Datos de Contacto
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...
dc.contributor.advisor | Zakzuk Sierra, Josefina (Director/a) | |
dc.contributor.author | López Crespo, Juan Felipe | |
dc.date.accessioned | 2020-05-14T20:40:08Z | |
dc.date.available | 2020-05-14T20:40:08Z | |
dc.date.issued | 2019 | |
dc.description | Tesis (Magister en Inmunología) -- Universidad de Cartagena. Instituto de Investigaciones Inmunológicas. Maestría en Inmunología, 2019 | es |
dc.description.abstract | Las enfermedades autoinmunes son condiciones de difícil tratamiento asociadas a alta discapacidad, afectación de la calidad de vida y un alto costo para su manejo (1). La etiología de estas entidades aún es desconocida, pero se sabe que son resultado de la interacción entre factores genéticos, desequilibrio en la regulación del sistema inmune y detonantes medio ambientales(2). Se ha planteado que las parasitosis intestinales pueden ejercer un papel protector en el desarrollo de EA. El presente proyecto analizó el efecto de la infección por parásitos intestinales en la presentación y severidad de enfermedades autoinmunes de tipo sistémico. Además se estudiaron poblaciones celulares reguladoras asociadas a autoinmunidad y el impacto de las parasitosis sobre estas. Se llevó a cabo un estudio de casos (AR n=31; LES n=21) y controles (n=87) pareados por edad, sexo, zona de residencia y estrato socioeconómico para evaluar la relación entre la infección por parásitos intestinales y la presentación de dos enfermedades autoinmunes (artritis reumatoide y lupus eritematoso sistémico). El estado parasitario se determinó a través de un análisis coprológico. La fase epidemiológica, encontró un posible nexo inverso entre la condición de autoinmunidad y las parasitosis intestinales por protozoarios (ORajustado: 0,27; IC95%: 0,07 - 0,99, p = 0,049). Debido a la baja frecuencia de helmintiasis, se evaluó la respuesta IgE frente a Ascaris lumbricoides, un helminto de alta prevalencia en el trópico. En contraste con el hallazgo inicial, la frecuencia e intensidad de la respuesta IgE determinada por ELISA frente al helminto fue mayor en casos que en controles, además la sensibilización a Ascaris estuvo asociada directamente con la AR (ORajustado: 3,9; IC95%: 0,16 – 12,05, p = 0,049). En un subgrupo de participantes (AR: n = 25 y controles sanos: n = 24) se les solicitó una muestra de sangre para determinación de citoquinas, la frecuencia y actividad funcional de linfocitos B y T reguladores por citometría de flujo y se relacionaron estas variables con la presentación o severidad de la enfermedad. La actividad de la enfermedad fue evaluada a través de escalas clínicas (DAS-28 y HAQ). Se detectaron concentraciones séricas significativamente más altas de IL-8 (5,8 vs 4,7 pg/mL; p=0,037) e IL-6 (8,6 vs 2,6 pg/mL; p=0,005) en los pacientes con AR en comparación con los controles. Las concentraciones de las citoquinas se relacionaron con uso de corticoides orales (Beta: 1,59; ES: 0,81; p = 0,049) y agentes antirreumáticos modificadores de la enfermedad o FARME (Beta: 1,43; ES: 0,78; p = 0,067) en el caso de la IL-8 y con la presentación de artritis reumatoide en el caso de la IL-6 (Beta: 0,81 ES: 0,40, p = 0,046). La población de células B reguladoras CD19+CD25+CD71+CD73- presentaron mayor frecuencia en los controles sanos en comparación con los pacientes con AR (23,4% vs 15,8%, p=0,008). No se encontraron diferencias en la funcionalidad de las poblaciones de linfocitos B productores de IL-10. Las poblaciones de Bregs se correlacionaron negativamente con los niveles séricos de citoquinas inflamatorias (TNF-α, IL-6, IL8) y con parámetros de severidad (HAQ y articulaciones inflamadas). Las frecuencias de CD19+CD25+CD71+CD73- fueron más altas en los infectados por protozoarios; sin embargo, un modelo multivariado se encontró que estas estaban más relacionadas con la condición de autoinmunidad (Beta=-6,4; ES: 0,78; p=0,042). No hubo hallazgos del efecto de la severidad o el tratamiento sobre las Bregs. Las frecuencias de Tregs definidas por el fenotipo CD25+CD127low/- fueron mayores en los controles que en los casos y se correlacionan con la frecuencia de linfocitos B productores de IL-10 (B10). Finalmente, las citoquinas en los cultivos de PBMCs de pacientes y controles no exhibieron diferencias y la IL-10 se correlaciona positivamente el resto de las citoquinas inflamatorias. En conclusión, en este estudio se observó una relación inversa entre la presentación de enfermedades autoinmunes y la presentación de infección por protozoarios intestinales. Así mismo, se encontraron poblaciones celulares relacionadas con mecanismos de tolerancia (Bregs y Tregs) asociados con protección de artritis reumatoide. Es posible que la infección por parasitosis intestinales se asocie a una mayor frecuencia de Bregs, pero esto debe seguir estudiándose. | es |
dc.format.medium | application/pdf | |
dc.identifier.citation | TM616.97 / L881 | es |
dc.identifier.uri | https://hdl.handle.net/11227/10165 | |
dc.identifier.uri | http://dx.doi.org/10.57799/11227/1346 | |
dc.language.iso | spa | es |
dc.publisher | Universidad de Cartagena | es |
dc.rights.access | openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Sistema inmune | es |
dc.subject | Inmunidad | es |
dc.subject | Enfermedades autoinmunes | es |
dc.subject | Enfermedades inmunológicas | es |
dc.subject | Artritis - Tratamiento | es |
dc.subject | Metabolismo | es |
dc.title | Efecto de las parasitosis intestinales en la presentación y severidad de artritis reumatoide y su impacto en linfocitos T y B reguladores | es |
dc.type | Trabajo de grado - Maestría | spa |
dcterms.references | Turchetti G, Yazdany J, Palla I, Yelin E, Mosca M. Systemic lupus erythematosus and the economic perspective: a systematic literature review and points to consider. Clinical and experimental rheumatology. 2012;30(4 Suppl 73):S116-22. | |
dcterms.references | Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. The Journal of clinical investigation. 2015;125(6):2228-33. | |
dcterms.references | Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. The New England journal of medicine. 2002;347(12):911-20. | |
dcterms.references | Haahtela T, Holgate S, Pawankar R, Akdis CA, Benjaponpitak S, Caraballo L, et al. The biodiversity hypothesis and allergic disease: world allergy organization position statement. The World Allergy Organization journal. 2013;6(1):3. | |
dcterms.references | Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology: Elsevier Health Sciences; 2011. | |
dcterms.references | Sakaguchi S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature immunology. 2005;6(4):345-52. | |
dcterms.references | Cabrera JMA, Cañas CA, Cervera R, Correa PA. Autoinmunidad y enfermedad autoinmune: Corporación para Investigaciones Biológicas; 2005. | |
dcterms.references | Liu W, Putnam AL, Xu-yu Z, Szot GL, Lee MR, Zhu S, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. The Journal of Experimental Medicine. 2006;203(7):1701-11. | |
dcterms.references | Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites. The Journal of allergy and clinical immunology. 2016;138(3):666-75. | |
dcterms.references | Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin10 receptor. Annual review of immunology. 2001;19:683-765. | |
dcterms.references | Lee JH, Noh J, Noh G, Choi WS, Cho S, Lee SS. Allergen-specific transforming growth factorbeta-producing CD19+CD5+ regulatory B-cell (Br3) responses in human late eczematous allergic reactions to cow's milk. J Interferon Cytokine Res. 2011;31(5):441-9. | |
dcterms.references | Noh J, Choi WS, Noh G, Lee JH. Presence of Foxp3-expressing CD19(+)CD5(+) B Cells in Human Peripheral Blood Mononuclear Cells: Human CD19(+)CD5(+)Foxp3(+) Regulatory B Cell (Breg). Immune network. 2010;10(6):247-9. | |
dcterms.references | Shen P, Roch T, Lampropoulou V, O'Connor RA, Stervbo U, Hilgenberg E, et al. IL-35- producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature. 2014;507(7492):366-70 | |
dcterms.references | Wang P, Zheng SG. Regulatory T cells and B cells: implication on autoimmune diseases. International journal of clinical and experimental pathology. 2013;6(12):2668-74. | |
dcterms.references | Heinemann K, Wilde B, Hoerning A, Tebbe B, Kribben A, Witzke O, et al. Decreased IL-10 regulatory B cells (Bregs) in lupus nephritis patients. Scandinavian journal of rheumatology. 2016:1-5. | |
dcterms.references | Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity. 2010;32(1):129-40. | |
dcterms.references | Ma L, Liu B, Jiang Z, Jiang Y. Reduced numbers of regulatory B cells are negatively correlated with disease activity in patients with new-onset rheumatoid arthritis. Clinical rheumatology. 2014;33(2):187-95. | |
dcterms.references | Rincón-Arévalo H, Yassin-Noreña L, Vásquez G, Castaño D. Linfocitos B reguladores en enfermedades humanas y modelos murinos de autoinmunidad. Inmunología. 2013;32(4):129-38. | |
dcterms.references | Vadasz Z, Peri R, Eiza N, Slobodin G, Balbir-Gurman A, Toubi E. The Expansion of CD25 high IL-10 high FoxP3 high B Regulatory Cells Is in Association with SLE Disease Activity. Journal of immunology research. 2015;2015:254245. | |
dcterms.references | Wang T, Li Z, Li X, Chen L, Zhao H, Jiang C, et al. Expression of CD19+CD24highCD38high B cells, IL10 and IL10R in peripheral blood from patients with systemic lupus erythematosus. Molecular medicine reports. 2017;16(5):6326-33. | |
dcterms.references | Yang X, Yang J, Chu Y, Xue Y, Xuan D, Zheng S, et al. T follicular helper cells and regulatory B cells dynamics in systemic lupus erythematosus. PloS one. 2014;9(2):e88441. | |
dcterms.references | Wang L, Zhao P, Ma L, Shan Y, Jiang Z, Wang J, et al. Increased interleukin 21 and follicular helper T-like cells and reduced interleukin 10+ B cells in patients with new-onset systemic lupus erythematosus. The Journal of rheumatology. 2014;41(9):1781-92. | |
dcterms.references | Zakzuk-Sierra J. Inmunorregulación inducida por helmintos: una actualización. Iatreia. 2016;29(2):182-93. | |
dcterms.references | van de Veen W, Stanic B, Yaman G, Wawrzyniak M, Sollner S, Akdis DG, et al. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. The Journal of allergy and clinical immunology. 2013;131(4):1204-12. | |
dcterms.references | Menon M, Blair PA, Isenberg DA, Mauri C. A Regulatory Feedback between Plasmacytoid Dendritic Cells and Regulatory B Cells Is Aberrant in Systemic Lupus Erythematosus. Immunity. 2016;44(3):683-97. | |
dcterms.references | Bosma A, Abdel-Gadir A, Isenberg DA, Jury EC, Mauri C. Lipid-antigen presentation by CD1d(+) B cells is essential for the maintenance of invariant natural killer T cells. Immunity. 2012;36(3):477-90. | |
dcterms.references | Siewe B, Stapleton JT, Martinson J, Keshavarzian A, Kazmi N, Demarais PM, et al. Regulatory B cell frequency correlates with markers of HIV disease progression and attenuates anti-HIV CD8(+) T cell function in vitro. Journal of leukocyte biology. 2013;93(5):811-8. | |
dcterms.references | Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood. 2011;117(2):530-41. | |
dcterms.references | Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, Barth TF, et al. Interleukin 21- induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer research. 2013;73(8):2468-79. | |
dcterms.references | Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H, et al. Interleukin-10- producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity. 2014;41(6):1040-51 | |
dcterms.references | Saze Z, Schuler PJ, Hong CS, Cheng D, Jackson EK, Whiteside TL. Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood. 2013;122(1):9-18. | |
dcterms.references | Nouel A, Pochard P, Simon Q, Segalen I, Le Meur Y, Pers JO, et al. B-Cells induce regulatory T cells through TGF-beta/IDO production in A CTLA-4 dependent manner. Journal of autoimmunity. 2015;59:53-60. | |
dcterms.references | Liu J, Zhan W, Kim CJ, Clayton K, Zhao H, Lee E, et al. IL-10-producing B cells are induced early in HIV-1 infection and suppress HIV-1-specific T cell responses. PloS one. 2014;9(2):e89236. | |
dcterms.references | Mauri C, Menon M. Human regulatory B cells in health and disease: therapeutic potential. The Journal of clinical investigation. 2017;127(3):772-9. | |
dcterms.references | Cooper GS, Stroehla BC. The epidemiology of autoimmune diseases. Autoimmunity reviews. 2003;2(3):119-25 | |
dcterms.references | Cooper GS, Bynum ML, Somers EC. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. Journal of autoimmunity. 2009;33(3-4):197-207. | |
dcterms.references | Eaton WW, Rose NR, Kalaydjian A, Pedersen MG, Mortensen PB. Epidemiology of autoimmune diseases in Denmark. Journal of autoimmunity. 2007;29(1):1-9. | |
dcterms.references | Machado-Alba JE, Ruiz AF, Medina Morales DA. The epidemiology of rheumatoid arthritis in a cohort of Colombian patients. Revista Colombiana de Reumatología. 2015;22(3):148-52. | |
dcterms.references | Rojas-Villarraga A, Toro CE, Espinosa G, Rodriguez-Velosa Y, Duarte-Rey C, Mantilla RD, et al. Factors influencing polyautoimmunity in systemic lupus erythematosus. Autoimmunity reviews. 2010;9(4):229-32. | |
dcterms.references | Zampeli E, Vlachoyiannopoulos PG, Tzioufas AG. Treatment of rheumatoid arthritis: Unraveling the conundrum. Journal of autoimmunity. 2015;65:1-18. | |
dcterms.references | Rzepecka J, Pineda MA, Al-Riyami L, Rodgers DT, Huggan JK, Lumb FE, et al. Prophylactic and therapeutic treatment with a synthetic analogue of a parasitic worm product prevents experimental arthritis and inhibits IL-1β production via NRF2-mediated counter-regulation of the inflammasome. Journal of autoimmunity. 2015;60:59-73. | |
dcterms.references | Ministerio de Salud y Proteccion Social. Departamento administrativo de ciencia tei-C. Guía de Práctica Clínica para la detección temprana diagnóstico y tratamiento de la artritis reumatoide 2014. Available from: http://gpc.minsalud.gov.co/guias/Documents/Artritis%20Reumatoidea/GPC%20AR%20COMPLETA .pdf. | |
dcterms.references | Smallwood TB, Giacomin PR, Loukas A, Mulvenna JP, Clark RJ, Miles JJ. Helminth Immunomodulation in Autoimmune Disease. Frontiers in immunology. 2017;8:453. | |
dcterms.references | Navarro S, Ferreira I, Loukas A. The hookworm pharmacopoeia for inflammatory diseases. International journal for parasitology. 2013;43(3-4):225-31. | |
dcterms.references | La Flamme AC, Ruddenklau K, Backstrom BT. Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infection and immunity. 2003;71(9):4996-5004. | |
dcterms.references | Moroni L, Bianchi I, Lleo A. Geoepidemiology, gender and autoimmune disease. Autoimmunity reviews. 2012;11(6-7):A386-92. | |
dcterms.references | Gregersen PK, Olsson LM. Recent advances in the genetics of autoimmune disease. Annual review of immunology. 2009;27:363-91. | |
dcterms.references | Rook GA. Hygiene hypothesis and autoimmune diseases. Clinical reviews in allergy & immunology. 2012;42(1):5-15. | |
dcterms.references | Strachan DP. Hay fever, hygiene, and household size. Bmj. 1989;299(6710):1259-60 | |
dcterms.references | Rook GA, Brunet LR. Old friends for breakfast. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2005;35(7):841-2. | |
dcterms.references | Versini M, Jeandel PY, Bashi T, Bizzaro G, Blank M, Shoenfeld Y. Unraveling the Hygiene Hypothesis of helminthes and autoimmunity: origins, pathophysiology, and clinical applications. BMC medicine. 2015;13:81. | |
dcterms.references | Godfrey RC. Asthma and IgE levels in rural and urban communities of The Gambia. Clinical allergy. 1975;5(2):201-7. | |
dcterms.references | Masters S, Barrett-Connor E. Parasites and asthma--predictive or protective? Epidemiologic reviews. 1985;7:49-58. | |
dcterms.references | van den Biggelaar AH, van Ree R, Rodrigues LC, Lell B, Deelder AM, Kremsner PG, et al. Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. Lancet. 2000;356(9243):1723-7. | |
dcterms.references | Yazdanbakhsh M, van den Biggelaar A, Maizels RM. Th2 responses without atopy: immunoregulation in chronic helminth infections and reduced allergic disease. Trends in immunology. 2001;22(7):372-7. | |
dcterms.references | Gale EA. A missing link in the hygiene hypothesis? Diabetologia. 2002;45(4):588-94. | |
dcterms.references | Zakzuk J. Inmunorregulación inducida por helmintos: una actualización. Iatreia. 2016;29:182-93. | |
dcterms.references | Zakzuk J, Casadiego S, Mercado A, Alvis-Guzman N, Caraballo L. Ascaris lumbricoides infection induces both, reduction and increase of asthma symptoms in a rural community. Acta tropica. 2018;187:1-4. | |
dcterms.references | Panda AK, Ravindran B, Das BK. Rheumatoid arthritis patients are free of filarial infection in an area where filariasis is endemic: comment on the article by Pineda et al. Arthritis and rheumatism. 2013;65(5):1402-3. | |
dcterms.references | Chiardola F, Schneeberger EE, Citera G, Rosemffet GM, Kuo L, Santillan G, et al. Prevalence and clinical significance of eosinophilia in patients with rheumatoid arthritis in Argentina. Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases. 2008;14(4):211-3. | |
dcterms.references | Bertsias GK, Pamfil C, Fanouriakis A, Boumpas DT. Diagnostic criteria for systemic lupus erythematosus: has the time come? Nature reviews Rheumatology. 2013;9(11):687-94. | |
dcterms.references | Acevedo N, Sanchez J, Erler A, Mercado D, Briza P, Kennedy M, et al. IgE cross-reactivity between Ascaris and domestic mite allergens: the role of tropomyosin and the nematode polyprotein ABA-1. Allergy. 2009;64(11):1635-43. | |
dcterms.references | Correale J, Farez MF. The impact of environmental infections (parasites) on MS activity. Multiple sclerosis. 2011;17(10):1162-9. | |
dcterms.references | Millauer N, Zuercher AW, Miescher SM, Gerber HA, Seitz M, Stadler BM. High IgE in rheumatoid arthritis (RA) patients is complexed with anti-IgE autoantibodies. Clinical and experimental immunology. 1999;115(1):183-8. | |
dcterms.references | Permin H, Wiik A. The prevalence of IgE antinuclear antibodies in rheumatoid arthritis and systemic lupus erythematosus. Acta pathologica et microbiologica Scandinavica Section C, Immunology. 1978;86C(5):245-9. | |
dcterms.references | Maurer M, Altrichter S, Schmetzer O, Scheffel J, Church MK, Metz M. Immunoglobulin EMediated Autoimmunity. Frontiers in immunology. 2018;9:689. | |
dcterms.references | Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism of autoimmune disease. Clinical reviews in allergy & immunology. 2012;42(1):102-11 | |
dcterms.references | Pianta A, Arvikar SL, Strle K, Drouin EE, Wang Q, Costello CE, et al. Two rheumatoid arthritis-specific autoantigens correlate microbial immunity with autoimmune responses in joints. The Journal of clinical investigation. 2017;127(8):2946-56. | |
dcterms.references | Meretey K, Falus A, Erhardt CC, Maini RN. IgE and IgE-rheumatoid factors in circulating immune complexes in rheumatoid arthritis. Annals of the rheumatic diseases. 1982;41(4):405-8. | |
dcterms.references | Heiberg MS, Rodevand E, Mikkelsen K, Kaufmann C, Didriksen A, Mowinckel P, et al. Adalimumab and methotrexate is more effective than adalimumab alone in patients with established rheumatoid arthritis: results from a 6-month longitudinal, observational, multicentre study. Annals of the rheumatic diseases. 2006;65(10):1379-83. | |
dcterms.references | Gabay C, Emery P, van Vollenhoven R, Dikranian A, Alten R, Pavelka K, et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet (London, England). 2013;381(9877):1541-50. | |
dcterms.references | Ridgley LA, Anderson AE, Pratt AG. What are the dominant cytokines in early rheumatoid arthritis? Current opinion in rheumatology. 2018;30(2):207-14. | |
dcterms.references | Burska A, Boissinot M, Ponchel F. Cytokines as Biomarkers in Rheumatoid Arthritis. Mediators of Inflammation. 2014;2014:24. | |
dcterms.references | Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annual review of immunology. 1996;14:397-440. | |
dcterms.references | Milman N, Karsh J, Booth RA. Correlation of a multi-cytokine panel with clinical disease activity in patients with rheumatoid arthritis. Clinical biochemistry. 2010;43(16-17):1309-14 | |
dcterms.references | Wang J, Platt A, Upmanyu R, Germer S, Lei G, Rabe C, et al. IL-6 pathway-driven investigation of response to IL-6 receptor inhibition in rheumatoid arthritis. BMJ open. 2013;3(8):e003199. | |
dcterms.references | Reiss WG, Devenport JN, Low JM, Wu G, Sasso EH. Interpreting the multi-biomarker disease activity score in the context of tocilizumab treatment for patients with rheumatoid arthritis. Rheumatology international. 2016;36(2):295-300. | |
dcterms.references | Romao VC, Vital EM, Fonseca JE, Buch MH. Right drug, right patient, right time: aspiration or future promise for biologics in rheumatoid arthritis? Arthritis research & therapy. 2017;19(1):239. | |
dcterms.references | Daien CI, Gailhac S, Mura T, Audo R, Combe B, Hahne M, et al. Regulatory B10 cells are decreased in patients with rheumatoid arthritis and are inversely correlated with disease activity. Arthritis & rheumatology. 2014;66(8):2037-46. | |
dcterms.references | Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, et al. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Science translational medicine. 2013;5(173):173ra23. | |
dcterms.references | Cui D, Zhang L, Chen J, Zhu M, Hou L, Chen B, et al. Changes in regulatory B cells and their relationship with rheumatoid arthritis disease activity. Clinical and experimental medicine. 2015;15(3):285-92. | |
dcterms.references | Jeong YI, Hong SH, Cho SH, Park MY, Lee SE. Induction of IL-10-producing regulatory B cells following Toxoplasma gondii infection is important to the cyst formation. Biochemistry and biophysics reports. 2016;7:91-7. | |
dcterms.references | Morita T, Shima Y, Wing JB, Sakaguchi S, Ogata A, Kumanogoh A. The Proportion of Regulatory T Cells in Patients with Rheumatoid Arthritis: A Meta-Analysis. PloS one. 2016;11(9):e0162306. | |
dcterms.references | Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Critical Reviews in Immunology. 2012;32(1):23-63. | |
dcterms.references | Mongan AE, Ramdahin S, Warrington RJ. Interleukin-10 response abnormalities in systemic lupus erythematosus. Scandinavian journal of immunology. 1997;46(4):406-12. | |
dcterms.references | 86. Lalani I, Bhol K, Ahmed AR. Interleukin-10: biology, role in inflammation and autoimmunity. Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology. 1997;79(6):469-83. | |
dspace.entity.type | Publication |
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...