Datos de Contacto
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...
dc.contributor.advisor | Acevedo Caballero, Nathalie | |
dc.contributor.author | Ramírez Cruz, Jonathan Camilo | |
dc.date.accessioned | 2022-05-12T21:41:17Z | |
dc.date.available | 2022-05-12T21:41:17Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Las infecciones por geohelmintos son un problema de salud pública que afecta a países en vía de desarrollo como el nuestro, dado que necesitan de unas condiciones de poca salubridad y un ambiente propicio para su contagio, por lo que afecta principalmente a la población más vulnerable, la cual es un porcentaje importante que se enmarca principalmente en zonas rurales, en las cuales está enfocado este estudio. Estas infecciones traen consigo anemia, retardo en el desarrollo físico y cognitivo, pero adicionalmente por el tipo de respuesta que inducen, la cual está mediada por citoquinas de tipo 2 como la IL-5 y la IL-13, se cree puede afectar biomarcadores de otras enfermedades, cuya fisiopatología también está basada en una respuesta de tipo 2, como lo son las alergias. Entre los marcadores que se alteran bajo estas citoquinas, está el conteo de eosinófilos en sangre periférica y la fracción exhalada de óxido nítrico (FeNO). El objetivo de este trabajo fue realizar un estudio exploratorio sobre si las infecciones por helmintos pueden alterar los niveles de FeNO. Se reclutaron niños entre 6 a 14 años (n=95), de áreas rurales del departamento de Bolívar, Colombia. Donde se les realizó, previo a explicación y firma de consentimiento informado, los análisis de coprológico, toma de muestras de sangre para hemograma y medición de anticuerpos mediante ELISA, y medición de los valores de FeNO. Los niños se clasificaron según el coproanálisis en niños parasitados (n=67) y niños no parasitados (n=28). Se les realizó un cuestionario para indagar sobre sus condiciones de vida y antecedentes médicos, y la toma de exámenes previamente mencionados. Se encontró que la mayoría de los niños estaban infectados con protozoos (n=51), también se encontraron niños infectados con helmintos (n=22) y niños sin parasitosis, que se consideraron controles no parasitados (n=28). El helminto más prevalente fue Trichuris trichiura (n=21), seguido de Ancylostoma duodenale (n=3), Hymenolepis nana (n=3) y Ascaris lumbricoides (n=2). Se observó que hubo correlación débil pero significativa entre los niveles de FeNO y el conteo de eosinófilos en la población general (Spearman rho=0.21, P=0.04), sin embargo, no hubo diferencia significativa en los niveles de FeNO entre niños parasitados y no parasitados (P=0.33), tampoco entre los niños infectados con helmintos y no infectados (P=0.98) y de igual manera no hubo una diferencia significativa entre infectados por protozoos y no infectados (P=0.26). No se encontró correlación entre los niveles de IgE para ABA-1 y los niveles de FeNO de los niños (Spearman rho=0.081, P=0.46), tampoco hubo diferencia significativa en los niveles de FeNO entre los niños con IgE positiva al ABA-1 (sensibilizados) comparado con los no sensibilizados (P=0.27). Finalmente se evaluó la asociación entre variables sociodemográficas y los niveles de FeNO, pero no se encontró ninguna relación estadística entre las exposiciones documentadas por cuestionario y los niveles de FeNO. Por lo que se concluyó que si hay correlación débil positiva y significativa entre los niveles de FeNO y el conteo de eosinófilos en niños de un área rural. Sin embargo, los niveles de FeNO no se ven afectados por la infección activa por Trichuris trichiura, lo que sugiere que, si bien la infección por Trichuris induce una respuesta inmune de tipo 2, no es suficiente para generar una respuesta a nivel local en el pulmón capaz de alterar los niveles de FeNO. Por último, tampoco hay diferencia en los niveles de FeNO entre niños sensibilizados y no sensibilizados a ABA-1.Debido a que este es un análisis exploratorio se necesitan más estudios con una muestra más grande y con un número mayor de casos con infecciones helmínticas con fase pulmonar para definir mejor como estas pudieran afectar los niveles de FeNO. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Inmunología | spa |
dc.format.extent | 82 hojas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://hdl.handle.net/11227/15205 | |
dc.identifier.uri | http://dx.doi.org/10.57799/11227/1347 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Cartagena | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.publisher.program | Maestría en Inmunología | spa |
dc.rights | Derechos Reservados - Universidad de Cartagena, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.armarc | Parásitos | |
dc.subject.armarc | Enfermedades intestinales | |
dc.subject.armarc | Enfermedades parasitarias | |
dc.subject.armarc | Niños - Enfermedades | |
dc.title | Análisis comparativo de los niveles de la fracción exhalada de óxido nítrico (FENO) en población pediátrica parasitada y no parasitada | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.references | Yeshanew S, Bekana T, Truneh Z, Tadege M, Abich E, Dessie H. Soiltransmitted helminthiasis and undernutrition among schoolchildren in Mettu town, Southwest Ethiopia. Scientific Reports. 2022 Dec 7;12(1):3614. | spa |
dcterms.references | Romero-Sandoval N, Cifuentes L, León G, Lecaro P, Ortiz-Rico C, Cooper P, et al. High Rates of Exposures to Waterborne Pathogens in Indigenous Communities in the Amazon Region of Ecuador. The American Journal of Tropical Medicine and Hygiene. 2019 Jul 3;101(1):45–50. | spa |
dcterms.references | González Quiroz DJ, Agudelo Lopez S del P, Arango CM, Acosta JEO, Bello Parias LD, Alzate LU, et al. Prevalence of soil transmitted helminths in schoolaged children, Colombia, 2012-2013. PLOS Neglected Tropical Diseases. 2020 Jul 17;14(7):e0007613. | spa |
dcterms.references | Gonçales JP, Nobrega CGO, Nascimento WRC, Lorena VMB, Peixoto DM, Costa VMA, et al. Cytokine production in allergic and Trichuris trichiurainfected children from an urban region of the Brazilian northeast. Parasitology International. 2020 Feb 1;74. | spa |
dcterms.references | Chico ME, Vaca MG, Rodriguez A, Cooper PJ. Soil-transmitted helminth parasites and allergy: Observations from Ecuador. Parasite Immunology. 2019;41(6):1–11. | spa |
dcterms.references | Rodriguez A, Vaca M, Oviedo G, Erazo S, Chico ME, Teles C, et al. Urbanisation is associated with prevalence of childhood asthma in diverse, small rural communities in Ecuador. Thorax. 2011;66(12):1043–50. | spa |
dcterms.references | Caraballo L, Acevedo N, Zakzuk J. Ascariasis as a model to study the helminth/allergy relationships. Vol. 41, Parasite Immunology. Blackwell Publishing Ltd; 2019. | spa |
dcterms.references | Shinoda K, Choe A, Hirahara K, Kiuchi M, Kokubo K, Ichikawa T, et al. Nematode ascarosides attenuate mammalian type 2 inflammatory responses. Proceedings of the National Academy of Sciences. 2022 Mar 24;119(9). | spa |
dcterms.references | Loukas A, Maizels RM, Hotez PJ. The yin and yang of human soil-transmitted helminth infections. Vol. 51, International Journal for Parasitology. Elsevier Ltd; 2021. p. 1243–53. | spa |
dcterms.references | Hammad H, Lambrecht BN. Barrier Epithelial Cells and the Control of Type 2 Immunity. Vol. 43, Immunity. Cell Press; 2015. p. 29–40. | spa |
dcterms.references | Arrais M, Maricoto T, Nwaru BI, Cooper PJ, Gama JMR, Brito M, et al. Helminth infections and allergic diseases: Systematic review and metaanalysis of the global literature. Journal of Allergy and Clinical Immunology. 2021 Dec; | spa |
dcterms.references | Arrais M, Lulua O, Quifica F, Rosado-Pinto J, Gama JMR, Cooper PJ, et al. Lack of consistent association between asthma, allergic diseases, and intestinal helminth infection in school-aged children in the province of Bengo, Angola. International Journal of Environmental Research and Public Health. 2021 Jun 1;18(11). | spa |
dcterms.references | Soil-transmitted helminth infections [Internet]. 2022 [cited 2022 Mar 6]. Available from: https://www.who.int/es/news-room/fact-sheets/detail/soiltransmitted-helminth-infections | spa |
dcterms.references | Parasites - Soil-transmitted helminths [Internet]. 2022 [cited 2022 Mar 6]. Available from: https://www.cdc.gov/parasites/sth/index.html | spa |
dcterms.references | Caraballo L, Zakzuk J, Acevedo N. Helminth-derived cystatins: The immunomodulatory properties of an Ascaris lumbricoides cystatin. Vol. 148, Parasitology. Cambridge University Press; 2021. p. 1744–56. | |
dcterms.references | Webb EL, Nampijja M, Kaweesa J, Kizindo R, Namutebi M, Nakazibwe E, et al. Helminths are positively associated with atopy and wheeze in Ugandan fishing communities: results from a cross-sectional survey. Allergy: European Journal of Allergy and Clinical Immunology. 2016;71(8):1156–69. | |
dcterms.references | Sarmiento-Rubiano LA, García Y, Fillot M, Gómez L, Becerra JE. Parasitismo intestinal en poblaciones con alto grado de vulnerabilidad del Caribe colombiano. Revista Cubana de Medicina Tropical. 2018;70(3):92–101. | |
dcterms.references | Nutman TB. Looking beyond the induction of Th2 responses to explain immunomodulation by helminths. Vol. 37, Parasite Immunology. 2015. p. 304– 13. | |
dcterms.references | Gazzinelli-Guimaraes PH, Nutman TB. Helminth parasites and immune regulation [version 1; peer review: 2 approved]. Vol. 7, F1000Research. F1000 Research Ltd; 2018. | |
dcterms.references | Bohnacker S, Troisi F, de los Reyes Jiménez M, Esser-von Bieren J. What Can Parasites Tell Us About the Pathogenesis and Treatment of Asthma and Allergic Diseases. Vol. 11, Frontiers in Immunology. Frontiers Media S.A.; 2020. | |
dcterms.references | Gazzinelli-Guimarães PH, Gazzinelli-Guimarães AC, Silva FN, Mati VLT, Dhom-Lemos L de C, Barbosa FS, et al. Parasitological and immunological aspects of early Ascaris spp. infection in mice. International Journal for Parasitology. 2013 Aug;43(9):697–706. | |
dcterms.references | Nóbrega C, Nascimento W, Lorena V, Medeiros D, Costa V, Albuquerque M, et al. Cellular immune response of asthmatic children in the presence of anti- Ascaris antibody. Immunobiology. 2020 Jul 1;225(4). | |
dcterms.references | Filbey KJ, Varyani F, Harcus Y, Hewitson JP, Smyth DJ, McSorley HJ, et al. Macrophage migration inhibitory factor (MIF) is essential for type 2 effector cell immunity to an intestinal helminth parasite. Frontiers in Immunology. 2019;10(OCT). | |
dcterms.references | Cooper E. Principles, Pathogens and Practice. In: Tropical Infectious Diseases: . 3rd ed. Philadelphia: Saunders Elsevier; 2011. p. 791. | |
dcterms.references | Bundy DAP. Epidemiological aspects of Trichuris and trichuriasis in Caribbean communities. Trans R Soc Trop Med Hyg. 1986 Jan;80(5):706–18. | |
dcterms.references | Ranjan S, Passi SJ, Singh SN. Prevalence and risk factors associated with the presence of Soil-Transmitted Helminths in children studying in Municipal Corporation of Delhi Schools of Delhi, India. Journal of Parasitic Diseases. 2015 Sep 28;39(3):377–84. | |
dcterms.references | Truscott JE, Turner HC, Anderson RM. What impact will the achievement of the current World Health Organisation targets for anthelmintic treatment coverage in children have on the intensity of soil transmitted helminth infections? Parasites and Vectors. 2015 Oct 22;8(1). | |
dcterms.references | Holland C v., Else KJ. Lessons from studying roundworm and whipworm in the mouse: common themes and unique features. Parasitology. 2021 Dec 11;148(14):1717–21. | |
dcterms.references | Debaveye S, Gonzalez Torres CV, de Smedt D, Heirman B, Kavanagh S, Dewulf J. The public health benefit and burden of mass drug administration programs in Vietnamese schoolchildren: Impact of mebendazole. PLOS Neglected Tropical Diseases. 2018 Nov 12;12(11):e0006954. | |
dcterms.references | Ross A, Papier K, Luceres-Catubig R, Chau T, Inobaya M, Ng SK. Poverty, Dietary Intake, Intestinal Parasites, and Nutritional Status among School-Age Children in the Rural Philippines. Tropical Medicine and Infectious Disease. 2017 Sep 21;2(4):49. | |
dcterms.references | Lepper HC, Prada JM, Davis EL, Gunawardena SA, Hollingsworth TD. Complex interactions in soil-transmitted helminth co-infections from a cross- sectional study in Sri Lanka. Transactions of The Royal Society of Tropical Medicine and Hygiene. 2018 Aug 1;112(8):397–404. | |
dcterms.references | Nawalinski TA, Schad GA. Arrested Development in Ancylostoma Duodenale: Course of a Self-Induced Infection in Man *. The American Journal of Tropical Medicine and Hygiene. 1974 Sep 1;23(5):895–8. | |
dcterms.references | Gerba CP. Environmentally Transmitted Pathogens. In: Environmental Microbiology. Elsevier; 2009. p. 445–84. | |
dcterms.references | Jourdan PM, Lamberton PHL, Fenwick A, Addiss DG. Soil-transmitted helminth infections. The Lancet. 2018 Jan;391(10117):252–65. | |
dcterms.references | Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015 Aug;386(9995):743–800. | |
dcterms.references | Bartsch SM, Hotez PJ, Asti L, Zapf KM, Bottazzi ME, Diemert DJ, et al. The Global Economic and Health Burden of Human Hookworm Infection. PLOS Neglected Tropical Diseases. 2016 Sep 8;10(9):e0004922. | |
dcterms.references | Weaver HJ, Hawdon JM, Hoberg EP. Soil-transmitted helminthiases:implications of climate change and human behavior. Trends in Parasitology. 2010 Dec;26(12):574–81. | |
dcterms.references | Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa- Oliveira R, et al. Hookworm infection. Nature Reviews Disease Primers. 2016 Dec 22;2(1):16088. | |
dcterms.references | Brooker S, Bethony J, Hotez PJ. Human Hookworm Infection in the 21st Century. In 2004. p. 197–288. | |
dcterms.references | Beaver PC. Light, Long-Lasting Necator Infection in a Volunteer. The American Journal of Tropical Medicine and Hygiene. 1988 Oct 1;39(4):369–72. | |
dcterms.references | HOPKIN J. Immune and genetic aspects of asthma, allergy and parasitic worm infections: evolutionary links. Parasite Immunology. 2009 May;31(5):267–73. | |
dcterms.references | Rodrigues LC, Newcombe PJ, Cunha SS, Alcantara-Neves NM, Genser B, Cruz AA, et al. Early infection with Trichuris trichiura and allergen skin test reactivity in later childhood. Clinical & Experimental Allergy. 2008 Jun 10;0(0):080610212000860-??? | |
