Publicación:
Inmunopatología del Glioblastoma Multiforme y su importancia en el ámbito clínico

dc.contributor.authorTorres Rodríguez, María Paulaspa
dc.contributor.authorMurcia Garcia, Kimberly Andreaspa
dc.contributor.authorCruz Baquero, Claudia Andreaspa
dc.contributor.authorInfante Cruz, Alejandra del Pilarspa
dc.date.accessioned2022-04-15 00:00:00
dc.date.available2022-04-15 00:00:00
dc.date.issued2022-04-15
dc.description.abstractIntroducción: el glioblastoma multiforme es un tumor cerebral primario maligno. Su diagnóstico actualmente se basa en la presentación clínica del paciente y en estudios de imagenología, con un promedio de supervivencia inferior a 18 meses. Con base en dicho diagnóstico, se vuelve indispensable establecer tratamientos alternativos y personalizados, utilizando como herramienta la información obtenida al evaluar el microambiente tumoral, el cual a su vez determina el puntaje dado por el inmunoscore. Objetivo: demostrar la importancia de conocer el microambiente tumoral del glioblastoma multiforme como herramienta para su aplicación en el ámbito clínico. Métodos: se realizó una búsqueda en las bases de datos PubMed, Google Scholar, Oxford Academic, Scielo, Elsevier y Nature Portfolio, que incluyó artículos publicados en los últimos veinte años entre el 16 de octubre del 2001 y el 14 de julio del 2021. Resultados: la base de datos otorgó información actual sobre la inmunopatología del glioblastoma multiforme, su importancia en el ámbito clínico y sobre cómo herramientas como el inmunoscore pueden impulsar el uso de tratamientos personalizados que mejoren el pronóstico en el paciente con dicha enfermedad. Se evidenció que existen pocos grupos trabajando en esta área. Conclusión: realizar estudios al comportamiento celular inmunológico en el microambiente tumoral para dar puntajes acordes al inmunoscore en cada paciente puede presentar alternativas de tratamiento personalizado, mejorando la calidad de vida y la vida media después del diagnóstico. spa
dc.description.abstractIntroduction: Glioblastoma multiforme is a malignant primary brain tumor. Its diagnosis is currently based on the patient's clinical presentation and imaging studies, with an average survival of less than 18 months. Based on this diagnosis, it becomes essential to establish alternative and personalized treatments, using as a tool the information obtained by evaluating the tumor microenvironment and as a result of the score given by the immunoscore. Objective: demonstrate the importance of knowing the tumor microenvironment of glioblastoma multiforme as a tool for its application in the clinical setting. Methods:a search was carried out in the PubMed, Google Scholar, Oxford Academic, Scielo, Elsevier y Nature Portfolio databases, which included articles published in the last twenty years between October 16, 2001 and July 14, 2021. Results: the database provided current information on the immunopathology of glioblastoma multiforme, its importance in the clinical setting, and tools such as the immunoscore that can promote the use of personalized treatments that improve the prognosis in patients with this disease. It was evidenced that there are no groups working in this area. Conclusions: Carrying out studies of the immune cell behavior in the tumor microenvironment to give scores according to the immunoscore in each patient can present personalized treatment alternatives, improving life quality and average life after diagnosis. eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.32997/rcb-2022-3738
dc.identifier.eissn2389-7252
dc.identifier.issn2215-7840
dc.identifier.urlhttps://doi.org/10.32997/rcb-2022-3738
dc.language.isospaspa
dc.publisherUniversidad de Cartagenaspa
dc.relation.bitstreamhttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3738/3201
dc.relation.citationeditionNúm. 2 , Año 2022spa
dc.relation.citationendpage178
dc.relation.citationissue2spa
dc.relation.citationstartpage163
dc.relation.citationvolume11spa
dc.relation.ispartofjournalRevista Ciencias Biomédicasspa
dc.relation.referencesGrossman SA, Batara JF. Current management of glioblastoma multiforme. Semin Oncol. 2004; 31(5):635–44.spa
dc.relation.referencesBroekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakefield XO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol. 2018; 14(8):482–95.spa
dc.relation.referencesOcampo Navia MI, Gómez Vega JC, Feo Lee OH. Epidemiología y caracterización general de los tumores cerebrales primarios en el adulto. Univ Médica [Internet]. 2018; 60(1). Available from: https://revistas.javeriana.edu.co/files-articulos/UMED/60-1%20(2019-I)/231057460010/spa
dc.relation.referencesMiranda-Filho A, Piñeros M, Soerjomataram I, Deltour I, Bray F. Cancers of the brain and CNS: global patterns and trends in incidence. Neuro Oncol. 2017; 19(2):270–80.spa
dc.relation.referencesOrozco Flórez VM, Caicedo Montaño CA. Rol de la telomerasa en la carcinogénesis y en el envejecimiento prematuro. Rev.Medica.Sanitas 2016; 19 (1): 36-43.spa
dc.relation.referencesGao L, Huang S, Zhang H, Hua W, Xin S, Cheng L, et al. Suppression of glioblastoma by a drug cocktail reprogramming tumor cells into neuronal like cells. Sci Rep. 2019; 9(1):3462.spa
dc.relation.referencesWen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020; 22(8):1073–113.spa
dc.relation.referencesOkuma C, Fernández R. Evaluación de gliomas por técnicas avanzadas de resonancia magnética. Rev médica Clín Las Condes. 2017; 28(3):360–77.spa
dc.relation.referencesRatnam NM, Gilbert MR, Giles AJ. Immunotherapy in CNS cancers: the role of immune cell trafficking. Neuro Oncol. 2019; 21(1):37–46.spa
dc.relation.referencesMukherjee S, Fried A, Hussaini R, White R, Baidoo J, Yalamanchi S, et al. Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells. J Exp Clin Cancer Res [Internet]. 2018; 37(1). Available from: http://dx.doi.org/10.1186/s13046-018-0792-5spa
dc.relation.referencesLouis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: A summary. Neuro Oncol. 2021; 23(8):1231–51.spa
dc.relation.referencesStichel D, Ebrahimi A, Reuss D, Schrimpf D, Ono T, Shirahata M, et al. Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol. 2018; 136(5):793–803.spa
dc.relation.referencesJaramillo S, Osorio W, Espitia JC. Avances en el tratamiento del glioblastoma multiforme. Univ Médica. 2010; 51(2):186–203.spa
dc.relation.referencesSottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013; 110(10):4009–14.spa
dc.relation.referencesYan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009; 360(8):765–73.spa
dc.relation.referencesMiller JJ, Shih HA, Andronesi OC, Cahill DP. Isocitrate dehydrogenase-mutant glioma: Evolving clinical and therapeutic implications: IDH-Mutant Glioma. Cancer. 2017; 123(23):4535–46.spa
dc.relation.referencesWagner Grau P. El factor HIF-1 inducido por la hipoxia y la sensibilidad al oxígeno: Rol del hierro intracelular. Acta médica peru. 2011; 28(3):163–8.spa
dc.relation.referencesLo Dico A, Martelli C, Diceglie C, Lucignani G, Ottobrini L. Hypoxia-inducible factor-1α activity as a switch for glioblastoma responsiveness to temozolomide. Front Oncol. 2018; 8:249. 19. Martinez-Lage M, Lynch TM, Bi Y, Cocito C, Way GP, Pal S, et al. Immune landscapes associated with different glioblastoma molecular subtypes. Acta Neuropathol Commun. 2019; 7(1):203.spa
dc.relation.referencesD’Alessio A, Proietti G, Sica G, Scicchitano BM. Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers (Basel). 2019; 11(4):469.spa
dc.relation.referencesBouwens van der Vlis TAM, Kros JM, Mustafa DAM, van Wijck RTA, Ackermans L, van Hagen PM, et al. The complement system in glioblastoma multiforme. Acta Neuropathol Commun. 2018; 6(1):91.spa
dc.relation.referencesChen Z, Hambardzumyan D. Immune Microenvironment in Glioblastoma Subtypes. Front Immunol [Internet]. 2018; 9. Available from: http://dx.doi.org/10.3389/fimmu.2018.01004spa
dc.relation.referencesLi Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018; 18(4):225–42.spa
dc.relation.referencesLohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R, et al. Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β. Clin Cancer Res. 2011; 17(13):4296–308.spa
dc.relation.referencesThomas DA, Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005; 8(5):369–80.spa
dc.relation.referencesVeglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited. Curr Opin Immunol. 2017; 45:43–51.spa
dc.relation.referencesD’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K. Brain dendritic cells: biology and pathology. Acta Neuropathol. 2012; 124(5):599–614 28. Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016; 37(12):855–65.spa
dc.relation.referencesYan J, Zhao Q, Gabrusiewicz K, Kong L-Y, Xia X, Wang J, et al. Author Correction: FGL2 promotes tumor progression in the CNS by suppressing CD103+ dendritic cell differentiation. Nat Commun. 2019; 10(1):862.spa
dc.relation.referencesDe Leo A, Ugolini A, Veglia F. Myeloid cells in glioblastoma microenvironment. Cells. 2020; 10(1):18.spa
dc.relation.referencesSrivastava S, Jackson C, Kim T, Choi J, Lim M. A characterization of dendritic cells and their role in immunotherapy in glioblastoma: From preclinical studies to clinical trials. Cancers (Basel). 2019; 11(4):537.spa
dc.relation.referencesPelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N, Costantini C, et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood. 2010; 115(2):335–43.spa
dc.relation.referencesHor W-S, Huang W-L, Lin Y-S, Yang B-C. Cross-talk between tumor cells and neutrophils through the Fas (APO-1, CD95)/FasL system: human glioma cells enhance cell viability and stimulate cytokine production in neutrophils. J Leukoc Biol. 2003; 73(3):363–8.spa
dc.relation.referencesChio CC, Wang YS, Chen YL, Lin SJ, Yang BC. Down-regulation of Fas-L in glioma cells by ribozyme reduces cell apoptosis, tumour-infiltrating cells, and liver damage but accelerates tumour formation in nude mice. Br J Cancer. 2001; 85(8):1185–92.spa
dc.relation.referencesGalon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et al. Towards the introduction of the “Immunoscore” in the classification of malignant tumours: Immunoscore classification of malignant tumours. J Pathol. 2014; 232(2):199–209.spa
dc.relation.referencesGalon J, Lanzi A. The Quarterly Journal of Nuclear Medicine and Molecular Imaging 2020 June; 64(2):152-61 [Internet]. Minervamedica.it. Available from: https://www.minervamedica.it/en/journals/nuclear-med-molecular-imaging/article.php?cod=R39Y2020N02A0152spa
dc.relation.referencesBruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020; 20(11):662–80.spa
dc.relation.referencesGalon J, Pagès F, Marincola FM, Angell HK, Thurin M, Lugli A, et al. Cancer classification using the Immunoscore: a worldwide task force. J Transl Med. 2012; 10(1):205.spa
dc.relation.referencesTang X, Xu P, Chen A, Deng G, Zhang S, Gao L, et al. Prognostic and predictive value of an immunoscore signature in glioblastoma multiform. Front Genet. 2020; 11:514363.spa
dc.relation.referencesNeftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019; 178(4):835-849.e21.spa
dc.relation.referencesGarcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, et al. Genetic alterations in gliomas remodel the tumor immune microenvironment and impact immune-mediated therapies. Front Oncol. 2021; 11:631037.spa
dc.relation.referencesSharma I, Singh A, Siraj F, Saxena S. IL-8/CXCR1/2 signalling promotes tumor cell proliferation, invasion and vascular mimicry in glioblastoma. J Biomed Sci. 2018; 25(1):62.spa
dc.relation.referencesWang X, Prager BC, Wu Q, Kim LJY, Gimple RC, Shi Y, et al. Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell. 2018; 22(4):514-528.e5.spa
dc.relation.referencesSalari P, Larijani B. Ethical issues surrounding personalized medicine: A literature review. Acta Med Iran. 2017; 55(3):209–17.spa
dc.relation.referencesTan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 2020; 70(4):299–312.spa
dc.relation.referencesMassacesi C, Di Tomaso E, Urban P, Germa C, Quadt C, Trandafir L, et al. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. Onco Targets Ther. 2016;9: 203–10.spa
dc.rightsMaría Paula Torres Rodríguez, Kimberly Andrea Murcia Garcia, Alejandra del Pilar Infante Cruz, Claudia Andrea Cruz Baquero - 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0spa
dc.sourcehttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3738spa
dc.subjectGlioblastoma Multiformespa
dc.subjectmicroambiente Tumoralspa
dc.subjectImmunoscorespa
dc.subjectPronósticospa
dc.subjectTratamientospa
dc.subjectGlioblastoma Multiformeeng
dc.subjectTumor microenvironmenteng
dc.subjectImmunoscoreeng
dc.subjectPrognosiseng
dc.subjectTreatmenteng
dc.titleInmunopatología del Glioblastoma Multiforme y su importancia en el ámbito clínicospa
dc.title.translatedImmunopathology of Glioblastoma Multiforme and its importance on clinic fieldeng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: