Datos de Contacto
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...
dc.contributor.advisor | Reyes Ramos, Niradiz De las Mercedes | |
dc.contributor.author | Bettín Martínez, Alfonso Carlos | |
dc.date.accessioned | 2022-03-18T15:45:20Z | |
dc.date.available | 2022-03-18T15:45:20Z | |
dc.date.issued | 2010 | |
dc.description.abstract | La principal defensa del huésped humano a la infección por Mycobacterium tuberculosis es la formación de granulomas, una colección organizada de macrófagos activados, que incluyen células gigantes multinucleadas y epiteloides, rodeadas por linfocitos. Para investigar las bases moleculares de la formación temprana de los granulomas tuberculosos humanos, se aplicó un modelo in vitro compuesto enteramente de células mononucleares de sangre periférica humana expuestas a la cepa H37Ra (37º C, 5% CO2, por 5 dias). La formación de la agregación celular fue monitoreada día a día bajo microscopia óptica y tinción Zieh-Neelsen. Los granulomas fueron colectados a las 24 horas y el ARN extraído fue hibridizado con microarray de Affymetrix (Human Genome-U133 plus 2). Los datos de expresión de microarray fueron analizados con los programas dChiP y GenMAPP/MAPPFinder para determinar su significancia a nivel biológico, y los genes más relevantes se validaron a través de PCR en tiempo real. El examen microscópico revelo la formación gradual de granulomas y las bacterias ácidoalcohol resistentes fueron observadas entre y dentro de las células que formaban el granuloma. El análisis de los microarray mostró genes fuertemente expresados, comparados con los controles, los cuales incluyen receptores de superficie celular (ICAM1,2,3; FAS; IL-2R, TLR-4), citocinas pro inflamatorias (INF-g, TNF-alfa, IL-1, IL-6, IL-8), quimiocinas y sus receptores que no han sido previamente reportados (CCL2; CXCL2; CCL18; CXCR4; CCRL2), factores de trascripción (STAT4; STAT6), genes relacionados con la apoptosis y citotoxicidad (FAS, TRADD, granzima B, Granulisyn, Caspasa-8). La mayoría de los genes sub-expresados fueron relacionados con funciones metabólicas generales. Estos datos de expresión génica aportan evidencia que Mycobacterium tuberculosis produce una alteración global de la respuesta inmune del huésped infectado, y que una vez logremos armar el rompecabezas y logremos entenderlo podríamos valorar el desarrollo de nuevas terapias y quizás poder inhibir la reactivación de una infección latente. En este estudio demostramos que el análisis sistemático de la expresión génica en células infectadas con M. tuberculosis H37Ra reveló perfiles de expresión dirigidos a la activación de una respuesta inmune efectiva contra el bacilo, y que en estudios posteriores a este se puedan comparar con cepas clínicas de micobacteria con el fin de determinar eventos moleculares claves involucrados en la infección por M. tuberculosis. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Microbiología | spa |
dc.format.extent | 86 hojas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://hdl.handle.net/11227/14820 | |
dc.identifier.uri | http://dx.doi.org/10.57799/11227/1366 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Cartagena | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.publisher.program | Maestría en Microbiología | spa |
dc.rights | Derechos Reservados - Universidad de Cartagena, 2010 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.armarc | Biomoléculas - Análisis | |
dc.subject.armarc | Células B - Tumores | |
dc.subject.armarc | Antígenos | |
dc.subject.armarc | Neoplasmas de las células B | |
dc.title | Aplicación de un modelo in vitro para el análisis molecular de la respuesta inmune temprana a Mycobacterium tuberculosis H37Ra utilizando la tecnología de Microarray de Oligonucleótidos | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.references | The world health report 2008 and GLOBAL TUBERCULOSIS CONTROL, WHO, Editor. 2008.: Geneva , Switzerland. | |
