Datos de Contacto
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...
dc.contributor.advisor | Alviz Amador, Antistio Anibal | |
dc.contributor.advisor | Duran Lengua, Marlene | |
dc.contributor.advisor | Contreras Puentes, Neyder | |
dc.contributor.author | Medina Barandica, Jeffry Josue | |
dc.date.accessioned | 2023-05-08T14:50:57Z | |
dc.date.available | 2023-05-08T14:50:57Z | |
dc.date.issued | 2022 | |
dc.description.abstract | El surgimiento del nuevo virus SARS-CoV-2 que provoca la enfermedad denominada COVID-19 ha generado una pandemia sumergiendo al mundo en una crisis sanitaria. El proceso de infección se desencadena por la unión directa del dominio de unión al receptor (RBD) de la proteína espiga (S) del SARS-CoV-2 a la enzima convertidora de angiotensina 2 (ECA2) de la célula huésped. En el presente estudio se realizó la aplicación de técnicas de cribado virtual por acoplamiento molecular, dinámica molecular, cálculo de energía libre usando el método de GBSA, predicción de propiedades de similitud de fármacos, farmacocinéticas y toxicológicas de diversos ligandos que interactúan con el complejo RBD-ECA2. Se identificaron los ligandos Radotinib, Hinokiflavona y Ginkgetina como potenciales desestabilizadores de la interacción RBD-ECA2, que podrían producir su efecto farmacológico mediante la interacción en un sitio alostérico de la ECA2, con valores de energía de afinidad de -10.2 ± 0.1, -9.8 ± 0.0 y -9.4 ± 0.0 Kcal/mol que denotan una fuerte afinidad al receptor. El complejo con la Hinokiflavona presentó la interacción con mayor estabilidad conformacional y rigidez de la simulación de dinámica, además, también obtuvo la mejor energía libre de unión de las 3 moléculas con una energía de -215.86 Kcal/mol. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Farmacología | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://hdl.handle.net/11227/16315 | |
dc.identifier.uri | http://dx.doi.org/10.57799/11227/11650 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Cartagena | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.publisher.program | Maestría en Farmacología | spa |
dc.rights | Derechos Reservados - Universidad de Cartagena, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.armarc | Enfermedades respiratorias | |
dc.subject.armarc | COVID-19 (Enfermedad) | |
dc.subject.armarc | Enfermedad por el virus COVID-19 | |
dc.title | Estudio in silico para la identificación de potenciales desestabilizadores de la interacción del RBD la de proteína espiga del SARS-COV-2 y la ECA2 humana | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.references | Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARSCoV-2 in human airway cells. Life Sci Alliance. 2020; 3(9): e202000786. | spa |
dcterms.references | Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, et al. Characterization of a novel coronavirus associated with severe acute respiratory sindrome. Science. 2003; 300 (5624):1394-1399. | spa |
dcterms.references | Hulswit RJ, de Haan CA, Bosch BJ. Coronavirus Spike Protein and Tropism Changes. Adv Virus Res. 2016; 96: 29-57. | spa |
dcterms.references | Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020; 17 (6):613-620. | spa |
dcterms.references | Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020; 26 (4): 450-452 | spa |
dcterms.references | Li H, Liu SM, Yu 2 XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020; 55 (5): 105951. | spa |
dcterms.references | Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020; 27 (3): 325-328. | spa |
dcterms.references | Hui DS, I Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020; 91: 264–266. | spa |
dcterms.references | Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181 (2): 271-280. | spa |
dcterms.references | Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 2017; 8:15092. | spa |
dcterms.references | Le TT, Andreadakis Z, Kumar A, Roman RG, Tollefsen, Saville M, et al. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 2020; 19: 305-306 | spa |
dcterms.references | Zahradník J, Marciano S, Shemesh M, Zoler E, Harari D, Chiaravalli J. SARSCoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nature microbiology. 2021; 6: 1188-1198. | spa |
dcterms.references | Dal-Ré R, Becker SL, Bottieau E, Holm S. Availability of oral antivirals against SARS-CoV-2 infection and the requirement for an ethical prescribing approach. The Lancet Infectious Diseases [Internet]. 2022 | spa |
dcterms.references | Teli DM, Shah MB, Chhabria MT. In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19. Frontiers in Molecular Biosciences. 2019; 7: 599079. | spa |
dcterms.references | Oprea TI, Matter H. Integrating virtual screening in lead discovery. Curr. Opin. Chem. Biol. 2004; 8: 349-358. | spa |
dcterms.references | Guido RVC, Oliva G, Andricopulo AD. Virtual screening and its integration with modern drug design technologies. Curr. Med.Chem. 2008; 15: 37-46. | spa |
dcterms.references | Sousa SF, Fernandes PA, Ramos MJ. Protein-ligand docking: current status and future challenges. Proteins. 2006; 65: 15–26. | spa |
dcterms.references | Sousa SF, Cerqueira N MFSA, A Fernandes P, Joao-Ramos M. Virtual screening in drug design and development. Comb Chem High Throughput Screen. 2010; 13: 442–453. | spa |
dcterms.references | Chen YC. Beware of docking! Trends Pharmacol Sci. 2015; 36: 78–95. | spa |
dcterms.references | Doerr S, Harvey M, Noe F, De Fabritiis G. HTMD: High-throughput molecular dynamics for molecular discovery. J Chem Theory Comput. 2016; 12: 1845– 1852 | spa |
dcterms.references | Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev. 2006; 26: 531–568. | spa |
dcterms.references | Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID19. Nature Reviews. 2021; 19: 141-154. | spa |
dcterms.references | Kumar S, Nyodu R, Maurya VK, Saxena SK. Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In: Saxena, S. (eds) Coronavirus Disease 2019 (COVID-19). Medical Virology: From Pathogenesis to Disease Control. Springe. 2020, Singapore | spa |
dcterms.references | Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews. 2022; 23: 3-20. | spa |
dcterms.references | Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell. Infect. Microbiol. 2020; 10: 587269. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...