dcterms.references | Alcântara-Neves NM, Badaró SJ, dos Santos MC, Pontes-de-Carvalho L, Barreto ML. The presence of serum anti-Ascaris lumbricoides IgE antibodies and of Trichuris trichiura infection are risk factors for wheezing and/or atopy in preschool-aged Brazilian children. Respiratory Research. 2010 Dec 23;11(1):114. | |
dcterms.references | Alcântara-Neves N, de S G Britto G, Veiga R, Figueiredo CA, Fiaccone R, da Conceição JS, et al. Effects of helminth co-infections on atopy, asthma and cytokine production in children living in a poor urban area in Latin America. BMC Research Notes. 2014;7(1):817. | |
dcterms.references | Cooper PJ, Chico ME, Bland M, Griffin GE, Nutman TB. Allergic Symptoms, Atopy, and Geohelminth Infections in a Rural Area of Ecuador. American Journal of Respiratory and Critical Care Medicine. 2003 Aug;168(3):313–7. | |
dcterms.references | Mohapatra A, van Dyken SJ, Schneider C, Nussbaum JC, Liang HE, Locksley RM. Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunology. 2016 Jan 1;9(1):275–86. | |
dcterms.references | de Ruiter K, Jochems SP, Tahapary DL, Stam KA, König M, van Unen V, et al. Helminth infections drive heterogeneity in human type 2 and regulatory cells [Internet]. Vol. 12, Sci. Transl. Med. 2020. Available from: http://stm.sciencemag.org/ | |
dcterms.references | Howitt MR, Lavoie S, Michaud M, Blum AM, Tran S v., Weinstock J v., et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science (1979). 2016 Mar 18;351(6279):1329–33. | |
dcterms.references | Tait Wojno ED, Monticelli LA, Tran S v., Alenghat T, Osborne LC, Thome JJ, et al. The prostaglandin D2 receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunology. 2015 Nov 1;8(6):1313–23. | |
dcterms.references | Hung LY, Lewkowich IP, Dawson LA, Downey J, Yang Y, Smith DE, et al. IL- 33 drives biphasic IL-13 production for noncanonical Type 2 immunity against hookworms. Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):282–7. | |
dcterms.references | Yasuda K, Muto T, Kawagoe T, Matsumoto M, Sasaki Y, Matsushita K, et al. Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3451–6. | |
dcterms.references | Herbert DR, Douglas B, Zullo K. Group 2 innate lymphoid cells (ILC2): Type 2 immunity and helminth immunity. International Journal of Molecular Sciences. 2019 May 1;20(9). | |
dcterms.references | Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nature Medicine. 2009 Apr 29;15(4):410–6. | |
dcterms.references | Salazar F, Ghaemmaghami AM. Allergen Recognition by Innate Immune Cells: Critical Role of Dendritic and Epithelial Cells. Frontiers in Immunology. 2013;4. | |
dcterms.references | Lei Y, Boinapally V, Zoltowska A, Adner M, Hellman L, Nilsson G. Vaccination against IL-33 Inhibits Airway Hyperresponsiveness and Inflammation in a House Dust Mite Model of Asthma. PLOS ONE. 2015 Jul 27;10(7):e0133774. | |
dcterms.references | Gazzinelli-Guimaraes PH, de Queiroz Prado R, Ricciardi A, Bonne-Année S, Sciurba J, Karmele EP, et al. Allergen presensitization drives an eosinophil- dependent arrest in lung-specific helminth development. Journal of Clinical Investigation. 2019 Sep 3;129(9):3686–701. | |
dcterms.references | Gazzinelli-Guimaraesid PH, Bennuru S, Pradoid RDQ, Ricciardi A, Sciurbaid J, Kupritzid J, et al. House dust mite sensitization drives crossreactive immune responses to homologous helminth proteins. PLoS Pathogens [Internet]. 2021;17(3):1–25. Available from: http://dx.doi.org/10.1371/journal.ppat.1009337 | |
dcterms.references | Salzer HJF, Rolling T, Vinnemeier CD, Tannich E, Schmiedel S, Addo MM, et al. Helminthic infections in returning travelers and migrants with eosinophilia: Diagnostic value of medical history, eosinophil count and IgE. Travel Medicine and Infectious Disease. 2017 Nov 1;20:49–55. | |
dcterms.references | Aoki A, Hirahara K, Kiuchi M, Nakayama T. Eosinophils: Cells known for over 140 years with broad and new functions. Vol. 70, Allergology International. Japanese Society of Allergology; 2021. p. 3–8. | |
dcterms.references | Folci M, Ramponi G, Arcari I, Zumbo A, Brunetta E. Eosinophils as Major Player in Type 2 Inflammation: Autoimmunity and Beyond. In 2021. p. 197– 219. | |
dcterms.references | Peñaranda D. Relationship between helminth infection, blood eosinophils and asthma symptoms in a rural community from the tropics. Allergy. 2018 Aug 1;73:373–373. | |
dcterms.references | Klion AD, Nutman TB. The role of eosinophils in host defense against helminth parasites. Journal of Allergy and Clinical Immunology. 2004;113(1):30–7. | |
dcterms.references | Magrone T, Magrone M, Jirillo E. Eosinophils, a Jack of All Trades in Immunity: Therapeutic Approaches for Correcting Their Functional Disorders. Endocrine, Metabolic & Immune Disorders - Drug Targets. 2020 Oct 15;20(8):1166–81. | |
dcterms.references | Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: An evolving story. Cell and Tissue Research. 2011;343(1):57–83. | |
dcterms.references | Bystrom J, Amin K, Bishop-Bailey D. Analysing the eosinophil cationic protein - a clue to the function of the eosinophil granulocyte. Respiratory Research. 2011;12(1):10. | |
dcterms.references | Oliphant CJ, Barlow JL, Mckenzie ANJ. Insights into the initiation of type 2 immune responses. Immunology. 2011;134(4):378–85. | |
dcterms.references | Alcantara-Neves NM, Veiga R v., Ponte JCM, da Cunha SS, Simões SM, Cruz ÁA, et al. Dissociation between skin test reactivity and anti-aeroallergen IgE: Determinants among urban Brazilian children. PLOS ONE. 2017 Mar 28;12(3):e0174089. | |
dcterms.references | Briggs N, Weatherhead J, Sastry KJ, Hotez PJ. The Hygiene Hypothesis and Its Inconvenient Truths about Helminth Infections. PLOS Neglected Tropical Diseases. 2016 Sep 15;10(9):e0004944. | |
dcterms.references | Okada H, Kuhn C, Feillet H, Bach JF. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clinical and Experimental Immunology. 2010 Mar 11;160(1):1–9. | |
dcterms.references | FLOHR C, TUYEN L, LEWIS S, QUINNELL R, MINH T, LIEM H, et al. Poor sanitation and helminth infection protect against skin sensitization in Vietnamese children: A cross-sectional study. Journal of Allergy and Clinical Immunology. 2006 Dec;118(6):1305–11. | |
dcterms.references | Escamilla-Gil JM, Fernandez-Nieto M, Acevedo N. Understanding the Cellular Sources of the Fractional Exhaled Nitric Oxide (FeNO) and Its Role as a Biomarker of Type 2 Inflammation in Asthma. Carbone F, editor. BioMed Research International [Internet]. 2022 May 2;2022:1–9. Available from: https://www.hindawi.com/journals/bmri/2022/5753524/ | |
dcterms.references | Chibana K, Trudeau JB, Mustovitch AT, Hu H, Zhao J, Balzar S, et al. IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clinical and Experimental Allergy. 2008 Jun;38(6):936–46. | |
dcterms.references | Keshet R, Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Disease Models & Mechanisms. 2018 Aug 1;11(8). | |
dcterms.references | Donohue JF, Jain N. Exhaled nitric oxide to predict corticosteroid responsiveness and reduce asthma exacerbation rates. Vol. 107, Respiratory Medicine. 2013. p. 943–52. | |
dcterms.references | Suresh V, Mih JD, George SC. Measurement of IL-13-induced iNOS-derived gas phase nitric oxide in human bronchial epithelial cells. American Journal of Respiratory Cell and Molecular Biology. 2007 Jul;37(1):97–104. | |
dcterms.references | Robinson D, Humbert M, Buhl R, Cruz AA, Inoue H, Korom S, et al. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Vol. 47, Clinical and Experimental Allergy. Blackwell Publishing Ltd; 2017. p. 161–75. | |
dcterms.references | Guo FH, Uetani K, Haque SJ, Williams BRG, Dweik RA, Thunnissen FBJM, et al. Interferon γ and interleukin 4 stimulate prolonged expression of inducible nitric oxide synthase in human airway epithelium through synthesis of soluble mediators. Journal of Clinical Investigation. 1997;100(4):829–38. | |
dcterms.references | Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An Official ATS Clinical Practice Guideline: Interpretation of Exhaled Nitric Oxide Levels (F <scp>e</scp> NO ) for Clinical Applications. American Journal of Respiratory and Critical Care Medicine [Internet]. 2011 Sep;184(5):602–15. Available from: http://www.atsjournals.org/doi/abs/10.1164/rccm.9120-11ST | |
dcterms.references | Duenas-Meza E, Torres-Duque CA, Correa-Vera E, Suárez M, Vásquez C, Jurado J, et al. High prevalence of house dust mite sensitization in children with severe asthma living at high altitude in a tropical country. Pediatric Pulmonology. 2018 Oct 1;53(10):1356–61. | |
dcterms.references | Cooper PJ, Chis Ster I, Chico ME, Vaca M, Oviedo Y, Maldonado A, et al. Impact of early life geohelminths on wheeze, asthma and atopy in Ecuadorian children at 8 years. Allergy: European Journal of Allergy and Clinical Immunology. 2021 Sep 1;76(9):2765–75. | |
dcterms.references | de Vivero M. M. Type 2 inflammation biomarkers in adult asthmatic patients from a tropical environment and IgE sensitized to the helminth ascaris. Allergy [Internet]. 2021 Nov 15;76(S110):444–444. Available from: https://onlinelibrary.wiley.com/doi/10.1111/all.15096 | |
dcterms.references | Szefler SJ, Wenzel S, Brown R, Erzurum SC, Fahy J v., Hamilton RG, et al. Asthma outcomes: Biomarkers. Journal of Allergy and Clinical Immunology. 2012 Mar;129(3 SUPPL.). | |
dcterms.references | Acevedo N, Mohr J, Zakzuk J, Samonig M, Briza P, Erler A, et al. Proteomic and immunochemical characterization of glutathione transferase as a new allergen of the nematode Ascaris lumbricoides. PLoS ONE. 2013 Nov 4;8(11). | |
dcterms.references | Acevedo N, Bornacelly A, Mercado D, Unneberg P, Mittermann I, Valenta R, et al. Genetic Variants in CHIA and CHI3L1 Are Associated with the IgE Response to the Ascaris Resistance Marker ABA-1 and the Birch Pollen Allergen Bet v 1. PLOS ONE. 2016 Dec 15;11(12):e0167453. | |
dcterms.references | Ardura-Garcia C, Arias E, Hurtado P, Bonnett LJ, Sandoval C, Maldonado A, et al. Predictors of severe asthma attack re-attendance in Ecuadorian children: A cohort study. European Respiratory Journal. 2019 Nov 1;54(5). | |
dcterms.references | Zakzuk J, Casadiego S, Mercado A, Alvis-Guzman N, Caraballo L. Ascaris lumbricoides infection induces both, reduction and increase of asthma symptoms in a rural community. Acta Tropica. 2018 Nov;187:1–4. | |
dcterms.references | Melki IS, Beydoun HA, Khogali M, Tamim H, Yunis KA. Household crowding index: A correlate of socioeconomic status and inter-pregnancy spacing in an urban setting. Journal of Epidemiology and Community Health. 2004;58(6):476–80. | |
dcterms.references | Cooper PJ, Chis Ster I, Chico ME, Vaca M, Oviedo Y, Maldonado A, et al. Impact of early life geohelminths on wheeze, asthma and atopy in Ecuadorian children at 8 years. Allergy. 2021 Sep 7;76(9):2765–75. | |
dcterms.references | Hoshina T, Sakurai T, Ichimura H, Ishiwata K, En S, Yamada T, et al. Safety and tolerability of medicinal parasite ova (Trichuris suis) in healthy Japanese volunteers: A randomized, double-blind, placebo-controlled trial. Parasitology International. 2021 Dec;85:102441. | |
dcterms.references | Helber A, Hilpert P, Bublitz G, Meyer D, Kaufmann W. Eosinophiles Lungeninfiltrat bei Peitschenwurmbefall (Trichocephalus dispar, Trichuris trichiura). DMW - Deutsche Medizinische Wochenschrift. 1972 Jun 15;97(26):1005–8. | |
dcterms.references | Gao J, Wu F. Association between fractional exhaled nitric oxide, sputum induction and peripheral blood eosinophil in uncontrolled asthma. Allergy, Asthma & Clinical Immunology. 2018 Dec 23;14(1):21. | |
dcterms.references | Gao J, Zhang M, Zhou L, Yang X, Wu H, Zhang J, et al. Correlation between fractional exhaled nitric oxide and sputum eosinophilia in exacerbations of COPD. International Journal of Chronic Obstructive Pulmonary Disease. 2017 Apr;Volume 12:1287–93. | |
dcterms.references | Soma T, Iemura H, Naito E, Miyauchi S, Uchida Y, Nakagome K, et al. Implication of fraction of exhaled nitric oxide and blood eosinophil count in severe asthma. Allergology International. 2018 Sep;67:S3–11. | |
dcterms.references | Hasegawa K, Camargo CA. Prevalence of blood eosinophilia in hospitalized patients with acute exacerbation of COPD. Respirology. 2016 May;21(4):761– 4. | |
dcterms.references | Sadeghi MH, Wright CE, Hart S, Crooks M, Morice AH. Does FeNO Predict Clinical Characteristics in Chronic Cough? Lung. 2018 Feb 25;196(1):59–64. | |
dcterms.references | Bélanger M, Couillard S, Courteau J, Larivée P, Poder T, Carrier N, et al. Eosinophil counts in first COPD hospitalizations: a comparison of health service utilization. International Journal of Chronic Obstructive Pulmonary Disease. 2018 Oct;Volume 13:3045–54. | |
dcterms.references | DiSantostefano RL, Hinds D, van Le H, Barnes NC. Relationship between blood eosinophils and clinical characteristics in a cross-sectional study of a US population-based COPD cohort. Respiratory Medicine. 2016 Mar;112:88–96. | |
dcterms.references | Río Ramírez MT, Juretschke Moragues MA, Fernández González R, Álvarez Rodríguez V, Aznar Andrés E, Zabaleta Camino JP, et al. Value of Exhaled Nitric Oxide (FeNO) And Eosinophilia During the Exacerbations of Chronic Obstructive Pulmonary Disease Requiring Hospital Admission. COPD: Journal of Chronic Obstructive Pulmonary Disease. 2018 Jul 4;15(4):369–76. | |
dcterms.references | Christie JF, Dunbar B, Davidson I, Kennedy MW. N-terminal amino acid sequence identity between a major allergen of Ascaris lumbricoides and Ascaris suum, and MHC-restricted IgE responses to it. Immunology. 1990 Apr;69(4):596–602. | |
dcterms.references | Kennedy MW, Fraser EM, Christie JF. MHC class II (I-A) region control of the IgE antibody repertoire to the ABA-1 allergen of the nematode Ascaris. Immunology. 1991 Apr;72(4):577–9. | |
dcterms.references | CHRISTIE JF, FRASER EM, KENNEDY MW. Comparison between the MHC- restricted antibody repertoire to Ascaris antigens in adjuvant-assisted immunization or infection. Parasite Immunology. 1992 Jan;14(1):59–73. | |
dcterms.references | Dana D, Roose S, Vlaminck J, Ayana M, Mekonnen Z, Geldhof P, et al. Longitudinal assessment of the exposure to Ascaris lumbricoides through copromicroscopy and serology in school children from Jimma Town, Ethiopia. PLoS Negl Trop Dis. 2022 Jan 1;16(1):e0010131. | |
dcterms.references | Ster IC, Niaz HF, Chico ME, Oviedo Y, Vaca M, Cooper PJ. The epidemiology of soil-transmitted helminth infections in children up to 8 years of age: Findings from an ecuadorian birth cohort. PLoS Neglected Tropical Diseases. 2021 Nov 1;15(11). | |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...