dcterms.references | Puissegur MPB, C. Duteyrat, J. L. Delsol, G. Caratero, C. Altare, F. An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol, 2004. 6(5): p. 423-33. | |
dcterms.references | Instituto Nacional de Salud MdPS, Vivamos sin tuberculosis. 2009: Bogota. | |
dcterms.references | Salud. INd, INS comprometido con la disminución de la morbilidad y mortalidad asociada a la Tuberculosis. 2009. | |
dcterms.references | Glickman MaJ W. Microbial pathogenesis of mycobacterium tuberculosis: Dawn of a discipline. Cell, 2001. 104: 477-85. | |
dcterms.references | Dreher D and Nicod LP. Dendritic cells in the mycobacterial granuloma are involved in acquired immunity. Am J Respir Crit Care Med, 2002. 165(12): p. 1577-8. | |
dcterms.references | Dannenberg AM J, and Rook, G.A.W., Pathogenesis of pulmonary tuberculosis: An interplay of tissue damaging and macrophage-activating immune responses - dual mechanisms that control bacillary multiplication., in Tuberculosis:Pathogenesis, control and protection. 1994.: Washington DC: American Society for Microbiology Press, . p. pp. 459- 84. | |
dcterms.references | Dannenberg AM J, and Rook, G.A.W., Pathogenesis of pulmonary tuberculosis: An interplay of tissue damaging and macrophage-activating immune responses - dual mechanisms that control bacillary multiplication., in Tuberculosis:Pathogenesis, control and protection. 1994.: Washington DC: American Society for Microbiology Press, . p. pp. 459- 84. | |
dcterms.references | A. R. Immunology of tuberculosis. Indian J Med Res, 2004. 120: 213-32 | |
dcterms.references | Flynn JL CJ. Tuberculosis: Latency and reactivation. Infect Immun, 2001. 69: 4195-201. | |
dcterms.references | Flynn JL CJ. Tuberculosis: Latency and reactivation. Infect Immun, 2001. 69: 4195-201. | |
dcterms.references | Orme IM and Cooper AM. Cytokine/chemokine cascades in immunity to tuberculosis. Immunol Today, 1999. 20(7): p. 307-12. | |
dcterms.references | Zhang Y, Broser M, Cohen H, Bodkin M, Law K, Reibman J, et al. Enhanced interleukin-8 release and gene expression in macrophages after exposure to Mycobacterium tuberculosis and its components. J Clin Invest, 1995. 95(2): p. 586-92. | |
dcterms.references | Khajoee V, Saito M, Takada H, Nomura A, Kusuhara K, Yoshida SI, et al. Novel roles of osteopontin and CXC chemokine ligand 7 in the defence against mycobacterial infection. Clin Exp Immunol, 2006. 143(2): p. 260-8. | |
dcterms.references | Kurashima K, Mukaida N, Fujimura M, Yasui M, Nakazumi Y, Matsuda T, et al. Elevated chemokine levels in bronchoalveolar lavage fluid of tuberculosis patients. Am J Respir Crit Care Med, 1997. 155(4): p. 1474-7. | |
dcterms.references | Saunders BM and Britton WJ. Life and death in the granuloma: immunopathology of tuberculosis. Immunol Cell Biol, 2007. 85(2): p. 103-11. | |
dcterms.references | Bean AG, Roach DR, Briscoe H, France MP, Korner H, Sedgwick JD, et al. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened | |
dcterms.references | Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity, 1995. 2(6): p. 561-72. | |
dcterms.references | Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K, Koch C, et al. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol, 2006. 8(2): p. 218-32. | |
dcterms.references | Bulat-Kardum L, Etokebe GE, Knezevic J, Balen S, Matakovic-Mileusnic N, Zaputovic L, et al. Interferon-gamma receptor-1 gene promoter polymorphisms (G-611A; T-56C) and susceptibility to tuberculosis. Scand J Immunol, 2006. 63(2): p. 142-50. | |
dcterms.references | Trinchieri G, Kubin M, Bellone G and Cassatella MA. Cytokine cross-talk between phagocytic cells and lymphocytes: relevance for differentiation/activation of phagocytic cells and regulation of adaptive immunity. J Cell Biochem, 1993. 53(4): p. 301-8. | |
dcterms.references | Orme IM. The immunopathogenesis of tuberculosis: a new working hypothesis. Trends Microbiol, 1998. 6(3): p. 94-7. | |
dcterms.references | Hirsch CS, Toossi Z, Othieno C, Johnson JL, Schwander SK, Robertson S, et al. Depressed T-cell interferon-gamma responses in pulmonary tuberculosis: analysis of underlying mechanisms and modulation with therapy. J Infect Dis, 1999. 180(6): p. 2069- 73. | |
dcterms.references | Jones BW, Heldwein KA, Means TK, Saukkonen JJ and Fenton MJ. Differential roles of Toll-like receptors in the elicitation of proinflammatory responses by macrophages. Ann Rheum Dis, 2001. 60 Suppl 3: p. iii6-12. | |
dcterms.references | Toossi Z aE, J.J. , Pathogenesis of tuberculosis.In: L. N. Friedman (ed.),. 2001. | |
dcterms.references | Seiler P, Aichele P, Bandermann S, Hauser AE, Lu B, Gerard NP, et al. Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol, 2003. 33(10): p. 2676-86. | |
dcterms.references | Pieters LNJ. The trojan horse: Survival tactics of pathogenic mycobacteria in macrophages. Trends in Cell Biology, 2005. Volume 15: Pages 269-76. | |
dcterms.references | Russell. Mycobacterium tuberculosis: Here today, and here tomorrow. Nature Reviews Molecular Cell Biology, 2001. 2: 569-86. | |
dcterms.references | Ulrichs TK S. Mycobacterial persistence and immunity. Frontiers in Bioscience, 2002. 7: d458-69. | |
dcterms.references | MacMicking JQW XaCN. Nitric oxide and macrophage function Annu Rev Immunol Cell Biol, 1997. 15: 323-50. | |
dcterms.references | Ulrichs TaK S. New insights into the function of granulomas in human tuberculosis. Journal of Pathology, 2006. 208: 261-9. | |
dcterms.references | Jung YJL, R. Ryan, L. and North RJ. Virulent but not avirulent Mycobacterium tuberculosis can evade the growth inhibitory action of a T helper 1-dependent, nitric oxide Synthase 2- independent defense in mice. J Exp Med, 2002. 196(7): p. 991-8. | |
dcterms.references | Drea WF. Growth Inhibition of Strain H37 of Human Tubercle Bacillus by 4-nAlkylresorcinols in Depth of a Liquid, Synthetic, Nonprotein Culture Medium. J Bacteriol, 1946. 51(4): p. 507-11. | |
dcterms.references | Steenken JWJ, and L. U. Gardner. History of H37 strain of tubercle bacillus. American Rev. of Tuberculosis, 1946. 54:: p. 62-66. | |
dcterms.references | Cole STB, R. Parkhill, J. Garnier, T. Churcher, C. Harris, D. Gordon, S. V. Eiglmeier, K. Gas, S. Barry, C. E., 3rd Tekaia, F., Badcock KB, D. Brown, D., Chillingworth T, Connor R, avies R, Devlin K, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998. 393(6685): p. 537-44. | |
dcterms.references | Alsaadi AIS, D. W. The fate of virulent and attenuated Mycobacteria in guinea pigs infected by the respiratory route. Am Rev Respir Dis, 1973. 107(6): p. 1041-6. | |
dcterms.references | Silver RF, Walrath J, Lee H, Jacobson BA, Horton H, Bowman MR, et al. Human alveolar macrophage gene responses to Mycobacterium tuberculosis strains H37Ra and H37Rv. Am J Respir Cell Mol Biol, 2009. 40(4): p. 491-504. | |
dcterms.references | Beisiegel M, Mollenkopf HJ, Hahnke K, Koch M, Dietrich I, Reece ST, et al. Combination of host susceptibility and Mycobacterium tuberculosis virulence define gene expression profile in the host. Eur J Immunol, 2009. 39(12): p. 3369-84. | |
dcterms.references | Kunkel SL, Lukacs NW, Strieter RM and Chensue SW. Animal models of granulomatous inflammation. Semin Respir Infect, 1998. 13(3): p. 221-8. | |
dcterms.references | Davis JMC, H. Lewis, J. L. Ghori, N. Herbomel, P. Ramakrishnan, L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity, 2002. 17(6): p. 693-702. | |
dcterms.references | Birkness KAG, J. Sable, S. B., Tripp RA, Kellar KL, Bartlett J and Quinn FD. An in vitro model of the leukocyte interactions associated with granuloma formation in Mycobacterium tuberculosis infection. Immunol Cell Biol, 2007. 85(2): p. 160-8. | |
dcterms.references | Roach DR B, H., Baumgart, K., Rathjen, D.A., and, Britton WJ, . Tumor necrosis factor (tnf) and a tnf-mimetic peptide modulate the granulomatous response to mycobacterium bovis bcg infection in vivo. Infect Immun, 1999. 67: 5473-6. | |
dcterms.references | Algood HM, Chan J and Flynn JL. Chemokines and tuberculosis. Cytokine Growth Factor Rev, 2003. 14(6): p. 467-77. | |
dcterms.references | Algood HM, Lin PL and Flynn JL. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis, 2005. 41 Suppl 3: p. S189-93. | |
dcterms.references | Flynn JL and Chan J. What's good for the host is good for the bug. Trends Microbiol, 2005. 13(3): p. 98-102. | |
dcterms.references | Doughty BLO, E. A. Nash, T. E. Phillips, S. M. Delayed hypersensitivity granuloma formation around Schistosoma mansoni eggs in vitro. III. Granuloma formation and modulation in human Schistosomiasis mansoni. J Immunol, 1984. 133(2): p. 993-7. | |
dcterms.references | Seitzer UH, H. Gerdes, J. A human in vitro granuloma model for the investigation of multinucleated giant cell and granuloma formation. Histol Histopathol, 2001. 16(2): p. 645- 53. | |
dcterms.references | Heinemann DEP, J. H. Gahr, M. A human in vitro granuloma model using heat killed Candida albicans cells immobilized on plastic culture wells. Scand J Immunol, 1997. 45(6): p. 596-604. | |
dcterms.references | Starck JK, G. Marklund, B. I. Andersson, D. I. Akerlund, T. Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology, 2004. 150(Pt 11): p. 3821-9. | |
dcterms.references | Hmama ZG, R. Jefferies, W. A. de Jong, G. Reiner, N. E. Attenuation of HLA-DR expression by mononuclear phagocytes infected with Mycobacterium tuberculosis is related to intracellular sequestration of immature class II heterodimers. J Immunol, 1998. 161(9): p. 4882-93 | |
dcterms.references | Rojas MO, M. Gros, P. Barrera, L. F. Garcia, L. F. . TNF-alpha and IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macrophages. J Immunol, 1999. 162(10): p. 6122-31. | |
dcterms.references | Hirsch CSH, R. Toossi, Z. Dawood, G. Shahid, F. Ellner, J. J. Cross-modulation by transforming growth factor beta in human tuberculosis: suppression of antigen-driven blastogenesis and interferon gamma production. Proc Natl Acad Sci U S A, 1996. 93(8): p. 3193-8. | |
dcterms.references | Ting LM, Kim AC, Cattamanchi A and Ernst JD. Mycobacterium tuberculosis inhibits IFNgamma transcriptional responses without inhibiting activation of STAT1. J Immunol, 1999. 163(7): p. 3898-906. | |
dcterms.references | Elkington PT, Nuttall RK, Boyle JJ, O'Kane CM, Horncastle DE, Edwards DR, et al. Mycobacterium tuberculosis, but not vaccine BCG, specifically upregulates matrix metalloproteinase-1. Am J Respir Crit Care Med, 2005. 172(12): p. 1596-604. | |
dcterms.references | Harboe M. The significance of proteins actively secreted by Mycobacterium tuberculosis in relation to immunity and complications of mycobacterial diseases. Int J Lepr Other Mycobact Dis, 1992. 60(3): p. 470-6. | |
dcterms.references | Zhu G, Xiao H, Mohan VP, Tanaka K, Tyagi S, Tsen F, et al. Gene expression in the tuberculous granuloma: analysis by laser capture microdissection and real-time PCR. Cell Microbiol, 2003. 5(7): p. 445-53. | |
dcterms.references | Bataille AR and Robert F. Profiling Genome-Wide Histone Modifications and Variants by ChIP-chip on Tiling Microarrays in S. cerevisiae. Methods Mol Biol, 2009. 543: p. 267-79. | |
dcterms.references | Page GP, Zakharkin SO, Kim K, Mehta T, Chen L and Zhang K. Microarray analysis. Methods Mol Biol, 2007. 404: p. 409-30. | |
dcterms.references | Affymetrix: Microarray Suite User Guide. Affymetrix .2001. Version 5: [http://www.affymetrix.com/support/technical/manuals.affx]. | |
dcterms.references | Reyes N I, M., Mittelman, A., and Geliebter, J. Microarray analysis of dietinduced alterations in gene expression in the aci rat prostate. Eur J Cancer Prev,, 2002;. 11: S37- 42. | |
dcterms.references | Affymetrix. GeneChip® Expression Analysis Data Analysis Fundamentals. | |
dcterms.references | Irina Dinu JDP, Thomas Mueller, Qi Liu, Adeniyi J Adewale, Gian S Jhangri, Gunilla Einecke, Konrad S Famulski, Philip Halloran and Yutaka Yasui. . Improving gene set analysis of microarray data by SAM-GS. BMC Bioinformatics, 2007. 8:: p. 242-253. | |
dcterms.references | Jelle J. Goeman aPBh. Analyzing gene expression data in terms of gene sets: methodological issues. BIOINFORMATICS, 2007. . Vol. 23. 8: 980–987. | |
dcterms.references | Lipshutz RJ FS, Gingeras TR, Lockhart DJ. . High density synthetic oligonucleotide arrays. Nature Genetics 1999:. 20-24. | |
dcterms.references | Li C WW. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biology 2001. 8:0032. | |
dcterms.references | Schadt EC LC, Ellis B, Wong WH. Feature extraction and normalization algorithms for highdensity oligonucleotide gene expression array data. J Cell Biochem 2001:. 120-125 | |
dcterms.references | Wu Z IR. Preprocessing of oligonucleotide array data. Nature Biotechnology 2004. 22:656- 658. | |
dcterms.references | Schadt EC LC, Ellis B, Wong WH. Feature extraction and normalization algorithms for highdensity oligonucleotide gene expression array data. J Cell Biochem. , 2001:. 120-125. | |
dcterms.references | Millenaar FF, Okyere J, May ST, van Zanten M, Voesenek LA and Peeters AJ. How to decide? Different methods of calculating gene expression from short oligonucleotide array data will give different results. BMC Bioinformatics, 2006. 7: p. 137. | |
dcterms.references | Seo J, Bakay M, Chen YW, Hilmer S, Shneiderman B and Hoffman EP. Interactively optimizing signal-to-noise ratios in expression profiling: project-specific algorithm selection and detection p-value weighting in Affymetrix microarrays. Bioinformatics, 2004. 20(16): p. 2534-44. | |
dcterms.references | Reyes I, Tiwari R, Geliebter J and Reyes N. DNA microarray analysis reveals metastasisassociated genes in rat prostate cancer cell lines. Biomedica, 2007. 27(2): p. 190-203. | |
dcterms.references | Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002. 3(7): p. RESEARCH0034. | |
dcterms.references | Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC and Conklin BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet, 2002. 31(1): p. 19-20. | |
dcterms.references | Dahlquist KD, et al. . GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet,, 2002. 31(1): p. 19-20. | |
dcterms.references | Steve Rozen and Helen J. Skaletsky Totowa N. Primer3 on the WWW for general users nd for biologist programmers. In: Krawetz S, Misener S (eds). Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press,, 2000.: p. pp 365-386. | |
dcterms.references | Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9. | |
dcterms.references | Aydemir TB, Blanchard RK and Cousins RJ. Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations. Proc Natl Acad Sci U S A, 2006. 103(6): p. 1699-704. | |
dcterms.references | Russell DG. Who puts the tubercle in tuberculosis? Nat Rev Microbiol, 2007. 5(1): p. 39-47 | |
dcterms.references | Drage MG, Pecora ND, Hise AG, Febbraio M, Silverstein RL, Golenbock DT, et al. TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol, 2009. 258(1): p. 29-37. | |
dcterms.references | Quesniaux V, Fremond C, Jacobs M, Parida S, Nicolle D, Yeremeev V, et al. Toll-like eceptor pathways in the immune responses to mycobacteria. Microbes Infect, 2004. 6(10): p. 946-59. | |
dcterms.references | Noss EH, Harding CV and Boom WH. Mycobacterium tuberculosis inhibits MHC class II antigen processing in murine bone marrow macrophages. Cell Immunol, 2000. 201(1): p. 63-74. | |
dcterms.references | Andrea J. Wolf LD, Beth Linas , Niaz Banaiee ,Toshiki Tamura , Kiyoshi Takatsu , and Joel D. Ernst. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. journal experintal medicine, 2008. Vol. 205, No. 1,. | |
dcterms.references | Bifani P, Moghazeh S, Shopsin B, Driscoll J, Ravikovitch A and Kreiswirth BN. Molecular characterization of Mycobacterium tuberculosis H37Rv/Ra variants: distinguishing the mycobacterial laboratory strain. J Clin Microbiol, 2000. 38(9): p. 3200-4. | |
dcterms.references | Raju B, Hoshino Y, Belitskaya-Levy I, Dawson R, Ress S, Gold JA, et al. Gene expression profiles of bronchoalveolar cells in pulmonary TB. Tuberculosis (Edinb), 2008. 88(1): p. 39- 51. | |
dcterms.references | Mittrucker HW, Steinhoff U, Kohler A, Krause M, Lazar D, Mex P, et al. Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proc Natl Acad Sci U S A, 2007. 104(30): p. 12434-9. | |
dcterms.references | Getachew Y, Stout-Delgado H, Miller BC and Thiele DL. Granzyme C supports efficient CTL-mediated killing late in primary alloimmune responses. J Immunol, 2008. 181(11): p. 7810-7. | |
dcterms.references | Stoeckle C, Gouttefangeas C, Hammer M, Weber E, Melms A and Tolosa E. Cathepsin W expressed exclusively in CD8+ T cells and NK cells, is secreted during target cell killing but is not essential for cytotoxicity in human CTLs. Exp Hematol, 2009. 37(2): p. 266-75. | |
dcterms.references | Chavez-Galan L, Arenas-Del Angel MC, Zenteno E, Chavez R and Lascurain R. Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol Immunol, 2009. 6(1): p. 15-25. | |
dcterms.references | Sedelies KA, Sayers TJ, Edwards KM, Chen W, Pellicci DG, Godfrey DI, et al. Discordant regulation of granzyme H and granzyme B expression in human lymphocytes. J Biol Chem, 2004. 279(25): p. 26581-7. | |
dcterms.references | Kaufmann SH. The contribution of immunology to the rational design of novel antibacterial accines. Nat Rev Microbiol, 2007. 5(7): p. 491-504. | |
dcterms.references | Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB and Behar SM. Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria. PLoS Pathog, 2008. 4(12): p. e1000239. | |
dcterms.references | Feng CG, Kaviratne M, Rothfuchs AG, Cheever A, Hieny S, Young HA, et al. NK cellderived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J Immunol, 2006. 177(10): p. 7086-93. | |
dcterms.references | Rangel-Moreno J, Moyron-Quiroz JE, Hartson L, Kusser K and Randall TD. Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is essential for local immunity to influenza. Proc Natl Acad Sci U S A, 2007. 104(25): p. 10577-82. | |
dcterms.references | Kursar M, Janner N, Pfeffer K, Brinkmann V, Kaufmann SH and Mittrucker HW. Requirement of secondary lymphoid tissues for the induction of primary and secondary T cell responses against Listeria monocytogenes. Eur J Immunol, 2008. 38(1): p. 127-38. | |
dcterms.references | Kursar M, Janner N, Pfeffer K, Brinkmann V, Kaufmann SH and Mittrucker HW. Requirement of secondary lymphoid tissues for the induction of primary and secondary T cell responses against Listeria monocytogenes. Eur J Immunol, 2008. 38(1): p. 127-38. | |
dcterms.references | Schreiber T, Ehlers S, Aly S, Holscher A, Hartmann S, Lipp M, et al. Selectin ligandindependent priming and maintenance of T cell immunity during airborne tuberculosis. J Immunol, 2006. 176(2): p. 1131-40. | |
dcterms.references | Lee JS, Lee JY, Son JW, Oh JH, Shin DM, Yuk JM, et al. Expression and regulation of the CC-chemokine ligand 20 during human tuberculosis. Scand J Immunol, 2008. 67(1): p. 77- 85. | |
dcterms.references | Khader SAaC, A. M. IL-23 and IL-17 in tuberculosis. Cytokine Growth Factor Rev, 2008. 41: 79-83. | |
dcterms.references | Miyamoto M, Prause O, Sjostrand M, Laan M, Lotvall J and Linden A. Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol, 2003. 170(9): p. 4665-72. | |
dcterms.references | Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS and Ley K. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity, 2005. 22(3): p. 285-94. | |
dcterms.references | Kolls JK and Linden A. Interleukin-17 family members and inflammation. Immunity, 2004. 21(4): p. 467-76. | |
dcterms.references | Stockinger B VM. Differentiation and function of Th17 T cells. . Curr. Op. Immunol. , 2007;. 19:281-286. | |
dcterms.references | al-Ramadi BK, Ellis M, Pasqualini F and Mantovani A. Selective induction of pentraxin 3, a soluble innate immune pattern recognition receptor, in infectious episodes in patients with haematological malignancy. Clin Immunol, 2004. 112(3): p. 221-4. | |
dcterms.references | Jo EK, Park JK and Dockrell HM. Dynamics of cytokine generation in patients with active pulmonary tuberculosis. Curr Opin Infect Dis, 2003. 16(3): p. 205-10 | |
dcterms.references | Sachse F, Ahlers F, Stoll W and Rudack C. Neutrophil chemokines in epithelial inflammatory processes of human tonsils. Clin Exp Immunol, 2005. 140(2): p. 293-300. | |
dcterms.references | Donninger H, Glashoff R, Haitchi HM, Syce JA, Ghildyal R, van Rensburg E, et al. Rhinovirus induction of the CXC chemokine epithelial-neutrophil activating peptide-78 in bronchial epithelium. J Infect Dis, 2003. 187(11): p. 1809-17. | |
dcterms.references | Jang S, Uzelac A and Salgame P. Distinct chemokine and cytokine gene expression pattern of murine dendritic cells and macrophages in response to Mycobacterium tuberculosis infection. J Leukoc Biol, 2008. 84(5): p. 1264-70. | |
dcterms.references | Mendez-Samperio P. Expression and regulation of chemokines in mycobacterial infection. J Infect, 2008. 57(5): p. 374-84. | |
dcterms.references | Chensue S WK, Allenspach E, Lu B, Gerard C, Kunkel S, et al. . Differential expression and cross-regulatory function of RANTES during mycobacterial (type 1) and schistosomal (type 2) antigen elicited granulomatous inflammation. J Immunol., 1999. 163:165e73. | |
dcterms.references | Collins HL KS. The many faces of host responses to tuberculosis. . Immunology 2001. 103:1e9. | |
dcterms.references | Sadek MI, Sada E, Toossi Z, Schwander SK and Rich EA. Chemokines induced by infection of mononuclear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. Am J Respir Cell Mol Biol, 1998. 19(3): p. 513-21. | |
dcterms.references | Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K, et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med, 2003. 9(8): p. 1039-46. | |
dcterms.references | Winau F, Weber S, Sad S, de Diego J, Hoops SL, Breiden B, et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity, 2006. 24(1): p. 105-17. | |
dcterms.references | Zhang J, Jiang R, Takayama H and Tanaka Y. Survival of virulent Mycobacterium tuberculosis involves preventing apoptosis induced by Bcl-2 upregulation and release resulting from necrosis in J774 macrophages. Microbiol Immunol, 2005. 49(9): p. 845-52. | |
dcterms.references | Chen M, Gan H and Remold HG. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol, 2006. 176(6): p. 3707-16. | |
dcterms.references | Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol, 2009. 10(8): p. 899-906 | |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...