mediante enlaces hidrófobos comunes con los residuos Met185 (A), Leu187 (A), Leu432 (B) y un solo enlace de hidrógeno en residuo Thr462 (B). En estudio de dinámica molecular se evidenció que el ligando 92367865 mostró el mejor comportamiento de estabilidad, movilidad, accesibilidad al solvente y compactación en los valores de RMSD, RMSF, SASA y Rg respectivamente, similares al canal Nav1.7 nativo, en comparación con los complejos de lidocaína, dibucaína, 22578003 y flecainida. En la predicción de propiedades ADME y toxicidad, ninguna de las moléculas violó las reglas de Lipinski 9 y mostraron una clasificación de toxicidad oral tipo III. En conclusión, 92367865 podría considerarse como un fármaco promisorio como anestésico local en condiciones inflamatorias al bloquear las vías del dolor a través del canal Nav1.7.es
dc.format.mediumapplication/pdfes
dc.identifier.citationTM617.1 / M319es
dc.identifier.urihttps://hdl.handle.net/11227/12352
dc.identifier.urihttp://dx.doi.org/10.57799/11227/1305
dc.language.isospaes
dc.publisherUniversidad de Cartagenaes
dc.rights.accessopenAccesses
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0es
dc.subjectEnfermedades periodontaleses
dc.subjectAnestesiaes
dc.subjectAnestesia locales
dc.subjectFarmacologíaes
dc.subjectFarmacología - Investigación científicaes
dc.titleEstudio in sílico de análogos estructurales de anestésicos locales en el canal de sodio nav1.7 una diana farmacológica sobre la pulpa dental inflamadaes
dc.typeTrabajo de grado - Maestríaspa
dcterms.referencesNärhi M, Bjørndal L, Pigg M, Fristad I, Haug S. Acute dental pain I: pulpal and dentinal pain. Nor Tannlegeforen Tid. 2016;126:10–8.
dcterms.referencesPinto V, Derkach VA, Safronov BV. Role of TTX-Sensitive and TTX-Resistant Sodium Channels in Aδ- and C-Fiber Conduction and Synaptic Transmission. Journal of Neurophysiology. 2008 Feb;99(2):617–28.
dcterms.referencesAulestia-Viera PV, Braga MM, Borsatti MA. The effect of adjusting the pH of local anaesthetics in dentistry: a systematic review and meta-analysis. Int Endod J. 2018 Aug;51(8):862–76.
dcterms.referencesZhou S, Huang G, Chen G. Synthesis and biological activities of local anesthetics. RSC Adv. 2019;9(70):41173–91.
dcterms.referencesWadlund DL. Local Anesthetic Systemic Toxicity. AORN Journal. 2017 Nov;106(5):367–77.
dcterms.referencesBina B, Hersh EV, Hilario M, Alvarez K, McLaughlin B. True Allergy to Amide Local Anesthetics: A Review and Case Presentation. Anesthesia Progress. 2018 Jun 1;65(2):119–23.
dcterms.referencesBaniceru M, Manda CV, Popescu SM. Chromatographic analysis of local anesthetics in biological samples. Journal of Pharmaceutical and Biomedical Analysis. 2011 Jan;54(1):1–12.
dcterms.referencesBarletta M, Reed R. Local Anesthetics. Veterinary Clinics of North America: Small Animal Practice. 2019 Nov;49(6):1109–25.
dcterms.referencesNoble KA. Local Anesthesia Toxicity and Lipid Rescue. Journal of PeriAnesthesia Nursing. 2015 Aug;30(4):321–35.
dcterms.referencesCatterall WA, Lenaeus MJ, Gamal El-Din TM. Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels. Annu Rev Pharmacol Toxicol. 2020 Jan 6;60(1):133–54.
dcterms.referencesde Lera Ruiz M, Kraus RL. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J Med Chem. 2015 Sep 24;58(18):7093–118.
dcterms.referencesSuwanchai, A., Theerapiboon, U., Chattipakorn, N., & Chattipakorn, S. C. Expression of sodium channels in dental pulp. Asian Biomedicine,. 2011;5(6):735–46.
dcterms.referencesGamal El-Din TM, Lenaeus MJ, Zheng N, Catterall WA. Fenestrations control resting-state block of a voltage-gated sodium channel. Proc Natl Acad Sci USA. 2018 Dec 18;115(51):13111–6.
dcterms.referencesAhuja S, Mukund S, Deng L, Khakh K, Chang E, Ho H, et al. Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science. 2015 Dec 18;350(6267):aac5464–aac5464.
dcterms.referencesBalasco M, Drum M, Reader A, Nusstein J, Beck M. Buffered Lidocaine for Incision and Drainage: A Prospective, Randomized Double-blind Study. Journal of Endodontics. 2013 Nov;39(11):1329–34.
dcterms.referencesTanaka E, Yoshida K, Kawaai H, Yamazaki S. Lidocaine Concentration in Oral Tissue by the Addition of Epinephrine. Anesthesia Progress. 2016 Mar 1;63(1):17–24.
dcterms.referencesMoura SU. Análise da Formação de Carbonato de Cálcio pela Reação do Hidróxido de Cálcio com Diferentes Veículos Anestésicos. Pesq Bras Odontoped Clin Integr. 2008 Nov 30;8(3):271–6.
dcterms.referencesWisedchaisri G, Tonggu L, McCord E, Gamal El-Din TM, Wang L, Zheng N, et al. Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell. 2019 Aug;178(4):993-1003.e12.
dcterms.referencesHenry MA, Hargreaves KM. Peripheral Mechanisms of Odontogenic Pain. Dental Clinics of North America. 2007 Jan;51(1):19–44.
dcterms.referencesJurcakova D, Ru F, Kollarik M, Sun H, Krajewski J, Undem BJ. Voltage-Gated Sodium Channels Regulating Action Potential Generation in Itch-, Nociceptive- , and Low-Threshold Mechanosensitive Cutaneous C-Fibers. Mol Pharmacol. 2018 Sep;94(3):1047–56.
dcterms.referencesChavarría BD, Rodríguez WL, Pozos GAJ. Comprendiendo y combatiendo el fracaso anestésico en odontología. Rev ADM. 2015;72(6):290–8.
dcterms.referencesChavarría BD, Rodríguez WL, Pozos GAJ. Comprendiendo y combatiendo el fracaso anestésico en odontología. Rev ADM. 2015;72(6):290–8.
dcterms.referencesHernndez-Santoyo A, Yair A, Altuzar V, Vivanco-Cid H, Mendoza-Barrer C. Protein-Protein and Protein-Ligand Docking. In: Ogawa T, editor. Protein Engineering - Technology and Application [Internet]. InTech; 2013 [cited 2021 Jun 23]. Available from: http://www.intechopen.com/books/protein-engineeringtechnology-and-application/protein-protein-and-protein-ligand-docking
dcterms.referencesPagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017 Apr;9(2):91–102.
dcterms.referencesPinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. IJMS. 2019 Sep 4;20(18):4331.
dcterms.referencesForli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016 May;11(5):905–19.
dcterms.referencesKalyaanamoorthy S, Chen Y-PP. Structure-based drug design to augment hit discovery. Drug Discovery Today. 2011 Sep;16(17–18):831–9.
dcterms.referencesTrott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;NA-NA.
dcterms.referencesPereira JC, Caffarena ER, dos Santos CN. Boosting Docking-Based Virtual Screening with Deep Learning. J Chem Inf Model. 2016 Dec 27;56(12):2495– 506.
dcterms.referencesLozano-Aponte J. ¿Qué sabe Ud. Acerca de... Dinámica Molecular? Revista Mexicana de Ciencias Farmacéuticas. 45(1):86–8.
dcterms.referencesHollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron. 2018 Sep;99(6):1129–43.
dcterms.referencesBUEREN-CALABUIG JA. Dinámica molecular. 2014;1066360. Available from: URL https://doi. org/10.5281/zenodo
dcterms.referencesKim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016 Jan 4;44(D1):D1202–13.
dcterms.referencesContreras-Puentes N, Mercado-Camargo J, Alvíz-Amador A. In silico study of ginsenoside analogues as possible BACE1 inhibitors involved in Alzheimer’s disease. F1000Res. 2019 Jul 23;8:1169.
dcterms.referencesWang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, et al. Structural Basis for Molecular Recognition at Serotonin Receptors. Science. 2013 May 3;340(6132):610–4.
dcterms.referencesWaterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research. 2018 Jul 2;46(W1):W296–303.
dcterms.referencesPettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera?A visualization system for exploratory research and analysis. J Comput Chem. 2004 Oct;25(13):1605–12.
dcterms.referencesMorris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009 Dec;30(16):2785–91.
dcterms.referencesJendele L, Krivak R, Skoda P, Novotny M, Hoksza D. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Research. 2019 Jul 2;47(W1):W345–9.
dcterms.referencesTian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Research. 2018 Jul 2;46(W1):W363–7.
dcterms.referencesHussein HA, Borrel A, Geneix C, Petitjean M, Regad L, Camproux A-C. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res. 2015 Jul 1;43(W1):W436–42.
dcterms.referencesSchrödinger, LLC. The PyMOL Molecular Graphics System. 2019.
dcterms.referencesLaskowski RA, Swindells MB. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J Chem Inf Model. 2011 Oct 24;51(10):2778–86.
dcterms.referencesCase DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005 Dec;26(16):1668–88.
dcterms.referencesAlviz-Amador A, Galindo-Murillo R, Pérez-González H, Rodríguez-Cavallo E, Vivas-Reyes R, Méndez-Cuadro D. Effect of 4-HNE Modification on ZU5-ANK Domain and the Formation of Their Complex with β-Spectrin: A Molecular Dynamics Simulation Study. J Chem Inf Model. 2020 Feb 24;60(2):805–20.
dcterms.referencesRoe DR, Cheatham TE. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput. 2013 Jul 9;9(7):3084–95.
dcterms.referencesDaina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 May;7(1):42717.
dcterms.referencesYang H, Lou C, Sun L, Li J, Cai Y, Wang Z, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Wren J, editor. Bioinformatics. 2019 Mar 15;35(6):1067–9.
dcterms.referencesLagunin A, Zakharov A, Filimonov D, Poroikov V. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction. Mol Inf. 2011 Mar 14;30(2–3):241– 50.
dcterms.referencesJohnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Research. 2008 May 19;36(Web Server):W5–9.
dcterms.referencesBordogna A, Pandini A, Bonati L. Predicting the accuracy of protein-ligand docking on homology models. J Comput Chem. 2011 Jan 15;32(1):81–98.
dcterms.referencesMak K-K, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today. 2019 Mar;24(3):773–80.
dcterms.referencesPayandeh J, Scheuer T, Zheng N, Catterall WA. The crystal structure of a voltage-gated sodium channel. Nature. 2011 Jul;475(7356):353–8.
dcterms.referencesBuyan A, Sun D, Corry B. Protonation state of inhibitors determines interaction sites within voltage-gated sodium channels. Proc Natl Acad Sci USA. 2018 Apr 3;115(14):E3135–44.
dcterms.referencesDeng N, Dai W, Levy RM. How Kinetics within the Unfolded State Affects Protein Folding: An Analysis Based on Markov State Models and an Ultra-Long MD Trajectory. J Phys Chem B. 2013 Oct 24;117(42):12787–99.
dcterms.referencesGarcia AE, Onuchic JN. Folding a protein in a computer: An atomic description of the folding/unfolding of protein A. Proceedings of the National Academy of Sciences. 2003 Nov 25;100(24):13898–903.
dcterms.referencesSargsyan K, Grauffel C, Lim C. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. J Chem Theory Comput. 2017 Apr 11;13(4):1518–24.
dcterms.referencesDong Y, Liao M, Meng X, Somero GN. Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proc Natl Acad Sci USA. 2018 Feb 6;115(6):1274–9.
dcterms.referencesDurham E, Dorr B, Woetzel N, Staritzbichler R, Meiler J. Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J Mol Model. 2009 Sep;15(9):1093–108.
dcterms.referencesJunaid Md, Alam MdJ, Hossain MdK, Halim MA, Ullah MO. Molecular docking and dynamics of Nickel-Schiff base complexes for inhibiting β-lactamase of Mycobacterium tuberculosis. In Silico Pharmacol. 2018 Dec;6(1):6.
dcterms.referencesLobanov MYu, Bogatyreva NS, Galzitskaya OV. Radius of gyration as an indicator of protein structure compactness. Mol Biol. 2008 Aug;42(4):623–8.
dcterms.referencesLipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 1997 Jan;23(1–3):3–25.
dcterms.referencesKuroda Y, Ogawa M, Nasu H, Terashima M, Kasahara M, Kiyama Y, et al. Locations of local anesthetic dibucaine in model membranes and the interaction between dibucaine and a Na+ channel inactivation gate peptide as studied by 2H- and 1H-NMR spectroscopies. Biophysical Journal. 1996 Sep;71(3):1191– 207.
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de Grado Cribado Virtual Isabella Manzur.pdf
Tamaño:
4.13 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: