Publicación:
Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D.C.T.-Colombia

dc.contributor.advisorGómez Camargo, Doris Esther
dc.contributor.authorValle Molinares, Roger Humberto
dc.date.accessioned2022-07-28T18:28:12Z
dc.date.available2022-07-28T18:28:12Z
dc.date.issued2020
dc.description.abstractP. aeruginosa es un patógeno oportunista que representa un problema de salud pública, siendo uno de microorganismos frecuentemente aislado en casos de infecciones asociadas a la atención en salud y que expresa resistencia a la mayoría de los antibióticos de uso rutinario. En este trabajo, realizamos un análisis de los perfiles de susceptibilidad, producción de biopelículas y expresión de genes asociados a resistencia antibiótica, de un total de 60 aislados (56 de origen clínico y 4 de origen ambiental). Los resultados obtenidos permitieron realizar una descripción fenotípica y genotípica de la población de P. aeruginosa que circula en la ciudad de Cartagena. La mayoría de los aislamientos mostraron elevados niveles de resistencia (30% MDR, 32% XDR y 15% PDR). Así mismo, se encontró que los marcadores de resistencia blaTEM y blaSHV son los más frecuentes en la población de P. aeruginosa con frecuencias de aparición del 26% y 100% respectivamente. Por otro lado, en este trabajo aportamos evidencia de la sobreexpresión en la biopelícula de los genes blaSHV lo que puede ser de utilidad a la hora es escoger el tratamiento antibiótico más adecuado para el manejo de infecciones crónicas de P. aeruginosa. También, aportamos información preliminar sobre el potencial uso de moléculas de origen natural (extractos crudos de animales marinos) y sintéticos (Tedrahydroquinolinas) en el tratamiento de infecciones de P. aeruginosa.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor(a) en Medicina Tropicalspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://hdl.handle.net/11227/15503
dc.identifier.urihttp://dx.doi.org/10.57799/11227/147
dc.language.isospaspa
dc.publisherUniversidad de Cartagenaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.programDoctorado en Medicina Tropicalspa
dc.rightsDerechos Reservados - Universidad de Cartagena, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcMicroorganismos
dc.subject.armarcAntibióticos - Efectos fisiológicos
dc.subject.armarcAntibióticos
dc.subject.armarcMicroorganismo - Efecto de los antibióticos
dc.subject.armarcBacterias - Fisiología
dc.titleDiversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D.C.T.-Colombiaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.referencesAbdel-Aziz, S.M., A, A., 2014. Bacterial Biofilm: Dispersal and Inhibition Strategies. Sch. J. Biotechnol. 1. https://doi.org/10.18875/2375-6713.1.105spa
dcterms.referencesAbdel-Gawad, S.M., El-Gaby, M.S.A., Heiba, H.I., Aly, H.M., Ghorab, M.M., 2005. Synthesis and Radiation Stability of Some New Biologically Active Hydroquinoline and Pyrimido[4,5- b ]quinoline Derivatives. J. Chinese Chem. Soc. 52, 1227–1236. https://doi.org/10.1002/jccs.200500177spa
dcterms.referencesAngeles, L., 1984. The Clinical Challenge of Infections Due to Pseudomonas aeruginosa. Rev. Infect. Dis. 6, 603–607.spa
dcterms.referencesArzanlou, M., Chai, W.C., Venter, H., 2017. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem. 61, 49–60. https://doi.org/10.1042/EBC20160063spa
dcterms.referencesAzam, M.W., Khan, A.U., 2019. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov. Today 24, 350–359. https://doi.org/10.1016/j.drudis.2018.07.003spa
dcterms.referencesAzimi, S., Kafil, H.S., Baghi, H.B., Shokrian, S., Najaf, K., Asgharzadeh, M., Yousefi, M., Shahrivar, F., Aghazadeh, M., 2016. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. GMS Hyg. Infect. Control 11, Doc04. https://doi.org/10.3205/dgkh000264spa
dcterms.referencesBaena del Valle, J.A., Gomez Alegria, C.J., Gomez Camargo, D.E., 2014. Antimicrobial susceptibility and genotypification of Pseudomonas aeruginosa from cystic fibrosis patients and other diseases in Cartagena (Colombia). Salud UNINORTE 30, 104– 120.spa
dcterms.referencesBaena Del Valle, J.A., Gómez Alegría, C.J., Gómez Camargo, D.E., 2011. Coexistencia de Pseudomonas aeruginosa y Candida albicans en infecciones nosocomiales en Cartagena de Indias (Colombia). Nov. Publicación Científica en Ciencias Biomédicas 9, 22–30.spa
dcterms.referencesBaena, J., Gomez, C., Gomez, D., 2014. Antimicrobial susceptibility and genotypification of Pseudomonas aeruginosa from cystic fibrosis patients and other diseases in Cartagena (Colombia). Salud Uninorte 30, 104–120. https://doi.org/10.14482/sun.30.2.5679spa
dcterms.referencesBleves, S., Viarre, V., Salacha, R., Michel, G.P.F., Filloux, A., Voulhoux, R., 2010. Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. Int. J. Med. Microbiol. 300, 534–543. https://doi.org/10.1016/j.ijmm.2010.08.005spa
dcterms.referencesBokaeian, M., Zahedani, S.S., Bajgiran, M.S., Moghaddam, A.A., 2015. Frequency of PER, VEB, SHV, TEM and CTX-M genes in resistant strains of Pseudomonas aeruginosa Producing Extended Spectrum β-lactamases. Jundishapur J. Microbiol. 8, 1–6. https://doi.org/10.5812/jjm.13783spa
dcterms.referencesBoles, B.R., Thoendel, M., Singh, P.K., 2005. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol. Microbiol. 57, 1210–1223. https://doi.org/10.1111/j.1365-2958.2005.04743.xspa
dcterms.referencesBrazas, M.D., Breidenstein, E.B.M., Overhage, J., Hancock, R.E.W., 2007. Role of Lon , an ATP-dependent protease homolog, in resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob. Agents Chemother. 51, 4276–4283. https://doi.org/10.1128/AAC.00830-07spa
dcterms.referencesBreidenstein, E.B.M., de la Fuente-Nuñez, C., Hancock, R.E.., 2011. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 19, 419–426. https://doi.org/10.1016/j.tim.2011.04.005spa
dcterms.referencesBreidenstein, E.B.M., Khaira, B.K., Wiegand, I., Overhage, J., Hancock, R.E.W., 2008. Complex Ciprofloxacin Resistome Revealed by Screening a Pseudomonas aeruginosa Mutant Library for Altered Susceptibility. Antimicrob. Agents Chemother. 52, 4486–4491. https://doi.org/10.1128/AAC.00222-08spa
dcterms.referencesBrown, E.D., Wright, G.D., 2016. Antibacterial drug discovery in the resistance era. Nature 529, 336. https://doi.org/10.1038/nature17042spa
dcterms.referencesBrowne, P., Barret, M., Gara, F.O., Morrissey, J.P., 2010. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria. BMC Microbiol. 10, 300. https://doi.org/10.1186/1471-2180-10-300spa
dcterms.referencesCabot, G., Ocampo-Sosa, A.A., Domínguez, M.A., Gago, J.F., Juan, C., Tubau, F., Rodríguez, C., Moyà, B., Peña, C., Martínez-Martínez, L., Oliver, A., 2012. Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa highrisk clones. Antimicrob. Agents Chemother. 56, 6349–6357. https://doi.org/10.1128/AAC.01388-12spa
dcterms.referencesCaiazza, N.C., Shanks, R.M.Q., Toole, G.A.O., 2005. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J. Bacteriol. 187, 7351–7361. https://doi.org/10.1128/JB.187.21.7351spa
dcterms.referencesCaldas A. Liliana, 2015. Bacterias-biofilms y resistencia antimicrobiana. Rev. Fac. ciencias la salud. Univ. del Cauca 17, 20–27.spa
dcterms.referencesCalhoun, W., Carlson, R.P., Crossley, R., Datko, L.J., Dietrich, S., Heatherington, K., Marshall, L.A., Meade, P.J., Opalko, A., Shepherd, R.G., 1995. Synthesis and Antiinflammatory Activity of Certain 5,6,7,8-Tetrahydroquinolines and Related Compounds. J. Med. Chem. 38, 1473–1481. https://doi.org/10.1021/jm00009a008spa
dcterms.referencesCampa, M., Bendinelli, M., Friedman, H., 1993. Pseudomonas aeruginosa as an opportunistic pathogen. https://doi.org/10.1007/978-1-4615-3036-7spa
dcterms.referencesCampodónico, V.L., Llosa, N.J., Grout, M., Döring, G., Maira-Litrán, T., Pier, G.B., 2010. Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines. Infect. Immun. 78, 746–755. https://doi.org/10.1128/IAI.00806-09spa
dcterms.referencesCastro-Orozco, R., Barreto-Maya, A.C., Guzmán-Álvarez, H., Ortega-Quiroz, R.J., Benítez-Peña, L., 2010. Antimicrobial resistance pattern for gram-negative uropathogens isolated from hospitalised patients and outpatients in Cartagena, 2005-2008. Rev. Salud Publica 12, 1010–1019. https://doi.org/10.1590/S0124- 00642010000600013spa
dcterms.referencesCausapé, C.L., 2018. Clonal epidemiology and antimicrobial resistance in Pseudomonas aeruginosa chronic respiratory infections: interpatient transmission and resistome evolution of an international cystic fibrosis clone.spa
dcterms.referencesChatterjee, M., Anju, C.P., Biswas, L., Anil Kumar, V., Gopi Mohan, C., Biswas, R., 2016. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int. J. Med. Microbiol. 306, 48–58. https://doi.org/10.1016/j.ijmm.2015.11.004spa
dcterms.referencesChaudhry, W.N., Badar, R., Jamal, M., Jeong, J., Zafar, J., Andleeb, S., 2016. Clinico-microbiological study and antibiotic resistance profile of meca and ESBL gene prevalence in patients with diabetic foot infections. Exp. Ther. Med. 11, 1031– 1038. https://doi.org/10.3892/etm.2016.2996spa
dcterms.referencesChong, H., Li, Q., 2017. Microbial production of rhamnolipids : opportunities , challenges and strategies. Microb. Cell Fact. 1–12. https://doi.org/10.1186/s12934-017-0753-2spa
dcterms.referencesChristensen, G.D., Simpson, W.A., Younger, J.J., Baddour, L.M., Barrett, F.F., Melton, D.M., Beachey, E.H., 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22, 996–1006. https://doi.org/10.1128/jcm.22.6.996-1006.1985spa
dcterms.referencesCiofu, O., Tolker-nielsen, T., 2019. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents: How P. aeruginosa can escape antibiotics. Front. Microbiol. 10. https://doi.org/10.3389/fmicb.2019.00913spa
dcterms.referencesClemence, F., Le Martret, O., DeleVallee, F., Benzoni, J., Jouanen, A., Jouquey, S., Mouren, M., Deraedtt, R., 1988. 4-Hydroxy-3-quinolinecarboxamides with Antiarthritic and Analgesic Activities. J. Med. Chem. 31, 1453–1462.spa
dcterms.referencesComas, I., Homolka, S., Niemann, S., Gagneux, S., 2009. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One 4. https://doi.org/10.1371/journal.pone.0007815spa
dcterms.referencesConly, J.M., Johnston, B.L., 2005. Where are all the new antibiotics? The new antibiotic paradox. Can. J. Infect. Dis. Med. Microbiol. 16, 159–160. https://doi.org/10.1155/2005/892058spa
dcterms.referencesCosterton, J.W., Stewart, P.S., Greenberg, E.P., 1999. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–22.spa
dcterms.referencesCristina, R., Dantas, C., Ferreira, M.L., William, D., Gontijo-filho, P.P., Ribas, R.M., 2017. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm. Brazilian J. Microbiol. 48, 211–217. https://doi.org/10.1016/j.bjm.2016.11.004spa
dcterms.referencesCummins, J., Reen, F.J., Baysse, C., Mooij, M.J., O’Gara, F., 2009. Subinhibitory concentrations of the cationic antimicrobial peptide colistin induce the pseudomonas quinolone signal in Pseudomonas aeruginosa. Microbiology 155, 2826–2837. https://doi.org/10.1099/mic.0.025643-0spa
dcterms.referencesDas, T., Ibugo, A.I., Klare, W., Manefield, M., 2016. Role of pyocyanin and extracellular DNA in facilitating Pseudomonas aeruginosa biofilm formation, in: Microbial Biofilms - Importance and Applications. pp. 23–42.spa
dcterms.referencesDe Britto, S., Gajbar, T.D., Satapute, P., Sundaram, L., Lakshmikantha, R.Y., Jogaiah, S., Ito, S. ichi, 2020. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci. Rep. 10, 1–12. https://doi.org/10.1038/s41598-020-58335-6spa
dcterms.referencesDe Carvalho, C.C.C.R., 2007. Biofilms: recent developments on an old battle. Recent Pat. Biotechnol. 1, 49–57. https://doi.org/10.2174/187220807779813965spa
dcterms.referencesDe Souza, M.V.N., Pais, K.C., Kaiser, C.R., Peralta, M.A., de L. Ferreira, M., Lourenço, M.C.S., 2009. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorganic Med. Chem. 17, 1474–1480. https://doi.org/10.1016/j.bmc.2009.01.013spa
dcterms.referencesDeligianni, E., Pattison, S., Berrar, D., Ternan, N.G., Haylock, R.W., Moore, J.E., Elborn, S.J., Dooley, J.S.G., 2010. Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol. 10. https://doi.org/10.1186/1471-2180-10-38spa
dcterms.referencesDepke, T., Franke, R., Brönstrup, M., 2017. Clustering of MS2 spectra using unsupervised methods to aid the identification of secondary metabolites from Pseudomonas aeruginosa. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1071, 19–28. https://doi.org/10.1016/j.jchromb.2017.06.002spa
dcterms.referencesDepluverez, S., Devos, S., Devreese, B., 2016. The role of bacterial secretion systems in the virulence of Gram-negative airway pathogens associated with cystic fibrosis. Front. Microbiol. 7, 1–8. https://doi.org/10.3389/fmicb.2016.01336spa
dcterms.referencesDéziel, E., Lépine, F., Milot, S., He, J., Mindrinos, M.N., Tompkins, R.G., Rahme, L.G., 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. U. S. A. 101, 1339–1344. https://doi.org/10.1073/pnas.0307694100spa
dcterms.referencesDi Domenico, E.G., Farulla, I., Prignano, G., Gallo, M.T., Vespaziani, M., Cavallo, I., Sperduti, I., Pontone, M., Bordignon, V., Cilli, L., De Santis, A., Di Salvo, F., Pimpinelli, F., La Parola, I.L., Toma, L., Ensoli, F., 2017. Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype. Int. J. Mol. Sci. 18. https://doi.org/10.3390/ijms18051077spa
dcterms.referencesDias Siqueira, V.L., Cardoso, R.F., de Pádua, R.A.F., Caleffi-Ferracioli, K.R., Helbel, C., Barreto Santos, A.C., Aoki, E.E., Nakamura, C.V., 2013. High genetic diversity among Pseudomonas aeruginosa and Acinetobacter spp. isolated in a public hospital in Brazil. Brazilian J. Pharm. Sci. 49, 49–56. https://doi.org/10.1590/S1984- 82502013000100006spa
dcterms.referencesDíaz, Y.M., Laverde, G.V., Gamba, L.R., Wandurraga, H.M., Arévalo-Ferro, C., Rodríguez, F.R., Beltrán, C.D., Hernández, L.C., 2015. Biofilm inhibition activity of compounds isolated from two Eunicea species collected at the Caribbean Sea. Brazilian J. Pharmacogn. 25, 605–611. https://doi.org/10.1016/j.bjp.2015.08.007spa
dcterms.referencesDötsch, A., Pommerenke, C., Bredenbruch, F., Geffers, R., Häussler, S., 2009. Evaluation of a microarray-hybridization based method applicable for discovery of single nucleotide polymorphisms (SNPs) in the Pseudomonas aeruginosa genome. BMC Genomics 10, 1–13. https://doi.org/10.1186/1471-2164-10-29spa
dcterms.referencesDrebes Dörr, N.C., Blokesch, M., 2018. Bacterial type VI secretion system facilitates niche domination. Proc. Natl. Acad. Sci. 115, 8855–8857. https://doi.org/10.1073/pnas.1812776115spa
dcterms.referencesDubois, V., Arpin, C., Noury, P., Quentin, C., 2002. Clinical strain of Pseudomonas aeruginosa carrying a blaTEM-21 gene located on a chromosomal interrupted TnA type transposon. Antimicrob. Agents Chemother. 46, 3624–3626. https://doi.org/10.1128/AAC.46.11.3624-3626.2002spa
dcterms.referencesEl-Fouly, M.Z., Sharaf, A.M., Shahin, A.A.M., El-Bialy, H.A., Omara, A.M.A., 2015. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J. Radiat. Res. Appl. Sci. 8, 36–48. https://doi.org/10.1016/j.jrras.2014.10.007spa
dcterms.referencesEl-Shouny, W.A., Al-Baidani, A.R.H., Hamza, W.T., 2011. Antimicrobial activity of pyocyanin produced by Pseudomonas aeruginosa isolated from surgical woundinfections. Int. J. Pharm. Med. Sci. 1, 1–07.spa
dcterms.referencesEl Zowalaty, M.E., Al Thani, A.A., Webster, T.J., El Zowalaty, A.E., Schweizer, H.P., Nasrallah, G.K., Marei, H.E., Ashour, H.M., 2015. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 10, 1683–1706. https://doi.org/10.2217/fmb.15.48spa
dcterms.referencesFarouk El Moufti, M., Baddour, M., Abdel Hameed Harfoush, R., Mohamed Aly Owais, H., 2015. Characterization of some genotypic and phenotypic traits of biofilm producing clinical isolates of methicillin resistant Staphylococcus epidermidis. Am. J. Infect. Dis. Microbiol. 3, 95–103. https://doi.org/10.12691/ajidm-3-3-2spa
dcterms.referencesFeldman, M., Bryan, R., Rajan, S., Scheffler, L., Brunnert, S., Tang, H., Prince, A., 1998. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun. 66, 43–51. https://doi.org/10.1128/iai.66.1.43-51.1998spa
dcterms.referencesFilloux, A., 2011. Protein secretion systems in Pseudomonas aeruginosa: An essay on diversity, evolution, and function. Front. Microbiol. 2, 1–21. https://doi.org/10.3389/fmicb.2011.00155spa
dcterms.referencesFraser-Liggett, C.M., 2005. Insights on biology and evolution from microbial genome sequencing. Genome Res. 15, 1603–1610. https://doi.org/10.1101/gr.3724205spa
dcterms.referencesFu, Y., Zhang, F., Zhang, W., Chen, X., Zhao, Y., Ma, J., Bao, L., Song, W., Ohsugi, T., Urano, T., Liu, S., 2007. Differential expression of blaSHV related to susceptibility to ampicillin in Klebsiella pneumoniae. Int. J. Antimicrob. Agents 29, 344–347. https://doi.org/10.1016/j.ijantimicag.2006.10.015spa
dcterms.referencesFujitani, S., Sun, H., Yu, V.L., Weingarten, J.A., 2011. Pneumonia due to Pseudomonas aeruginosa. Part I: Epidemiology, clinical diagnosis, and source. Chest 139, 909– 919. https://doi.org/10.1378/chest.10-0166spa
dcterms.referencesGellatly, S.L., Hancock, R.E.W., 2013. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 67, 159–173. https://doi.org/10.1111/2049-632X.12033spa
dcterms.referencesGooderham, W.J., Bains, M., Mcphee, J.B., Wiegand, I., Hancock, R.E.W., 2008. Induction by cationic antimicrobial peptides and involvement in intrinsic polymyxin and antimicrobial peptide resistance, biofilm formation, and swarming motility of PsrA in Pseudomonas aeruginosa. J. Bacteriol. 190, 5624–5634. https://doi.org/10.1128/JB.00594-08spa
dcterms.referencesGooderham, W.J., Gellatly, S.L., Mcphee, J.B., Bains, M., Cosseau, C., Levesque, R.C., Hancock, R.E.W., 2009. The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Microbiology 155, 699–711. https://doi.org/10.1099/mic.0.024554-0spa
dcterms.referencesGoossens, H., 2003. Susceptibility of multi-drug-resistant Pseudomonas aeruginosa in intensive care units: Results from the European MYSTIC study group. Clin. Microbiol. Infect. 9, 980–983. https://doi.org/10.1046/j.1469-0691.2003.00690.xspa
dcterms.referencesGreen, E.R., Mecsas, J., 2016. Bacterial Secretion Systems: An overview. Virulence Mech. Bact. Pathog. 4, 213–239. https://doi.org/10.1128/9781555819286.ch8spa
dcterms.referencesGreenberg, E.P., Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864.spa
dcterms.referencesHachani, A., Lossi, N.S., Hamilton, A., Jones, C., Bleves, S., Albesa-Jové, D., Filloux, A., 2011. Type VI secretion system in Pseudomonas aeruginosa: Secretion and multimerization of VgrG proteins. J. Biol. Chem. 286, 12317–12327. https://doi.org/10.1074/jbc.M110.193045spa
dcterms.referencesHall, S., McDermott, C., Anoopkumar-Dukie, S., McFarland, A.J., Forbes, A., Perkins, A. V., Davey, A.K., Chess-Williams, R., Kiefel, M.J., Arora, D., Grant, G.D., 2016. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins (Basel). 8, 1–14. https://doi.org/10.3390/toxins8080236spa
dcterms.referencesHan, Y., Wang, T., Chen, G., Pu, Q., Liu, Q., Zhang, Y., Xu, L., Wu, M., Liang, H., 2019. A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition. PLoS Pathog. 15, 1–25. https://doi.org/10.1371/journal.ppat.1008198spa
dcterms.referencesHancock, R.E.W., 1998. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative Gram-negative bacteria. Clin. Infect. Dis. 27, S93–S99. https://doi.org/10.1086/514909spa
dcterms.referencesHancock, R.E.W., Brinkman, F.S.L., 2002. Function of Pseudomonas porins in uptake and efflux. Annu. Rev. Microbiol. 17–38. https://doi.org/10.1146/annurev.micro.56.012302.160310spa
dcterms.referencesHancock, R.E.W., Speert, D.P., 2000. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist. Updat. 3, 247–255. https://doi.org/10.1054/drup.2000.0152spa
dcterms.referencesHassan, Y.H., Hanna Aka, S.T., Jalal, S.T., 2019. Correlation between blaSHV Gene and Biofilm Formation among Beta Lactamase Producing Uropathogenic Isolates from Patients in Erbil City in Iraq. Mol Biol 8, 2168–9547.spa
dcterms.referencesHauser, A.R., 2011. Pseudomonas aeruginosa: So many virulence factors, so little time. Crit Care Med. 39, 2193–2194. https://doi.org/10.1097/CCM.0b013e318221742d.Pseudomonasspa
dcterms.referencesHennequin, C., Aumeran, C., Robin, F., Traore, O., Forestier, C., 2012. Antibiotic resistance and plasmid transfer capacity in biofilm formed with a CTX-M-15- producing Klebsiella pneumoniae isolate. J. Antimicrob. Chemother. 67, 2123–2130. https://doi.org/10.1093/jac/dks169spa
dcterms.referencesHenrichfreise, B., Wiegand, I., Pfister, W., Wiedemann, B., 2007. Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob. Agents Chemother. 51, 4062–4070. https://doi.org/10.1128/AAC.00148-07spa
dcterms.referencesHerrmann, G., Yang, L., Wu, H., Song, Z., Wang, H., Høiby, N., Ulrich, M., Molin, S., Riethmüller, J., Döring, G., 2010. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J. Infect. Dis. 202, 1585–1592. https://doi.org/10.1086/656788spa
dcterms.referencesHocquet, D., Berthelot, P., Roussel-Delvallez, M., Favre, R., Jeannot, K., Bajolet, O., Marty, N., Grattard, F., Mariani-Kurkdjian, P., Bingen, E., Husson, M.O., Couetdic, G., Plésiat, P., 2007. Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrob. Agents Chemother. 51, 3531–3536. https://doi.org/10.1128/AAC.00503-07spa
dcterms.referencesHoge, R., Pelzer, A., Rosenau, F., Wilhelm, S., 2010. “Weapons of a pathogen : Proteases and their role in virulence of Pseudomonas aeruginosa” 45, 383–395.spa
dcterms.referencesHøiby, N., 2017. A short history of microbial biofilms and biofilm infections. Apmis 125, 272–275. https://doi.org/10.1111/apm.12686spa
dcterms.referencesHøiby, N., 1977. Pseudomonas aeruginosa infection in cystic fibrosis. Acta Phth. microbiol. scand 85, 149–152.spa
dcterms.referencesHolla, S., Poojary, K.N., Poojary, B., Bhat, S., Kumari, S., 2005. Synthesis, characterization and antibacterial activity studies on some fluorine containing quinoline-4-carboxylic acids and their derivatives. Indian J. Chem. 44, 2114–2119.spa
dcterms.referencesHood, R.D., Singh, P., Hsu, F.S., Güvener, T., Carl, M.A., Trinidad, R.R.S., Silverman, J.M., Ohlson, B.B., Hicks, K.G., Plemel, R.L., Li, M., Schwarz, S., Wang, W.Y., Merz, A.J., Goodlett, D.R., Mougous, J.D., 2010. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37. https://doi.org/10.1016/j.chom.2009.12.007spa
dcterms.referencesHorna, G., Quezada, K., Ramos, S., Mosqueda, N., Rubio, M., Guerra, H., Ruiz, J., 2019. Specific type IV pili groups in clinical isolates of Pseudomonas aeruginosa. Int. Microbiol. 22, 131–141. https://doi.org/10.1007/s10123-018-00035-3spa
dcterms.referencesImada, K., 2018. Bacterial flagellar axial structure and its construction. Biophys. Rev. 10, 559–570. https://doi.org/10.1007/s12551-017-0378-zspa
dcterms.referencesInaba, S., Nishigaki, T., Takekawa, N., Kojima, S., Homma, M., 2017. Localization and domain characterization of the SflA regulator of flagellar formation in Vibrio alginolyticus. Genes to Cells 22, 619–627. https://doi.org/10.1111/gtc.12501spa
dcterms.referencesInacio, H.S.M., Bomfim, M.R.Q., França, R.O., Farias, L.M., Carvalho, M.A.R., Serufo, J.C., Santos, S.G., 2014. Phenotypic and genotypic diversity of multidrug-resistant Pseudomonas aeruginosa isolates from bloodstream infections recovered in the hospitals of Belo Horizonte, Brazil. Chemotherapy 60, 54–62. https://doi.org/10.1159/000365726spa
dcterms.referencesInstituto Nacional de salud, 2017. Resultados del programa de informe de resultados de la vigilancia por laboratorio de resistencia antimicrobiana en infecciones asociadas a la atención en salud (IAAS) 2017.spa
dcterms.referencesInstituto Nacional de Salud, 2020. Reporte semana epidemiológica 10, Boletín epidemiológico semanal. https://doi.org/10.33610/23576189.2020.07spa
dcterms.referencesJacobsen, T., Bardiaux, B., Francetic, O., Izadi-Pruneyre, N., Nilges, M., 2019. Structure and function of minor pilins of type IV pili. Med. Microbiol. Immunol. https://doi.org/10.1007/s00430-019-00642-5spa
dcterms.referencesJain, R., Behrens, A.J., Kaever, V., Kazmierczak, B.I., 2012. Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic di-GMP concentrations. J. Bacteriol. 194, 4285–4294. https://doi.org/10.1128/JB.00803-12spa
dcterms.referencesJamal, M., Tasneem, U., Hussain, T., Andleeb, and S., 2015. Bacterial biofilm: Its composition, formation and role in human infections. Res. Rev. J. Microbiol. Biotechnol. 4, 1–14.spa
dcterms.referencesJayaseelan, S., Ramaswamy, D., Dharmaraj, S., 2014. Pyocyanin: Production, applications, challenges and new insights. World J. Microbiol. Biotechnol. 30, 1159– 1168. https://doi.org/10.1007/s11274-013-1552-5spa
dcterms.referencesJeukens, J., Freschi, L., Kukavica-ibrulj, I., Tucker, N.P., Levesque, R.C., 2019. Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa. Ann. N. Y. Acad. Sci. 1435, 5–17. https://doi.org/10.1111/nyas.13358spa
dcterms.referencesJohansen, C., Falholt, P., Gram, L., 1997. Enzymatic removal and disinfection of bacterial biofilms. Appl. Environ. Microbiol. 63.spa
dcterms.referencesJohansson, E., Welinder-Olsson, C., Gilljam, M., Pourcel, C., Lindblad, A., 2015. Genotyping of Pseudomonas aeruginosa reveals high diversity, stability over time and good outcome of eradication. J. Cyst. Fibros. 14, 353–360. https://doi.org/10.1016/j.jcf.2014.09.016spa
dcterms.referencesKang, C., Kim, S., Kim, H., Park, S., Choe, Y., Oh, M., Kim, E., Choe, K., 2003. Pseudomonas aeruginosa Bacteremia: Risk Factors for Mortality and Influence of Delayed Receipt of Effective Antimicrobial Therapy on Clinical Outcome. Clin. Infect. Dis. 37, 745–751. https://doi.org/10.1086/377200spa
dcterms.referencesKearns, D.B., 2010. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8, 634–644. https://doi.org/10.1038/nrmicro2405spa
dcterms.referencesKhan, W., Bernier, S.P., Kuchma, S.L., Hammond, J.H., Hasan, F., O’Toole, G.A., 2010. Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int. Microbiol. 13, 207–212. https://doi.org/10.2436/20.1501.01.127spa
dcterms.referencesKidd, T.J., Ritchie, S.R., Ramsay, K.A., Grimwood, K., Bell, S.C., Rainey, P.B., 2012. Pseudomonas aeruginosa Exhibits Frequent Recombination, but Only a Limited Association between Genotype and Ecological Setting. PLoS One 7. https://doi.org/10.1371/journal.pone.0044199spa
dcterms.referencesKim, W.G., Kim, J.P., Yoo, I.D., 1996. Benzastatins A, B, C, and D : New free radical scavengers from Streptomyces nitrosporeus 30643 II. Structure determination. J. Antibiot. (Tokyo). 49, 26–30. https://doi.org/10.7164/antibiotics.49.26spa
dcterms.referencesKojic, M., Aguilar, C., Venturi, V., 2002. TetR Family Member PsrA Directly Binds the Pseudomonas rpoS and psrA Promoters. J. Bacteriol. 184, 2324–2330. https://doi.org/10.1128/JB.184.8.2324spa
dcterms.referencesKolpen, M., Appeldorff, C.F., Brandt, S., Mousavi, N., Kragh, K.N., Aydogan, S., Uppal, H.A., Bjarnsholt, T., Ciofu, O., Høiby, N., Jensen, P., 2018. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions. Pathog. Dis. 74, 1–7. https://doi.org/10.1093/femspd/ftv086spa
dcterms.referencesKoo, J., Lamers, R.P., Rubinstein, J.L., Burrows, L.L., Howell, P.L., 2016. Structure of the Pseudomonas aeruginosa type IVa pilus secretin at 7.4 Å. Structure 24, 1778–1787. https://doi.org/10.1016/j.str.2016.08.007spa
dcterms.referencesKurhekar, J.V., 2020. Antimicrobial lead compounds from marine plants. Phytochem. as Lead Compd. New Drug Discov. 257–274. https://doi.org/10.1016/b978-0-12- 817890-4.00017-2spa
dcterms.referencesKuznetsova, M. V., Maslennikova, I.L., Karpunina, T.I., Nesterova, L.Y., Demakov, V.A., 2013. Interactions of Pseudomonas aeruginosa in predominant biofilm or planktonic forms of existence in mixed culture with Escherichia coli in vitro. Can. J. Microbiol. 59, 604–610. https://doi.org/10.1139/cjm-2013-0168spa
dcterms.referencesLalucat, J., Mulet, M., Gomila, M., García-Valdés, E., 2020. Genomics in bacterial taxonomy: Impact on the genus pseudomonas. Genes (Basel). 11. https://doi.org/10.3390/genes11020139spa
dcterms.referencesLanini, S., D’Arezzo, S., Puro, V., Martini, L., Imperi, F., Piselli, P., Montanaro, M., Paoletti, S., Visca, P., Ippolito, G., 2011. Molecular epidemiology of a Pseudomonas aeruginosa hospital outbreak driven by a contaminated disinfectant-soap dispenser. PLoS One 6. https://doi.org/10.1371/journal.pone.0017064spa
dcterms.referencesLau, G.W., Hassett, D.J., Ran, H., Kong, F., 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med. 10, 599–606. https://doi.org/10.1016/j.molmed.2004.10.002spa
dcterms.referencesLavrado, J., Moreira, R., Paulo, a, 2010. Indoloquinolines as scaffolds for drug discovery. Curr. Med. Chem. 17, 2348–2370.spa
dcterms.referencesLee, K., Yoon, S.S., 2017. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J. Microbiol. Biotechnol. 27, 1053–1064. https://doi.org/10.4014/jmb.1611.11056spa
dcterms.referencesLeighton, T.L., Buensuceso, R.N.C., Howell, P.L., Burrows, L.L., 2015. Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function. Environ. Microbiol. 17, 4148–4163. https://doi.org/10.1111/1462-2920.12849spa
dcterms.referencesLeiker, K., Weitao, T., 2016. The SOS Response of Biofilms. Int. J. Clin. Med. Microbiol. 1, 1–7.spa
dcterms.referencesLi, W., Raoult, D., Fournier, P.E., 2009. Bacterial strain typing in the genomic era. FEMS Microbiol. Rev. 33, 892–916. https://doi.org/10.1111/j.1574-6976.2009.00182.xspa
dcterms.referencesLien, Y.W., Lai, E.M., 2017. Type VI secretion effectors: Methodologies and biology. Front. Cell. Infect. Microbiol. 7, 1–11. https://doi.org/10.3389/fcimb.2017.00254spa
dcterms.referencesLima, J.L. da C., Alves, L.R., Jacomé, P.R.L. de A., Bezerra Neto, J.P., Maciel, M.A.V., Morais, M.M.C. de, 2018. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Brazilian J. Infect. Dis. 22, 129–136. https://doi.org/10.1016/j.bjid.2018.03.00spa
dcterms.referencesLinares, J.F., Moreno, R., Fajardo, A., Martínez-solano, L., Escalante, R., Rojo, F., Martínez, J.L., 2010. The global regulator Crc modulates metabolism , susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Environ. Microbiol. 12, 3196–3212. https://doi.org/10.1111/j.1462-2920.2010.02292.xspa
dcterms.referencesLindegaard, Mikkel; Long, Katherine; Molin, Søren; Johansen, H.K., 2016. The evolution and adaptation of clinical Pseudomonas aeruginosa isolates from early cystic fibrosis infections.spa
dcterms.referencesLister, P.D., Wolter, D.J., Hanson, N.D., 2009. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22, 582–610. https://doi.org/10.1128/CMR.00040-09spa
dcterms.referencesLivermore, D.M., 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34, 634–640. https://doi.org/10.1086/338782spa
dcterms.referencesLo, A., Cervoni, M., Stefanelli, R., Mancone, C., Imperi, F., 2020. Effect of lipid A aminoarabinosylation on Pseudomonas aeruginosa colistin resistance and fitness. Int. J. Antimicrob. Agents 55, 105957. https://doi.org/10.1016/j.ijantimicag.2020.105957spa
dcterms.referencesLópez-Causapé, C., Sommer, L.M., Cabot, G., Rubio, R., Ocampo-Sosa, A.A., Johansen, H.K., Figuerola, J., Cantón, R., Kidd, T.J., Molin, S., Oliver, A., 2017. Evolution of the Pseudomonas aeruginosa mutational resistome in an international Cystic Fibrosis clone. Sci. Rep. 7, 1–15. https://doi.org/10.1038/s41598-017-05621-5spa
dcterms.referencesMacfarlane, E.L.A., Kwasnicka, A., Hancock, R.E.W., 2000. Role of Pseudomonas aeruginosa PhoP-PhoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology 146, 2543–2554.spa
dcterms.referencesMadsen, J.S., Burmølle, M., Hansen, L.H., Sørensen, S.J., 2012. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 65, 183–195. https://doi.org/10.1111/j.1574-695X.2012.00960.xspa
dcterms.referencesMagalhães, B., Valot, B., Abdelbary, M.M.H., Prod’hom, G., Greub, G., Senn, L., Blanc, D.S., 2020. Combining Standard Molecular Typing and Whole Genome Sequencing to Investigate Pseudomonas aeruginosa Epidemiology in Intensive Care Units. Front. Public Heal. 8, 1–10. https://doi.org/10.3389/fpubh.2020.00003spa
dcterms.referencesMagiorakos, a, Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbarth, S., Hindler, J.F., 2011. Bacteria : an International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Microbiology 18, 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.xspa
dcterms.referencesMah, T.-F., Pitts, B., Pellock, B., Walker, G.C., Stewart, P.S., Toole, G. a O., 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Lett. to Nat. 426, 1–5. https://doi.org/10.1038/nature02090.1.spa
dcterms.referencesManaia, C.M., Macedo, G., Fatta-Kassinos, D., Nunes, O.C., 2016. Antibiotic resistance in urban aquatic environments: can it be controlled? Appl. Microbiol. Biotechnol. 100, 1543–1557. https://doi.org/10.1007/s00253-015-7202-0spa
dcterms.referencesMarganakop, S.B., Kamble, R.R., Hoskeri, J., Prasad, D.J., Meti, G.Y., 2014. Facile synthesis of novel quinoline derivatives as anticancer agents. Med. Chem. Res. 23, 2727–2735. https://doi.org/10.1007/s00044-013-0855-2spa
dcterms.referencesMarston, H.D., Dixon, D.M., Knisely, J.M., Palmore, T.N., Fauci, A.S., 2016. Antimicrobial resistance. JAMAthe J. Am. Med. Assoc. 316, 1193–1204. https://doi.org/10.1001/jama.2016.11764spa
dcterms.referencesMartínez Díaz, Y., Vanegas Laverde, G., Reina Gamba, L., Mayorga Wandurraga, H., Arévalo-Ferro, C., Ramos Rodríguez, F., Duque Beltrán, C., Castellanos Hernández, L., 2015. Biofilm inhibition activity of compounds isolated from two Eunicea species collected at the Caribbean Sea. Rev. Bras. Farmacogn. 1–7. https://doi.org/10.1016/j.bjp.2015.08.007spa
dcterms.referencesMartínez, J.L., Rojo, F., 2011. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 35, 768–789. https://doi.org/10.1111/j.1574-6976.2011.00282.xspa
dcterms.referencesMarvig, R.L., Johansen, H.K., Molin, S., Jelsbak, L., 2013. Genome Analysis of a Transmissible Lineage of Pseudomonas aeruginosa Reveals Pathoadaptive Mutations and Distinct Evolutionary Paths of Hypermutators. PLoS Genet. 9. https://doi.org/10.1371/journal.pgen.1003741spa
dcterms.referencesMaurice, N.M., Bedi, B., Sadikot, R.T., 2018. Pseudomonas aeruginosa biofilms: Host response and clinical implications in lung infections. Am. J. Respir. Cell Mol. Biol. 58, 428–439. https://doi.org/10.1165/rcmb.2017-0321TRspa
dcterms.referencesMavrodi, D. V, Bonsall, R.F., Delaney, S.M., Soule, M.J., Phillips, G., Thomashow, L.S., 2001. Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1- Carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183, 6454–6465. https://doi.org/10.1128/JB.183.21.6454spa
dcterms.referencesMazgaeen, L., Gurung, P., 2020. Recent advances in lipopolysaccharide recognition systems. Int. J. Mol. Sci. 21.spa
dcterms.referencesMcQuade, R., Stock, S.P., 2018. Secretion systems and secreted proteins in gramnegative entomopathogenic bacteria: Their roles in insect virulence and beyond. Insects 9. https://doi.org/10.3390/insects9020068spa
dcterms.referencesMohanty, S., Baliyarsingh, B., Kumar Nayak, S., 2020. Antimicrobial resistance in Pseudomonas aeruginosa: A concise review, in: Antimicrobial Resistance [Working Title]. IntechOpen. https://doi.org/http://dx.doi.org/10.5772/57353spa
dcterms.referencesMontero, M.M., 2012. Pseudomonas aeruginosa multiresistente: aspectos epidemiológicos, clínicos y terapéuticosspa
dcterms.referencesMulet, M., Lalucat, J., García-Valdés, E., 2010. DNA sequence-based analysis of the Pseudomonas species. Environ. Microbiol. 12, 1513–1530. https://doi.org/10.1111/j.1462-2920.2010.02181.xspa
dcterms.referencesNanvazadeh, F., Khosravi, A.D., Zolfaghari, M.R., Parhizgari, N., 2013. Genotyping of Pseudomonas aeruginosa strains isolated from burn patients by RAPD-PCR. Burns 39, 1409–1413. https://doi.org/10.1016/j.burns.2013.03.008spa
dcterms.referencesNavarro, F., Calvo, J., Cantón, R., Fernández-Cuenca, F., Mirelis, B., 2011. Detección fenotípica de mecanismos de resistencia en microorganismos gramnegativos. Enferm. Infecc. Microbiol. Clin. 29, 524–534. https://doi.org/10.1016/j.eimc.2011.03.011spa
dcterms.referencesNelson, J.M., Chiller, T.M., Powers, J.H., Angulo, F.J., 2007. Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. Clin. Infect. Dis. 44, 977–80. https://doi.org/10.1086/512369spa
dcterms.referencesNguyen, Y., Harvey, H., Sugiman-Marangos, S., Bell, S.D., Buensuceso, R.N.C., Junop, M.S., Burrows, L.L., 2015. Structural and functional studies of the Pseudomonas aeruginosa Minor Pilin, PilE. J. Biol. Chem. 290, 26856–26865. https://doi.org/10.1074/jbc.M115.683334spa
dcterms.referencesO’Loughlin, C.T., Miller, L.C., Siryaporn, A., Drescher, K., Semmelhack, M.F., Bassler, B.L., 2013. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl. Acad. Sci. 110, 17981–17986. https://doi.org/10.1073/pnas.1316981110spa
dcterms.referencesOchoa Diaz, M.M., Gómez Camargo, D.E., Rodríguez Otálora, M.C., 2015. La prevalencia de patógenos en unidades de cuidados intensivos adultos del distrito de Cartagena de Indias [WWW Document]. Opinión & Salud. URL https://www.opinionysalud.com/la-prevalencia-de-patogenos-en-unidades-decuidados-intensivos-adultos-del-distrito-de-cartagena-de-indias/ (accessed 6.7.18).spa
dcterms.referencesOchoa, S.A., López-montiel, F., Escalona, G., Cruz-córdova, A., Dávila, L.B., Lópezmartínez, B., Jiménez-tapia, Y., Giono, S., Eslava, C., Hernández-castro, R., Xicohtencatl-cortes, J., 2013. Características patogénicas de cepas de Pseudomonas aeruginosa resistentes a carbapenémicos, asociadas con la formación de biopelículas. Bol. Med. Hosp. Infant. Mex. 70, 138–150.spa
dcterms.referencesOrlandi, V.T., Bolognese, F., Chiodaroli, L., Tolker-Nielsen, T., Barbieri, P., 2015. Pigments influence the tolerance of pseudomonas aeruginosa PAO1 to photodynamically induced oxidative stress. Microbiology 161, 2298–2309. https://doi.org/10.1099/mic.0.000193spa
dcterms.referencesOstrup Jensen, P., Givskov, M., Bjarnsholt, T., Moser, C., 2010. The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol. Med. Microbiol. 59, 292–305. https://doi.org/10.1111/j.1574-695X.2010.00706.xspa
dcterms.referencesOtero-Gonzalez, a. J., Magalhaes, B.S., Garcia-Villarino, M., Lopez-Abarrategui, C., Sousa, D. a., Dias, S.C., Franco, O.L., 2010. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J. 24, 1320– 1334. https://doi.org/10.1096/fj.09-143388spa
dcterms.referencesPachori, P., Gothalwal, R., Gandhi, P., 2019. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 6, 109– 119. https://doi.org/10.1016/j.gendis.2019.04.001spa
dcterms.referencesPang, Z., Raudonis, R., Glick, B.R., Lin, T.J., Cheng, Z., 2019. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 37, 177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013spa
dcterms.referencesPappa, O., Mandilara, G., Vatopoulos, A., Mavridou, A., 2013. Typing of Pseudomonas aeruginosa strains isolated from Greek water samples by three typing methods: Serotyping, Random Amplified Polymorphic DNA (RAPD) and Pulsed Field Gel Electrophoresis (PFGE). Water Sci. Technol. 67, 1380–1388. https://doi.org/10.2166/wst.2013.678spa
dcterms.referencesParkins, M.D., Somayaji, R., Waters, V.J., 2018. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in Cystic Fibrosis. Clin. Microbiol. Rev. 31, 1–38. https://doi.org/10.1128/CMR.00019-18spa
dcterms.referencesPaterson, D.L., Bonomo, R.A., 2012. Extended spectrum beta lactamases: A critical update. Clin. Microbiol. Rev. 18, 115–129. https://doi.org/10.2174/978160805292911201010115spa
dcterms.referencesPearson, J.P., Gray, K.M., Passador, L., Tucker, K.D., Eberhard, A., Iglewski, B.H., Greenberg, E.P., 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. U. S. A. 91, 197– 201. https://doi.org/10.1073/pnas.91.1.197spa
dcterms.referencesPearson, J.P., Passador, L., Iglewski, B.H., Greenberg, E.P., 1995. A second Nacylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. 92, 1490–1494. https://doi.org/10.1073/pnas.92.5.1490spa
dcterms.referencesPérez, M.J., Falqué, E., Domínguez, H., 2016. Antimicrobial action of compounds from marine seaweed. Mar. Drugs 14. https://doi.org/10.3390/md14030052spa
dcterms.referencesPersat, A., Inclan, Y.F., Engel, J.N., Stone, H.A., Gitai, Z., 2015. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc. Diversidad genética de P. aeruginosa 115 Natl. Acad. Sci. U. S. A. 112, 7563–7568. https://doi.org/10.1073/pnas.1502025112spa
dcterms.referencesPhoon, H.Y.P., Hussin, H., Hussain, B.M., Lim, S.Y., Woon, J.J., Er, Y.X., Thong, K.L., 2018. Distribution, genetic diversity and antimicrobial resistance of clinically important bacteria from the environment of a tertiary hospital in Malaysia. J. Glob. Antimicrob. Resist. 14, 132–140. https://doi.org/10.1016/j.jgar.2018.02.022spa
dcterms.referencesPirnay, J.-P., Bilocq, F., Pot, B., Cornelis, P., Zizi, M., Van Eldere, J., Deschaght, P., Vaneechoutte, M., Jennes, S., Pitt, T., De Vos, D., 2009. Pseudomonas aeruginosa population structure revisited. PLoS One 4, e7740. https://doi.org/10.1371/journal.pone.0007740spa
dcterms.referencesPirnay, J.P., De Vos, D., Mossialos, D., Vanderkelen, A., Cornelis, P., Zizi, M., 2002. Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. Environ. Microbiol. 4, 872–882. https://doi.org/10.1046/j.1462- 2920.2002.00281.xspa
dcterms.referencesProhaszka, L., Rozsnyai, T., 1990. Potentiation of the anticoccidial effect of salinomycin with dihydroquinoline-type antioxidants. Avian Pathol. 19, 15–21. https://doi.org/10.1080/03079459008418652spa
dcterms.referencesQaiyumi, S., 2007. Macro- and Microdilution Methods of Antimicrobial Susceptibility Testing, in: Schwalbe, R., Steele-Moore, L., Goodwin, A.C. (Eds.), Antimicrobial Susceptibility Testing Protocols. CRC Press, Boca Raton, FL, p. 430.spa
dcterms.referencesRabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., Sintim, H.O., 2015. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 7, 493–512. https://doi.org/10.4155/fmc.15.6spa
dcterms.referencesRada, A.M., Hernández-Gómez, C., Restrepo, E., Villegas, M.V., 2019. Distribución y caracterización molecular de betalactamasas en bacterias Gram negativas en Colombia, 2001-2016. Biomédica 39, 199–220. https://doi.org/10.7705/biomedica.v39i3.4351spa
dcterms.referencesRao, X., Huang, X., Zhou, Z., Lin, X., 2013. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma. Biomath. 3, 71–85.spa
dcterms.referencesRasamiravaka, T., Labtani, Q., Duez, P., El Jaziri, M., 2015. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res. Int. 2015. https://doi.org/10.1155/2015/759348spa
dcterms.referencesRasko, D.A., Ernst, K.E., 2019. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J. Bacteriol. 201, 1–18.spa
dcterms.referencesReyes, E.A.P., Bale, M.J., Cannon, W.H., Matsen, J.M., 1981. Identification of Pseudomonas aeruginosa by pyocyanin production on Tech agar. J. Clin. Microbiol. 13, 456–458. https://doi.org/10.1128/jcm.13.3.456-458.1981spa
dcterms.referencesRO, B., BO, O., BY, M., PA, E., JC, I., M, T., 2017. Prevalence of Aac(6’)-Ib-Cr and Qepa genes among quinolone resistant uropathogens isolated from asymptomatic female students of a Northern University on Nigeria. Clin. Microbiol. Open Access 06. https://doi.org/10.4172/2327-5073.1000298spa
dcterms.referencesRobinson, D.A., Thomas, J.C., Hanage, W.P., 2011. Population Structure of Pathogenic Bacteria, First Edit. ed, Genetics and Evolution of Infectious Diseases. Elsevier Inc. https://doi.org/10.1016/B978-0-12-384890-1.00003-0spa
dcterms.referencesRocha, A.J., De Oliveira Barsottini, M.R., Rocha, R.R., Laurindo, M.V., De Moraes, F.L.L., Da Rocha, S.L., 2019. Pseudomonas aeruginosa: Virulence factors and antibiotic resistance genes. Brazilian Arch. Biol. Technol. 62, 1–15. https://doi.org/10.1590/1678-4324-2019180503spa
dcterms.referencesRumbaugh, K.P., Sauer, K., 2020. Biofilm dispersion. Nat. Rev. Microbiol. 18, 571–586. https://doi.org/10.1038/s41579-020-0385-0spa
dcterms.referencesSawa, T., 2014. The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: From bacterial pathogenesis to host response. J. Intensive Care 2, 1– 11. https://doi.org/10.1186/2052-0492-2-10spa
dcterms.referencesSaxena, S., Banerjee, G., Garg, R., Singh, M., 2014. Comparative study of biofilm formation in pseudomonas aeruginosa isolates from patients of lower respiratory tract infection. J. Clin. Diagnostic Res. 8, 9–11. https://doi.org/10.7860/JCDR/2014/7808.4330spa
dcterms.referencesSchwartz, D.C., Cantor, C.R., 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37, 67–75. https://doi.org/10.1016/0092-8674(84)90301-5spa
dcterms.referencesSgro, G.G., Oka, G.U., Souza, D.P., Cenens, W., Bayer-Santos, E., Matsuyama, B.Y., Bueno, N.F., Dos Santos, T.R., Alvarez-Martinez, C.E., Salinas, R.K., Farah, C.S., 2019. Bacteria-killing type IV secretion systems. Front. Microbiol. 10, 1–20. https://doi.org/10.3389/fmicb.2019.01078spa
dcterms.referencesSheng, R., Yi, Y., Chen, T., 2020. Flagellation of Shewanella oneidensis Impacts Bacterial Fitness in Different Environments. Curr. Microbiol. 77, 1790–1799. https://doi.org/10.1007/s00284-020-01999-0spa
dcterms.referencesSherrard, L.J., Tunney, M.M., Elborn, J.S., 2014. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Lancet 384, 703–713. https://doi.org/10.1016/S0140-6736(14)61137-5spa
dcterms.referencesSingh, S.B., Barrett, J.F., 2006. Empirical antibacterial drug discovery—Foundation in natural products. Biochem. Pharmacol. 71, 1006–1015. https://doi.org/10.1016/j.bcp.2005.12.016spa
dcterms.referencesSmith, L.C., Ghosh, J., Buckley, K.M., Clow, L.A., Dheilly, N.M., Haug, T., Henson, J.H., Li, C., Lun, C.M., Majeske, A.J., Matranga, V., Nair, S. V, Rast, J.P., Raftos, D.A., Roth, M., Sacchi, S., Schrankel, C.S., Stensvåg, K., 2010. Echinoderm immunity, in: Invertebtrate Inminity. Landes Biosceience and Springer Science, pp. 260–301.spa
dcterms.referencesSoberón-Chavez, G., Lépine, F., Déziel, E., 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 68, 718–725. https://doi.org/10.1007/s00253-005-0150-3spa
dcterms.referencesSolh, A.A. El, Alhajhusain, A., 2009. Update on the treatment of Pseudomonas aeruginosa pneumonia. J. Antimicrob. Chemother. 64, 229–238. https://doi.org/10.1093/jac/dkp201spa
dcterms.referencesSouza, R.C., Del Rosario Quispe Saji, G., Costa, M.O., Netto, D.S., Lima, N.C., Klein, C.C., Vasconcelos, A.T.R., Nicolás, M.F., 2012. AtlasT4SS: A curated database for type IV secretion systems. BMC Microbiol. 12, 1–11. https://doi.org/10.1186/1471- 2180-12-172spa
dcterms.referencesSrikanth, L., Raghunandan, N., Srinivas, P., Reddy, G.A., 2010. Synthesis and Evaluation of Newer Quinoline Derivatives of Thiazolidinediones for their Antidiabetic Activity. Int. J. Pharma Bio Sci. 1, 120.spa
dcterms.referencesStewart, P.S., Costerton, J.W., 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–8.spa
dcterms.referencesStover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S.L., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E.W., Lory, S., Olson, M. V, 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1 , an opportunistic pathogen. Nature 406, 959–964.spa
dcterms.referencesStrateva, T., Yordanov, D., 2009. Pseudomonas aeruginosa: A phenomenon of bacterial resistance. J. Med. Microbiol. 58, 1133–1148. https://doi.org/10.1099/jmm.0.009142- 0spa
dcterms.referencesSubedi, D., Vijay, A.K., Willcox, M., 2018. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin. Exp. Optom. 101, 162–171. https://doi.org/10.1111/cxo.12621spa
dcterms.referencesSun, E., Gill, E.E., Falsafi, R., Yeung, A., Liu, S., Hancock, R.E.W., 2018. Broad-spectrum adaptive antibiotic resistance associated with Pseudomonas aeruginosa mucindependent surfing motility. Antimicrob. Agents Chemother. 62, 1–12.spa
dcterms.referencesTacconelli, E., Magrini, N., Kahlmeter, G., Singh, N., 2017. Global priority list of antibioticresistant bacteria to guide research, discovery, and development of new antibiotics, World Health Organization. https://doi.org/10.1016/S1473-3099(09)70222-1spa
dcterms.referencesTakase, H., Nitanai, H., Hoshino, K., Otani, T., 2000. Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect. Immun. 68, 1834–1839. https://doi.org/10.1128/IAI.68.4.1834-1839.2000spa
dcterms.referencesTakaya, A., Tabuchi, F., Tsuchiya, H., Isogai, E., Yamamoto, T., 2008. Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATPdependent Lon protease. J. Bacteriol. 190, 4181–4188. https://doi.org/10.1128/JB.01873-07spa
dcterms.referencesTasneem, U., Yasin, N., Nisa, I., Shah, F., Rasheed, U., Momin, F., Zaman, S., Qasim, M., 2018. Biofilm producing bacteria: A serious threat to public health in developing countries. J. Food Sci. Nutr. 01. https://doi.org/10.35841/food-science.1.2.25-31spa
dcterms.referencesTeixeira, B., Rodulfo, H., Carreño, N., Guzmán, M., Salazar, E., Dedonato, M., 2016. Aminoglycoside resistance genes in Pseudomonas aeruginosa isolates from cumana, Venezuela. Rev. Inst. Med. Trop. Sao Paulo 58, 1–5. https://doi.org/10.1590/S1678-9946201658013spa
dcterms.referencesTenover, F.C., Arbeit, R.D., Goering, R. V, 2012. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: A review for healthcare epidemiologists. Infect. Control Hosp. Epidemiol. 18, 426–439.spa
dcterms.referencesTerada, L.S., Johansen, K.A., Nowbar, S., Vasil, A.I., Vasil, M.L., 1999. Pseudomonas aeruginosa hemolytic phospholipase C suppresses neutrophil respiratory burst activity. Infect. Immun. 67, 2371–2376. https://doi.org/10.1128/iai.67.5.2371- 2376.1999spa
dcterms.referencesTlili, I., Caria, G., Ouddane, B., Ghorbel-Abid, I., Ternane, R., Trabelsi-Ayadi, M., Net, S., 2016. Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LCMS/MS: Method development and application. Sci. Total Environ. 563–564, 424– 433. https://doi.org/10.1016/j.scitotenv.2016.04.101spa
dcterms.referencesTrastoy Pena, R., Blasco, L., Ambroa, A., González-Pedrajo, B., Fernández-García, L., López, M., Bleriot, I., Bou, G., García-Contreras, R., Wood, T.K., Tomás, M., 2019. Relationship between quorum sensing and secretion systems. Front. Microbiol. 10. https://doi.org/10.3389/fmicb.2019.01100spa
dcterms.referencesTrautmann, M., Bauer, C., Schumann, C., Hahn, P., Höher, M., Haller, M., Lepper, P.M., 2006. Common RAPD pattern of Pseudomonas aeruginosa from patients and tap water in a medical intensive care unit. Int. J. Hyg. Environ. Health 209, 325–331. https://doi.org/10.1016/j.ijheh.2006.04.001spa
dcterms.referencesTseng, T.T., Tyler, B.M., Setubal, J.C., 2009. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9, 1–9. https://doi.org/10.1186/1471-2180-9-S1-S2spa
dcterms.referencesVaez, H., Faghri, J., Esfahani, B.N., Moghim, S., Fazeli, H., Sedighi, M., Safaei, H.G., 2015. Antibiotic resistance patterns and genetic diversity in clinical isolates of Pseudomonas aeruginosa isolated from patients of a referral hospital, Isfahan, Iran. Jundishapur J. Microbiol. 8, 1–6. https://doi.org/10.5812/jjm.20130v2spa
dcterms.referencesValle Molinares, R.H., Romero Pelaez, R.D., Quigua Orozco, R.M., Vallejo L, W.A., Diaz Uribe, C.E., Arboleda Valencia, J.W., 2015. Antimicrobial activity of metallo tetra (4- Carboxyphenil) Phthalocyanine useful in photodynamic therapy. PharmacologyOnline 2, 131–137.spa
dcterms.referencesVan Acker, H., Coenye, T., 2016. The role of efflux and physiological adaptation in biofilm tolerance and resistence. J. Biol. Chem. 291, 12565–12572. https://doi.org/10.1074/jbc.R115.707257spa
dcterms.referencesVan Melderen, L., Aertsen, A., 2009. Regulation and quality control by Lon-dependent proteolysis. Res. Microbiol. 160, 645–651. https://doi.org/10.1016/j.resmic.2009.08.021spa
dcterms.referencesVan Ulsen, P., Rahman, S. ur, Jong, W.S.P., Daleke-Schermerhorn, M.H., Luirink, J., 2014. Type V secretion: From biogenesis to biotechnology. Biochim. Biophys. Acta - Mol. Cell Res. 1843, 1592–1611. https://doi.org/10.1016/j.bbamcr.2013.11.006spa
dcterms.referencesVaz-Moreira, I., Nunes, O.C., Manaia, C.M., 2012. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci. Total Environ. 426, 366–374. https://doi.org/10.1016/j.scitotenv.2012.03.046spa
dcterms.referencesVersion, D., Tract, R., 2017. Host-pathogen interactions in Pseudomonas aeruginosa invasive and respiratory tract infection.spa
dcterms.referencesVillalobos Rodríguez, A.P., Díaz Ortega, M.H., Barrero Garzón, L.I., Rivera Vargas, S.M., Henríquez Iguarán, D.E., Villegas Botero, M. virginia, Robledo Restrepo, C.G., Leal Castro, A.L., 2011. Tendencias de los fenotipos de resistencia bacteriana en hospitales públicos y privados de alta complejidad de Colombia Andrea. Rev. Panam. Salud Pública 30, 627–633.spa
dcterms.referencesWaters, V., Zlosnik, J.E.A., Yau, Y.C.W., Speert, D.P., Aaron, S.D., Guttman, D.S., 2012. Comparison of three typing methods for Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Eur. J. Clin. Microbiol. Infect. Dis. 31, 3341–3350. https://doi.org/10.1007/s10096-012-1701-zspa
dcterms.referencesWei, Q., Ma, L.Z., 2013. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int. J. Mol. Sci. 14, 20983–21005. https://doi.org/10.3390/ijms141020983spa
dcterms.referencesWeiner, L.M., Webb, A.K., Limbago, B., Dudeck, M.A., Patel, J., Kallen, A.J., Edwards, J.R., Sievert, D.M., 2016. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011 – 2014. Infect. Control Hosp. Epidemiol. 1–14. https://doi.org/10.1017/ice.2016.174spa
dcterms.referencesWelsh, J., Mcclelland, M., 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213–7218.spa
dcterms.referencesWhiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., Greenberg, E.P., 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864. https://doi.org/10.1038/35101627spa
dcterms.referencesWhitfield, C., Williams, D.M., Kelly, S.D., 2020. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J. Biol. Chem. 295, 10593–10609. https://doi.org/10.1074/jbc.REV120.009402spa
dcterms.referencesWHO, 2014. Antimicrobial resistance: Global Report on Surveillance. Genevaspa
dcterms.referencesWood, T.E., Howard, S.A., Förster, A., Nolan, L.M., Manoli, E., Bullen, N.P., Yau, H.C.L., Hachani, A., Hayward, R.D., Whitney, J.C., Vollmer, W., Freemont, P.S., Filloux, A., 2019. The Pseudomonas aeruginosa T6SS delivers a periplasmic toxin that disrupts bacterial cell morphology. Cell Rep. 29, 187-201.e7. https://doi.org/10.1016/j.celrep.2019.08.094spa
dcterms.referencesWu, H., Moser, C., Wang, H.Z., Høiby, N., Song, Z.J., 2015. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 7, 1–7. https://doi.org/10.1038/ijos.2014.65spa
dcterms.referencesYadegar, A., Sattari, M., Mozafari, N.A., Goudarzi, G.R., 2009. Prevalence of the genes encoding aminoglycoside-modifying enzymes and methicillin resistance among clinical isolates of Staphylococcus aureus in Tehran, Iran. Microb. Drug Resist. 15, 109–113. https://doi.org/10.1089/mdr.2009.0897spa
dcterms.referencesYang, L., 2009. Pseudomonas aeruginosa quorum-sensing - A factor in biofilm development , and an antipathogenic drug target.spa
dcterms.referencesYeung, A.T.Y., Bains, M., Hancock, R.E.W., 2011. The sensor kinase CbrA is a global regulator That modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. J. Bacteriol. 193, 918–931. https://doi.org/10.1128/JB.00911-10spa
dcterms.referencesYildirim, ibrahim, 2011. Molecular methods for bacterial genotyping and analyzed gene regions. J. Microbiol. Infect. Dis. 1, 42–46. https://doi.org/10.5799/ahinjs.02.2011.01.0011spa
dcterms.referencesZemtsova, M.N., Zimichev, A. V., Trakhtenberg, P.L., Klimochkin, Y.N., Leonova, M. V., Balakhnin, S.M., Bormotov, N.I., Serova, O.A., Belanov, E.F., 2011. Synthesis and antiviral activity of several quinoline derivatives. Pharm. Chem. J. 45, 267–269. https://doi.org/10.1007/s11094-011-0613-zspa
dcterms.referencesZhang, S., McCormack, F.X., Levesque, R.C., O’Toole, G.A., Lau, G.W., 2007. The flagellum of Pseudomonas aeruginosa is required for resistance to clearance by surfactant protein A. PLoS One 2. https://doi.org/10.1371/journal.pone.0000564spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
TESIS DE GRADO PhD ROGER VALLE.pdf
Tamaño:
2.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
FORMATO CESION DE DERECHOS DE AUTOR, ROGER VALLE.pdf
Tamaño:
450.72 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: