Publicación:
Descelularización y caracterización in vitro de matrices de intestino delgado porcino para el tratamiento de heridas complejas

dc.contributor.authorRuíz Soto, Juan Pablospa
dc.contributor.authorGalvis Escobar, Sara Maríaspa
dc.contributor.authorRego Londoño, Maria Antoniaspa
dc.contributor.authorMolina Sierra, Juan Davidspa
dc.contributor.authorPineda Molina, Catalinaspa
dc.date.accessioned2023-07-15T00:00:00Z
dc.date.accessioned2024-09-05T20:34:53Z
dc.date.available2023-07-15T00:00:00Z
dc.date.available2024-09-05T20:34:53Z
dc.date.issued2023-07-15
dc.description.abstractIntroducción: las lesiones cutáneas complicadas se han convertido en un problema de salud mundial, siendo difíciles de tratar debido al limitado proceso de curación del cuerpo. Se han realizado estudios para mejorar los tratamientos tradicionales que tienen muchas desventajas. La investigación en cicatrización de heridas apunta a opciones con ingeniería de tejidos, como las matrices descelularizadas, con buenas propiedades de cicatrización y biocompatibilidad. Objetivo: obtener y caracterizar las propiedades de una matriz biológica descelularizada derivada del intestino delgado de animales. Métodos: el intestino delgado porcino se preparó y descelularizó utilizando cuatro métodos diferentes: Triton X-100 (TX-100), dodecil sulfato de sodio (SDS) y desoxicolato de sodio (SDC) para uno o dos ciclos de 6 horas o 24 horas, y ácido peracético para un ciclo de 2 horas. El ADN remanente se cuantificó con Nanodrop y electroforesis. Se realizaron tinciones histológicas y microscopía electrónica de barrido (SEM) para evaluar la estructura e integridad de la superficie. Se realizaron ensayos mecánicos para medir la resistencia de las matrices. Finalmente, se realizaron ensayos de degradabilidad con diferentes soluciones. Resultados: no se encontraron diferencias entre los protocolos de descelularización con respecto al ADN remanente, siendo más eficientes los protocolos de un ciclo de seis horas. Con el menor contenido de ADN remanente y una mejor preservación de la estructura, TX-100 podría considerarse como el mejor protocolo. No se encontraron diferencias estadísticas entre los protocolos y el tejido nativo durante el análisis mecánico. Los ensayos de biodegradabilidad mostraron las propiedades de degradabilidad esperadas de la matriz producida. Conclusión: se lograron resultados prometedores para obtener matrices biológicas descelularizadas que podrían servir como tratamiento para heridas cutáneas complicadas. Se deben realizar más estudios in vitro y moleculares a futuro para caracterizar aún más estas matrices.spa
dc.description.abstractIntroduction: complicated skin injuries have become a global health problem, being difficult to treat due to the body’s limited healing process. Many studies aim to enhance traditional treatments for skin injuries, which have many disadvantages. Therefore, wound healing research is aiming towards tissue engineering options, such as decellularized matrix, which have shown great healing and biocompatibility competencies. Objectives:  to obtain and characterize the properties of a decellularized biological matrix derived from the small intestine of animals. Methods: porcine small intestine was prepared and decellularized using four different methods: Triton X-100, sodium dodecyl sulfate (SDS) and sodium deoxycholate (SDC) for one or two cycles of 6 hours or 24 hours, and peracetic acid for one cycle of 2 hours. The remaining DNA was quantified with Nanodrop and electrophoresis characterization. Histology stains and Scanning Electron Microscopy (SEM) were performed to assess surface structure and integrity. Resistance assays were conducted to measure mechanical strength. Finally, degradability assays with different buffers were performed. Results: no differences between the decellularization protocols regarding remaining DNA were found, making protocols of one cycle of six hours more efficient. With the least remaining DNA content and better structure perseveration, TX-100 could be considered as the best protocol. No statistically difference between protocols and native tissue were found during the mechanical analysis. Biodegradability assays showed the expected degradability properties of the produced matrix. Conclusions: promising results were achieved to obtain decellularized biological matrices that could serve as a treatment for complicated skin wounds. More in vitro and molecular studies should be carried out in future studies to further characterize these scaffolds.eng
dc.format.mimetypeapplication/pdfeng
dc.identifier.doi10.32997/rcb-3023-4135
dc.identifier.eissn2389-7252
dc.identifier.issn2215-7840
dc.identifier.urihttps://hdl.handle.net/11227/17952
dc.identifier.urlhttps://doi.org/10.32997/rcb-3023-4135
dc.language.isoengeng
dc.publisherUniversidad de Cartagenaspa
dc.relation.bitstreamhttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/4135/3704
dc.relation.citationendpage120
dc.relation.citationissue3spa
dc.relation.citationstartpage102
dc.relation.citationvolume12spa
dc.relation.ispartofjournalRevista Ciencias Biomédicasspa
dc.relation.referencesKarimkhani C, Dellavalle RP, Coffeng LE, Flohr C, Hay RJ, Langan SM, et al. Global Skin Disease Morbidity and Mortality: An Update From the Global Burden of Disease Study 2013. JAMA Dermatology. 2017 May 1;153(5):406–12.eng
dc.relation.referencesHay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The Global Burden of Skin Disease in 2010: An Analysis of the Prevalence and Impact of Skin Conditions. Journal of Investigative Dermatology. 2014 Jun 1;134(6):1527–34.eng
dc.relation.referencesLo ZJ, Lim X, Eng D, Car J, Hong Q, Yong E, et al. Clinical and economic burden of wound care in the tropics: a 5-year institutional population health review. International Wound Journal. 2020;17(3):790–803.eng
dc.relation.referencesWorld Health Organization, editor. The injury chart book: a graphical overview of the global burden of injuries. Geneva: Dept. of Injuries and Violence Prevention, Noncommunicable Diseases and Mental Health Cluster, World Health Organization; 2002. 75 p.eng
dc.relation.referencesGonzález Consuegra RV, Roa Lizcano KT, López Zuluaga WJ. Estudio de prevalencia de lesiones por presión en un Hospital Universitario, Bogotá-Colombia. Rev cienc cuidad. 2018 Jun 30;15(2):91–100.eng
dc.relation.referencesRowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, et al. Burn wound healing and treatment: review and advancements. Crit Care [Internet]. 2015 [cited 2021 Jun 11];19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464872/eng
dc.relation.referencesSalamone JC, Salamone AB, Swindle-Reilly K, Leung KXC, McMahon RE. Grand challenge in Biomaterials-wound healing. Regenerative Biomaterials. 2016 Jun 1;3(2):127–8.eng
dc.relation.referencesSarkar K, Xue Y, Sant S. Host Response to Synthetic Versus Natural Biomaterials. In: Corradetti B, editor. The Immune Response to Implanted Materials and Devices: The Impact of the Immune System on the Success of an Implant [Internet]. Cham: Springer International Publishing; 2017 [cited 2021 Jun 11]. p. 81–105. Available from: https://doi.org/10.1007/978-3-319-45433-7_5eng
dc.relation.referencesSu Y, Zhang X, Ren G, Zhang Z, Liang Y, Wu S, et al. In situ implantable three-dimensional extracellular matrix bioactive composite scaffold for postoperative skin cancer therapy. Chemical Engineering Journal. 2020 Nov 15;400:125949.eng
dc.relation.referencesParmaksiz M, Dogan A, Odabas S, Elçin AE, Elçin YM. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater. 2016 Mar;11(2):022003.eng
dc.relation.referencesTajima K, Kuroda K, Otaka Y, Kinoshita R, Kita M, Oyamada T, et al. Decellularization of canine kidney for three-dimensional organ regeneration. Vet World. 2020 Mar;13(3):452–7.eng
dc.relation.referencesOliveira AC, Garzón I, Ionescu AM, Carriel V, Cardona J de la C, González-Andrades M, et al. Evaluation of Small Intestine Grafts Decellularization Methods for Corneal Tissue Engineering. PLOS ONE. 2013 Jun 14;8(6):e66538.eng
dc.relation.referencesMaghsoudlou P, Totonelli G, Loukogeorgakis SP, Eaton S, De Coppi P. A Decellularization Methodology for the Production of a Natural Acellular Intestinal Matrix. J Vis Exp. 2013 Oct 7;(80):50658.eng
dc.relation.referencesKeane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012 Feb;33(6):1771–81.eng
dc.relation.referencesGilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. J Surg Res. 2009 Mar;152(1):135–9.eng
dc.relation.referencesLee PY, Costumbrado J, Hsu CY, Kim YH. Agarose Gel Electrophoresis for the Separation of DNA Fragments. J Vis Exp. 2012 Apr 20;(62):3923.eng
dc.relation.referencesFreytes DO, Martin J, Velankar SS, Lee AS, Badylak SF. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008 Apr;29(11):1630–7.eng
dc.relation.referencesControl of Scaffold Degradation in Tissue Engineering: A Review | Tissue Engineering Part B: Reviews [Internet]. [cited 2022 Aug 26]. Available from: https://www.liebertpub.com/doi/10.1089/ten.teb.2013.0452eng
dc.relation.referencesPark SH, Gil ES, Shi H, Kim HJ, Lee K, Kaplan DL. Relationships Between Degradability of Silk Scaffolds and Osteogenesis. Biomaterials. 2010 Aug;31(24):6162–72.eng
dc.relation.referencesSasikumar Y, Solomon MM, Olasunkanmi LO, Ebenso EE. Effect of surface treatment on the bioactivity and electrochemical behavior of magnesium alloys in simulated body fluid: Effect of surface treatment on the bioactivity. Materials and Corrosion. 2017 Jul;68(7):776–90.eng
dc.relation.referencesBarbeck M, Serra T, Booms P, Stojanovic S, Najman S, Engel E, et al. Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components – Guidance of the inflammatory response as basis for osteochondral regeneration. Bioact Mater. 2017 Jun 23;2(4):208–23.eng
dc.relation.referencesZhao S, Gu L, Hammel JM, Lang H. Mechanical Characterization of the Decellularized Porcine Small Intestinal Submucosa Extracellular Matrix. In: Volume 3A: Biomedical and Biotechnology Engineering [Internet]. San Diego, California, USA: American Society of Mechanical Engineers; 2013 [cited 2021 Dec 14]. p. V03AT03A082. Available from: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2013/56215/San%20Diego,%20California,%20USA/261133eng
dc.relation.referencesDearth CL, Keane TJ, Carruthers CA, Reing JE, Huleihel L, Ranallo CA, et al. The effect of terminal sterilization on the material properties and in vivo remodeling of a porcine dermal biologic scaffold. Acta Biomaterialia. 2016 Mar;33:78–87.eng
dc.relation.referencesDąbrowska AK, Spano F, Derler S, Adlhart C, Spencer ND, Rossi RM. The relationship between skin function, barrier properties, and body-dependent factors. Skin Res Technol. 2018 May;24(2):165–74.eng
dc.relation.referencesInformation NC for B, Pike USNL of M 8600 R, MD B, Usa 20894. How does skin work? [Internet]. InformedHealth.org [Internet]. Institute for Quality and Efficiency in Health Care (IQWiG); 2019 [cited 2021 Jun 11]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279255/eng
dc.relation.referencesKhavkin J, Ellis DAF. Aging skin: histology, physiology, and pathology. Facial Plast Surg Clin North Am. 2011 May;19(2):229–34.eng
dc.relation.referencesRayner R, Carville K, Leslie G, Roberts P. A review of patient and skin characteristics associated with skin tears. J Wound Care. 2015 Sep;24(9):406–14.eng
dc.relation.referencesLazarus GS, Cooper DM, Knighton DR, Margolis DJ, Pecoraro RE, Rodeheaver G, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol. 1994 Apr;130(4):489–93.eng
dc.relation.referencesSingh S, Young A, McNaught CE. The physiology of wound healing. Surgery (Oxford). 2017 Sep 1;35(9):473–7.eng
dc.relation.referencesDuscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, et al. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. GER. 2016;62(2):216–25.eng
dc.relation.referencesGonzalez AC de O, Costa TF, Andrade Z de A, Medrado ARAP. Wound healing - A literature review*. An Bras Dermatol. 2016 Oct;91:614–20.eng
dc.relation.referencesGuo S, DiPietro LA. Factors Affecting Wound Healing. J Dent Res. 2010 Mar;89(3):219–29.eng
dc.relation.referencesWernick B, Nahirniak P, Stawicki SP. Impaired Wound Healing. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [cited 2022 Aug 26]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK482254/eng
dc.relation.referencesHa DH, Chae S, Lee JY, Kim JY, Yoon J, Sen T, et al. Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent. Biomaterials. 2021 Jan 1;266:120477.eng
dc.relation.referencesWang S, Zhu C, Zhang B, Hu J, Xu J, Xue C, et al. BMSC-derived extracellular matrix better optimizes the microenvironment to support nerve regeneration. Biomaterials. 2022 Jan 1;280:121251.eng
dc.relation.referencesHussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018 Jul;3(7):159–73.eng
dc.relation.referencesVentura RD, Padalhin AR, Park CM, Lee BT. Enhanced decellularization technique of porcine dermal ECM for tissue engineering applications. Materials Science and Engineering: C. 2019 Nov 1;104:109841.eng
dc.relation.referencesLee SJ, Lee JH, Park J, Kim WD, Park SA. Fabrication of 3D Printing Scaffold with Porcine Skin Decellularized Bio-Ink for Soft Tissue Engineering. Materials. 2020 Jan;13(16):3522.eng
dc.relation.referencesKim BS, Kwon YW, Kong JS, Park GT, Gao G, Han W, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials. 2018 Jun 1;168:38–53.eng
dc.relation.referencesHussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018 Jul;3(7):159–73.eng
dc.relation.referencesXu J, Fang H, Zheng S, Li L, Jiao Z, Wang H, et al. A biological functional hybrid scaffold based on decellularized extracellular matrix/gelatin/chitosan with high biocompatibility and antibacterial activity for skin tissue engineering. International Journal of Biological Macromolecules. 2021 Sep 30;187:840–9.eng
dc.relation.referencesSarmin AM, El Moussaid N, Suntornnond R, Tyler EJ, Kim YH, Di Cio S, et al. Multi-Scale Analysis of the Composition, Structure, and Function of Decellularized Extracellular Matrix for Human Skin and Wound Healing Models. Biomolecules. 2022 Jun;12(6):837.eng
dc.relation.referencesLiu Y, Huang CC, Wang Y, Xu J, Wang G, Bai X. Biological evaluations of decellularized extracellular matrix collagen microparticles prepared based on plant enzymes and aqueous two-phase method. Regenerative Biomaterials. 2021 Mar 1;8(2):rbab002.eng
dc.relation.referencesChou PR, Lin YN, Wu SH, Lin SD, Srinivasan P, Hsieh DJ, et al. Supercritical Carbon Dioxide-decellularized Porcine Acellular Dermal Matrix combined with Autologous Adipose-derived Stem Cells: Its Role in Accelerated Diabetic Wound Healing. Int J Med Sci. 2020 Feb 4;17(3):354–67.eng
dc.relation.referencesGratzer PF. Decellularized Extracellular Matrix. In: Narayan R, editor. Encyclopedia of Biomedical Engineering [Internet]. Oxford: Elsevier; 2019 [cited 2022 Jul 12]. p. 86–96. Available from: https://www.sciencedirect.com/science/article/pii/B9780128012383998702eng
dc.relation.referencesKim YS, Majid M, Melchiorri AJ, Mikos AG. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med. 2018 Oct 26;4(1):83–95.eng
dc.relation.referencesTan YH, Helms HR, Nakayama KH. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues. Frontiers in Bioengineering and Biotechnology [Internet]. 2022 [cited 2022 Jul 21];10. Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2022.831300eng
dc.relation.referencesHrebikova H, Diaz D, Mokry J. Chemical decellularization: a promising approach for preparation of extracellular matrix. Biomedical Papers. 2015 Mar 9;159(1):012–7.eng
dc.relation.referencesG-Biosciences. Detergents for Protein Extraction & Cell Lysis Guide [Internet]. 1st ed. United States; 2010 [cited 2021 May 9]. (1; vol. Protein Research). Available from: http://www.genotech.com/protein-research/detergent-accessories.html#:~:text=Detergents%20%7C%20Order%20Online-,ionic%20detergents,for%20separation%20during%20gel%20electrophoresis.eng
dc.relation.referencesZahmati AHA, Alipoor R, Shahmirzadi AR, Khori V, Abolhasani MM. Chemical Decellularization Methods and Its Effects on Extracellular Matrix. Internal Medicine and Medical Investigation Journal. 2017 Aug 4;2(3):76–83.eng
dc.relation.referencesGilpin A, Yang Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed Res Int. 2017;2017:9831534.eng
dc.relation.referencesSyed O, Walters NJ, Day RM, Kim HW, Knowles JC. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomaterialia. 2014 Dec 1;10(12):5043–54.eng
dc.relation.referencesYamanaka H, Morimoto N, Yamaoka T. Decellularization of submillimeter-diameter vascular scaffolds using peracetic acid. J Artif Organs. 2020 Jun;23(2):156–62.eng
dc.relation.referencesWei F, Liu S, Chen M, Tian G, Zha K, Yang Z, et al. Host Response to Biomaterials for Cartilage Tissue Engineering: Key to Remodeling. Frontiers in Bioengineering and Biotechnology [Internet]. 2021 [cited 2022 Jul 21];9. Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2021.664592eng
dc.relation.referencesFernández-Pérez J, Ahearne M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep. 2019 Oct 17;9(1):14933.eng
dc.relation.referencesMendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci. 2020 Jul 30;21(15):5447.eng
dc.relation.referencesTao M, Ao T, Mao X, Yan X, Javed R, Hou W, et al. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater. 2021 Feb 27;6(9):2927–45.eng
dc.relation.referencesWhite LJ, Taylor AJ, Faulk DM, Keane TJ, Saldin LT, Reing JE, et al. The impact of detergents on the tissue decellularization process: a ToF-SIMS study. Acta Biomater. 2017 Mar 1;50:207–19.eng
dc.relation.referencesMoffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng. 2022 May 21;13:20417314221101150.eng
dc.relation.referencesBenichou G, Yamada Y, Yun SH, Lin C, Fray M, Tocco G. Immune recognition and rejection of allogeneic skin grafts. Immunotherapy. 2011 Jun;3(6):757–70.eng
dc.relation.referencesGilbert TW, Stewart-Akers AM, Badylak SF. A quantitative method for evaluating the degradation of biologic scaffold materials. Biomaterials. 2007 Jan 1;28(2):147–50.eng
dc.relation.referencesKasper JC, Friess W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. European Journal of Pharmaceutics and Biopharmaceutics. 2011 Jun 1;78(2):248–63.eng
dc.relation.referencesZagorska J, Ciprovica I. Evaluation of Factors Affecting Freezing Point of Milk. 2013;7(2):6.eng
dc.relation.referencesKeane TJ, Dziki J, Castelton A, Faulk DM, Messerschmidt V, Londono R, et al. Preparation and characterization of a biologic scaffold and hydrogel derived from colonic mucosa. J Biomed Mater Res B Appl Biomater. 2017 Feb;105(2):291–306.eng
dc.relation.referencesGilbert TW, Stewart-Akers AM, Simmons-Byrd A, Badylak SF. Degradation and Remodeling of Small Intestinal Submucosa in Canine Achilles Tendon Repair. JBJS. 2007 Mar;89(3):621–30.eng
dc.relation.referencesRecord RD, Hillegonds D, Simmons C, Tullius R, Rickey FA, Elmore D, et al. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials. 2001 Oct 1;22(19):2653–9.eng
dc.relation.referencesShi L, Ronfard V. Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review. Int J Burns Trauma. 2013 Nov 1;3(4):173–9.eng
dc.relation.referencesCrapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011 Apr 1;32(12):3233–43.eng
dc.relation.referencesSingh H, Purohit SD, Bhaskar R, Yadav I, Gupta MK, Mishra NC. Development of decellularization protocol for caprine small intestine submucosa as a biomaterial. Biomaterials and Biosystems. 2022 Mar 1;5:100035.eng
dc.relation.referencesVavken P, Joshi S, Murray MM. TRITON-X Is Most Effective among Three Decellularization Agents for ACL Tissue Engineering. J Orthop Res. 2009 Dec;27(12):1612–8.eng
dc.relation.referencesFaulk DM, Carruthers CA, Warner HJ, Kramer CR, Reing JE, Zhang L, et al. The Effect of Detergents on the Basement Membrane Complex of a Biologic Scaffold Material. Acta Biomater. 2014 Jan;10(1):10.1016/j.actbio.2013.09.006.eng
dc.rightsJuan Pablo Ruíz Soto, Sara María Galvis Escobar, Maria Antonia Rego Londoño, Juan David Molina Sierra, Catalina Pineda Molina - 2023eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0eng
dc.sourcehttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/4135eng
dc.subjectbioactive scaffoldeng
dc.subjectdecellularizationeng
dc.subjectporcine small intestineeng
dc.subjectskin woundeng
dc.subjecttissue engineeringeng
dc.subjectmatriz bioactivaspa
dc.subjectdescelularizaciónspa
dc.subjectintestino delgado porcinospa
dc.subjectherida de pielspa
dc.subjectingeniería de tejidosspa
dc.titleDescelularización y caracterización in vitro de matrices de intestino delgado porcino para el tratamiento de heridas complejasspa
dc.title.translatedDecellularization and in vitro characterization of porcine small intestine scaffolds for complex wound treatmentseng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.localJournal articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng
dspace.entity.typePublicationeng

Archivos

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: