Datos de Contacto
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...
dc.contributor.advisor | Yasnot Acosta, María Fernanda (Director/a) | |
dc.contributor.advisor | Venegas Hermosilla, Juan (Asesor/a) | |
dc.contributor.author | Orjuela González, Lorena Isabel | |
dc.date.accessioned | 2020-11-24T15:24:16Z | |
dc.date.available | 2020-11-24T15:24:16Z | |
dc.date.issued | 2019 | |
dc.description | Tesis (Doctorado en Medicina Tropical). -- Universidad de Cartagena. Facultad de Medicina, Doctorado Medicina Tropical, 2019 | es |
dc.description.abstract | Se realizaron evaluaciones de resistencia a insecticidas en los tres principales vectores de malaria en Colombia, An. albimanus, An. nuneztovari s.l. y An. darlingi en 11 localidades de los departamentos de Antioquia, Chocó, Córdoba, Valle del Cauca y Norte de Santander. Las evaluaciones de resistencia se hicieron siguiendo la metodología de botellas impregnadas propuesta por el CDC. En cada una de las localidades se expusieron mínimo 100 mosquitos a las concentraciones diagnóstico de cada uno de los insecticidas. Los insecticidas evaluados fueron los piretroides: deltametrina (12,5 µg/ml), lambdacialotrina (12,5 µg/ml), alfacipermetrina (12,5 µg/ml), permetrina (21,5 µg/ml) y el organoclorado DDT (100ug/ml). Los resultados fueron analizados teniendo en cuenta los criterios de mortalidad propuestos por los CDC y de acuerdo con estos criterios, An. darlingi de las localidades de Bocas de Pune, Tagachí y Encharcazón en Chocó, An. nuneztovari s.l. de las localidades de Santa Rosa en Norte de Santander y Córdoba en Valle del Cauca y An. albimanus de la localidad de Panguí en Chocó evidenciaron resultados de resistencia y posible resistencia a insecticidas piretorides y DDT. En las localidades donde se evidenció resistencia, se realizaron evaluaciones de intensidad de la resistencia usando la metodología de botellas impregnadas propuesta por el CDC y se evidenció que An. darlingi de Bocas de Puné y Tagachi en Chocó, An. nuneztovari s.l de Córdoba en Valle del Cauca y An. albimanus de Panguí en Chocó presentaban una intensidad de resistencia baja. Debido a que en An. darlingi de Tagachí, Encharcazón y Bocas de Pune, en An. nuneztovari s.l. de Córdoba y Santa Rosa y en An. albimanus de Panguí se evidenció resistencia a piretroides y/o DDT y teniendo en cuenta que estas dos clases de insecticidas comparten el mismo sitio de acción, el canal de sodio dependiente de voltaje, se amplificó y secuenció el fragmento del gen que codifica para el segmento seis del dominio dos (S6II) del canal de sodio dependiente de voltaje en 130 muestras de An. albimanus, An. darlingi y An. nuneztovari s.l. 62 mosquitos sobrevivientes a las dosis y tiempo diagnóstico y 68 mosquitos muertos a la dosis y tiempo diagnóstico de alfacipermetrina, deltametrina, lambdacialotrina, permetrina y DDT, para identificar si existían mutaciones en los codones 1010, 1013 y 1014 en donde previamente se han reportado mutaciones asociadas con la resistencia a piretroides y DDT en otros vectores de malaria en el mundo y no se detectaron mutaciones, lo que sugiere que otros mecanismos de resistencia diferentes a kdr están involucrados en la baja intensidad de resistencia a insecticidas piretroides y DDT detectada en los tres principales vectores de malaria en Colombia. | es |
dc.format.medium | application/pdf | es |
dc.identifier.citation | TD615.532 / O49 | es |
dc.identifier.uri | https://hdl.handle.net/11227/11219 | |
dc.identifier.uri | http://dx.doi.org/10.57799/11227/148 | |
dc.language.iso | spa | es |
dc.publisher | Universidad de Cartagena | es |
dc.rights.access | openAccess | es |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | es |
dc.subject | Malaria - Investigaciones | es |
dc.subject | Medicina alternativa | es |
dc.subject | Enfermedades - Tratamiento | es |
dc.subject | Insecticidas - Residuos | es |
dc.subject | Medicina tropical | es |
dc.title | Evaluación de la resistencia a los insecticidas piretroides y DDT en los principales vectores de malaria de Colombia y su asociación con mutaciones en el canal de sodio dependiente de voltaje | es |
dc.type | Trabajo de grado - Doctorado | spa |
dcterms.references | WHO. World Malaria Report 2018. Geneva: World Health Organization, 2018. 2. INS. Informe evento Malaria a periodo epidemiológico XIII-2018. Colombia: Instituto Nacional de Salud, 2019 | |
dcterms.references | Montoya-Lerma J, Solarte YA, Giraldo-Calderon GI, Quinones ML, Ruiz-Lopez F, Wilkerson RC, et al. Malaria vector species in Colombia: a review. Memorias do Instituto Oswaldo Cruz. 2011;106 Suppl 1:223-38. | |
dcterms.references | Olano VA, Brochero HL, Sáenz R, Quiñones ML, Molina JA. Mapas preliminares de la distribución de especies de Anopheles vectores de malaria en Colombia. Biomédica. 2001;21:402-8. 5. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization, 2016. | |
dcterms.references | Fonseca-González I, Quiñones ML. Resistencia a insecticidas en mosquitos (Diptera: Culicidae): ecanismos, detección y vigilancia en salud pública. Revista Colombiana de Entomologia. 2005;31(2):107- 15 | |
dcterms.references | Ranson H, N'Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends in parasitology. 2011;27(2):91- 8. | |
dcterms.references | Czeher C, Labbo R, Arzika I, Duchemin JB. Evidence of increasing Leu-Phe knockdown resistance mutation in Anopheles gambiae from Niger following a nationwide long-lasting insecticide-treated nets implementation. Malaria journal. 2008;7:189. | |
dcterms.references | Djegbe I, Boussari O, Sidick A, Martin T, Ranson H, Chandre F, et al. Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa. Malaria journal. 2011;10:261. | |
dcterms.references | Enayati AA, Vatandoost H, Ladonni H, Townson H, Hemingway J. Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi. Med Vet Entomol. 2003;17(2):138-44. | |
dcterms.references | Gayathri V, Murthy PB. Reduced susceptibility to deltamethrin and kdr mutation in Anopheles stephensi Liston, a malaria vector in India. Journal of the American Mosquito Control Association. 2006;22(4):678-88. | |
dcterms.references | Ibrahim SS, Mukhtar MM, Datti JA, Irving H, Kusimo MO, Tchapga W, et al. Temporal escalation of Pyrethroid Resistance in the major malaria vector Anopheles coluzzii from Sahelo-Sudanian Region of northern Nigeria. Scientific reports. 2019;9(1):7395. | |
dcterms.references | Jones CM, Liyanapathirana M, Agossa FR, Weetman D, Ranson H, Donnelly MJ, et al. Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(17):6614-9. | |
dcterms.references | Karunaratne SH, Hawkes NJ, Perera MD, Ranson H, Hemingway J. Mutated sodium channel genes and elevated monooxygenases are found in pyrethroid resistant populations of Sri Lankan malaria vectors. Pestic Biochem Physiol. 2007; 88(1):108–13 | |
dcterms.references | Kerah-Hinzoumbe C, Peka M, Nwane P, Donan-Gouni I, Etang J, Same-Ekobo A, et al. Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa. Malaria journal. 2008;7:192 | |
dcterms.references | Kim H, Baek JH, Lee WJ, Lee SH. Frequency detection of pyrethroid resistance allele in Anopheles sinensis populations by real-time PCR amplification of specific allele (rtPASA). Pestic Biochem Physiol. 2007;87(1):54–61. | |
dcterms.references | Kulkarni MA, Rowland M, Alifrangis M, Mosha FW, Matowo J, Malima R, et al. Occurrence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in Anopheles arabiensis populations in Tanzania, detected by a simplified high-throughput SSOP-ELISA method. Malaria journal. 2006;5:56. | |
dcterms.references | Lol JC, Castellanos ME, Liebman KA, Lenhart A, Pennington PM, Padilla NR. Molecular evidence for historical presence of knock-down resistance in Anopheles albimanus, a key malaria vector in Latin America. Parasites & vectors. 2013;6:268. | |
dcterms.references | Luleyap HU, Alptekin D, Kasap H, Kasap M. Detection of knockdown resistance mutations in Anopheles sacharovi (Diptera: Culicidae) and genetic distance with Anopheles gambiae (Diptera: Culicidae) using cDNA sequencing of the voltage-gated sodium channel gene. Journal of medical entomology. 2002;39(6):870-4. | |
dcterms.references | Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect molecular biology. 1998;7(2):179-84. | |
dcterms.references | Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, et al. High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north western Tanzania. Malaria journal. 2013;12:149. | |
dcterms.references | Protopopoff N, Verhaeghen K, Van Bortel W, Roelants P, Marcotty T, Baza D, et al. A significant increase in kdr in Anopheles gambiae is associated with an intensive vector control intervention in Burundi highlands. Tropical medicine & international health : TM & IH. 2008;13(12):1479-87. | |
dcterms.references | Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae ssociated with resistance to DDT and pyrethroids. Insect molecular biology. 2000;9(5):491-7. | |
dcterms.references | Singh OP, Dykes CL, Das MK, Pradhan S, Bhatt RM, Agrawal OP, et al. Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India. Malaria journal. 2010;9:146. | |
dcterms.references | Singh OP, Dykes CL, Lather M, Agrawal OP, Adak T. Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection. Malaria journal. 2011;10:59. | |
dcterms.references | Syafruddin D, Hidayati AP, Asih PB, Hawley WA, Sukowati S, Lobo NF. Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia. Malaria journal. 2010;9:315. | |
dcterms.references | Tan WL, Li CX, Wang ZM, Liu MD, Dong YD, Feng XY, et al. First detection of multiple knockdown resistance (kdr)-like mutations in voltage-gated sodium channel using three new genotyping methods in Anopheles sinensis from Guangxi Province, China. Journal of medical entomology. 2012;49(5):1012-20. | |
dcterms.references | Temu EA, Maxwell C, Munyekenye G, Howard AF, Munga S, Avicor SW, et al. Pyrethroid resistance in Anopheles gambiae, in Bomi County, Liberia, compromises malaria vector control. PloS one. 2012;7(9):e44986 | |
dcterms.references | Verhaeghen K, Van Bortel W, Roelants P, Backeljau T, Coosemans M. Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis. Malaria journal. 2006;5:16. | |
dcterms.references | Verhaeghen K, Van Bortel W, Trung HD, Sochantha T, Keokenchanh K, Coosemans M. Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populations of the Mekong region. Parasites & vectors. 2010;3(1):59. | |
dcterms.references | CDC. Guidelines for evaluating insecticide resistance in vectors using the CDC bottle bioassay: Insert 2. United States: Centers for Disease Control and Prevention, 2014. | |
dcterms.references | WHO. Global plan for insecticide resistance management in malaria vectors (GPIRM). Geneva: World Health Organization, 2012. | |
dcterms.references | Fonseca-González I. Estatus de la resistencia a insecticidas de los vectores primarios de malaria y dengue en Antioquia, Chocó, Norte de Santander y Putumayo, Colombia: Universidad de Antioquia; 2008. | |
dcterms.references | Gonzalez JJ. Informe final vigilancia de susceptibilidad a insecticidas de Anopheles (Nyssorhynchus) darlingi, An. (N.) nuneztovari y An. (N.) albimanus en localidades centinelas de los departamentos de Antioquia, Cauca, Choco, Córdoba y Valle del Cauca. Año 2009 - 2014 [Internet]; 2015 [cited March 18 2016]. Podcast. Available from: http://www.ins.gov.co/temas-de interes/Memorias%20Malaria/10.Resistencia%20a%20insecticidas.pdf | |
dcterms.references | Suarez MF, Quinones ML, Palacios JD, Carrillo A. First record of DDT resistance in Anopheles darlingi. Journal of the American Mosquito Control Association. 1990;6(1):72-4 | |
dcterms.references | Fonseca-Gonzalez I, Cardenas R, Quinones ML, McAllister J, Brogdon WG. Pyrethroid and organophosphates resistance in Anopheles (N.) nuneztovari Gabaldon populations from malaria endemic areas in Colombia. Parasitology research. 2009;105(5):1399-409. | |
dcterms.references | Fonseca-Gonzalez I, Quinones ML, McAllister J, Brogdon WG. Mixed-function oxidases and esterases associated with cross-resistance between DDT and lambda-cyhalothrin in Anopheles darlingi Root 1926 populations from Colombia. Memorias do Instituto Oswaldo Cruz. 2009;104(1):18-26. | |
dcterms.references | INS. Colombia: Informe final vigilancia de susceptibilidad a insecticidas de Anopheles (Nyssorhynchus) darlingi, An. (N.) nuneztovariy An. (N.) albimanus en localidades centinelas de los departamentos de Antioquia, Cauca, Choco, Córdoba y Valle del Cauca. Año 2009 – 2014 [Internet]. Bogotá: Instituto Nacional de Salud; 2014 [cited Agosto 2016]. Podcast. Available from: http://www.ins.gov.co/lineas de-accion/Red-Nacional laboratorios/Referente%20Nacional%20de%20la%20Vigilancia%20de%20la%20resisten/Informe%20VR I %20%202004-2014.pdf | |
dcterms.references | WHO. World Malaria Report 2017. Geneva: Geneva: World Health Organization, 2017. | |
dcterms.references | WHO. Global report on insecticide resistance in malaria vectors: 2010-2016. Geneva: World Health Organization, 2018. | |
dcterms.references | Rodriguez JC, Uribe GA, Araujo RM, Narvaez PC, Valencia SH. Epidemiology and control of malaria in Colombia. Memorias do Instituto Oswaldo Cruz. 2011;106 Suppl 1:114-22 | |
dcterms.references | Quinones ML, Ruiz F, Calle DA, Harbach RE, Erazo HF, Linton YM. Incrimination of Anopheles (Nyssorhynchus) rangeli and An. (Nys.) oswaldoi as natural vectors of Plasmodium vivax in Southern Colombia. Memorias do Instituto Oswaldo Cruz. 2006;101(6):617-23. | |
dcterms.references | Orjuela LI, Herrera M, Erazo H, Quinones ML. [Anopheles species present in the department of Putumayo and their natural infectivity with Plasmodium]. Biomedica. 2013;33(1):42-52. | |
dcterms.references | Escovar JE, Gonzalez R, Quinones ML. Anthropophilic biting behaviour of Anopheles (Kerteszia) neivai Howard, Dyar & Knab associated with Fishermen's activities in a malaria-endemic area in the Colombian Pacific. Memorias do Instituto Oswaldo Cruz. 2013;108(8):1057-64. | |
dcterms.references | Orjuela LI, Ahumada ML, Avila I, Herrera S, Beier JC, Quinones ML. Human biting activity, spatial temporal distribution and malaria vector role of Anopheles calderoni in the southwest of Colombia. Malaria journal. 2015;14:256. | |
dcterms.references | Quiñones ML, Suarez MF, Rodriguez A, Fleming GA, Galvis LE. Comportamiento de Anopheles (kerteszia) lepidotus Zavortink, 1973, y su incriminación como posible vector de malaria en el departamento del Tolima, Colombia. Biomédica. 1984;4:5-13 | |
dcterms.references | WHO. Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. Geneva: World Health Organization, 2006. | |
dcterms.references | Hill J, Lines J, Rowland M. Insecticide-treated nets. Advances in parasitology. 2006;61:77-128. 50. WHO. WHO recommended insecticides for indoor residual spraying against malaria vectors. Geneva: World Health Organization, 2018 September 21 2018. Report No. | |
dcterms.references | WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization, 2013. | |
dcterms.references | Organization WH. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes Geneva: World Health Organization 2016. | |
dcterms.references | Stankovic S, Kostic M. Role of Carboxylesterases (ALiE) Regarding Resistance to Insecticides: Case Study of Colorado Potato Beetle (Leptinotarsa decemlineata Say). 2017. In: Insect Physiology and Ecology [Internet]. [159-78]. Available from: https://www.intechopen.com/books/insect-physiology-and-ecology/role of-carboxylesterases-alie-regarding-resistance-to-insecticides-case-study-of-colorado-potato-be. | |
dcterms.references | Panini M, Manicardi GC, Moores GD, Mazzoni E. An overview of the main pathways of metabolic resistance in insects. Invertebrate Survival Journal. 2016;13:326-35. | |
dcterms.references | Fournier D, Bride JM, Poirie M, Berge JB, Plapp FW, Jr. Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. The Journal of biological chemistry. 1992;267(3):1840-5. | |
dcterms.references | Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annual review of entomology. 2000;45(1):371-91. | |
dcterms.references | Corbel V, N’Guessan R. Distribution, mechanisms, impact and management of insecticide resistance in malaria vectors: a pragmatic review. Anopheles mosquitoes-New insights into malaria vectors: IntechOpen; 2013. | |
dcterms.references | Davies T, Field L, Usherwood P, Williamson M. DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB life. 2007;59(3):151-62. | |
dcterms.references | Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS, Black WCt. Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends in parasitology. 2009;25(5):213-9. 60. Dong K. Insect sodium channels and insecticide resistance. Invertebrate Neuroscience. 2007;7(1):17. | |
dcterms.references | Silver KS, Du Y, Nomura Y, Oliveira EE, Salgado VL, Zhorov BS, et al. Voltage-Gated Sodium Channels as Insecticide Targets. Adv In Insect Phys. 2014;46:389-433. | |
dcterms.references | Schleier III JJ, Peterson RK. Pyrethrins and pyrethroid insecticides. Green trends in insect control. 2011;94:131 | |
dcterms.references | Davies TG, Field LM, Usherwood PN, Williamson MS. A comparative study of voltage-gated sodium channels in the Insecta: implications for pyrethroid resistance in Anopheline and other Neopteran species. Insect molecular biology. 2007;16(3):361-75. | |
dcterms.references | O'Reilly AO, Khambay BP, Williamson MS, Field LM, Wallace BA, Davies TG. Modelling insecticide binding sites in the voltage-gated sodium channel. The Biochemical journal. 2006;396(2):255-63. | |
dcterms.references | Du Y, Nomura Y, Satar G, Hu Z, Nauen R, He SY, et al. Molecular evidence for dual pyrethroid receptor sites on a mosquito sodium channel. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(29):11785-90. | |
dcterms.references | Quinones ML, Norris DE, Conn JE, Moreno M, Burkot TR, Bugoro H, et al. Insecticide Resistance in Areas Under Investigation by the International Centers of Excellence for Malaria Research: A Challenge for Malaria Control and Elimination. Am J Trop Med Hyg. 2015;93(3 Suppl):69-78. | |
dcterms.references | Brogdon WG, McAllister JC, Corwin AM, Cordon-Rosales C. Independent selection of multiple mechanisms for pyrethroid resistance in Guatemalan Anopheles albimanus (Diptera: Culicidae). J Econ Entomol. 1999;92(2):298-302. | |
dcterms.references | Cáceres L, Rovira J, García A, Torres R. Determinación de la resistencia a insecticidas organofosforados, carbamatos y piretroides en tres poblaciones de Anopheles albimanus (Diptera: Culicidae) de Panamá. Biomédica. 2011;31:419-27. | |
dcterms.references | Dzul FA, Penilla P, Rodríguez AD. Susceptibilidad y mecanismos de resistencia a insecticidas en Anopheles albimanus del sur de la Península de Yucatán, México. Salud Publica Mex. 2007;49:302-11. | |
dcterms.references | Vargas F, Córdoba O, Alvarado A. Determinación de la resistencia a insecticidas en Aedes aegypti, Anopheles albimanus y Lutzomyia peruensis procedentes del norte peruano. Rev Peru Med Exp Salud Publica. 2006;23:259-64. | |
dcterms.references | Molina D, Figueroa LE. Resistencia metabólica a insecticidas organofosforados en Anopheles aquasalis Curry 1932, municipio Libertador, estado Sucre, Venezuela. Biomedica. 2009;29:604-15. | |
dcterms.references | Santacoloma L, Tibaduiza T, Gutierrrez M, Brochero H. [Susceptibility to insecticides of Anopheles darlingi Root 1840, in two locations of the departments of Santander and Caqueta, Colombia]. Biomedica. 2012;32 Suppl 1:22-8. | |
dspace.entity.type | Publication |
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...