Publicación:
Síntesis y evaluación biológica de derivados naftoquinonicos con potencial uso en la terapia de cáncer de próstata (cp)

dc.contributor.advisorGómez Estrada, Harold Alberto
dc.contributor.advisorCabezas Salinas, Marisa
dc.contributor.authorPiermattey Ditta, Jhoan Humberto
dc.contributor.authorPiermattey Ditta, Jhoan
dc.date.accessioned2021-11-05T19:17:29Z
dc.date.available2021-11-05T19:17:29Z
dc.date.issued2021
dc.description.abstractEl cáncer de próstata (CP) es uno de los tumores malignos más frecuentes, ocupando el tercer lugar en todo el mundo y el segundo entre la población masculina, con aproximadamente 1.276.106 nuevos casos cada año. A nivel mundial representa el 13,5 % de todos los canceres masculinos, con mayores tasas de incidencia en las regiones más desarrolladas, algunas relativamente altas en regiones de menor desarrollo como el Caribe, Suráfrica y Suramérica (60- 80/100.000 hombres), y bajas tasa de incidencia en países asiáticos (4-11/100.000 hombres). Se han podido establecer algunos factores de riesgo que aumentan la probabilidad de desarrollar esta enfermedad, tales como, mutaciones heredadas en genes supresores de tumores o mutaciones adquiridas a lo largo de la vida, andrógenos o IGF-1, la edad, etnicidad, inflamación de la próstata, dieta, tabaquismo, obesidad, exposición a químicos, enfermedades de transmisión sexual y vasectomía. Aunque los andrógenos juegan papel importante en el desarrollo, crecimiento y función de la próstata durante la pubertad, también son de significancia en el mantenimiento y progresión de las patologías prostáticas en la adultez. Por tal motivo, las sustancias de naturaleza esteroidal o no esteroidal con actividad antiandrogénica, son una de las alternativas terapéuticas frente a padecimientos dependientes de andrógenos como son HPB y CP, las cuales, por diversos mecanismos de acción, modifican la producción y la acción de andrógenos endógenos. Dado lo anterior, con el objetivo de contribuir al descubrimiento de nuevos agentes antiandrogénicos de naturaleza no esteroidal con posible uso en el tratamiento del cáncer de próstata, basados en la actividad disruptora endocrina de conocidos compuestos quinónicos, se propuso obtener 9 análogos naftoquinónicos a través de cuatro rutas de síntesis para posteriormente evaluar sus actividades biológicas como inhibidores de las enzimas 5α-reductasa, 3α-HSD y 3β-HSD, también se determinó la afinidad por el receptor de andrógenos (RA) y la actividad antiandrogénica in vivo en hámsteres machos de la cepa dorada castrados, por comparación del tamaño de la próstata y vesícula seminal una vez suministrado los tratamientos. Adicionalmente se realizaron estudios in silico de los mecanismos de reacción de aminación de naftoquinonas y docking molecular de los compuestos con la enzima 3α-HSD. Se obtuvieron los compuestos 2-aminonaftalen-1,4-diona (5), 2-amino-3- metilnaftalen-1,4-diona (6), 3-amino-5-hidroxinaftalen-1,4-diona (7), 2-metil-1H- benzo[f]indol-4,9-diona (5a), 2,3-dietil-1H-benzo[f]indol-4,9-diona (5b), 2-amino- 3iodonaftalen-1,4-diona (5c), 2-(iodoamino)-3-metilnaftalen-1,4-diona (6a), N-5’- hidroxinaftalen-1’,4’-dion-3’il-3-acetoxiandrostan-5,16-dien-17-carboxamida (7a) y nafto[2,3-b]furan-4,9-diona (4a). Fue posible llevar a cabo la elucidación estructural de todos los compuestos sintetizados por medio del análisis e interpretación de espectros de masas, FT-IR y RMN. La síntesis de los compuestos 5, 6 y 7, se realizó por medio reacciones de aminación sin catalizador y con CAN como catalizador, los resultados se compararon concluyendo que las reacciones con CAN disminuyen los tiempos de reacción y la energía de activación. Los estudios computacionales direccionaron la propuesta de un mecanismo de reacción que inicia con un ataque nucleofílico del azida de sodio generando seis intermediarios antes de llegar al producto de la reacción. Las energías de activación calculadas para los compuestos de partida muestran una mayor energía para la 2-metilnaftalen-1,4-dinona lo cual se ve reflejado experimentalmente la mayor temperatura y mayor tiempo de reacción en comparación con la obtención de los compuestos 5 y 7. Con respecto a la actividad biológica, los derivados de benzoindolquinona, 5a y 5b, se determinó negativa su actividad antiandrogénica. Ninguno de los compuestos evaluados inhibió la actividad enzimática de la 5α-reductasa, tampoco fueron capaces de desplazar al agonista [3H]R-1881 del RA debido a su muy baja afinidad por el sitio de unión al ligando. En contraste, si se observó inhibición de sobre las enzimas 3α-HSD y 3β-HSD, 5c (420 nM y 300 nM, respectivamente) y 6a (1,95 μM y 1,52 μM, respectivamente) fueron los compuestos más potentes. Los ensayos in vivo confirmaron la falta de afinidad de los compuestos evaluados por el RA, los tratamientos de los compuestos 5c y 6a simultáneos con testosterona no presentaron diferencias significativas en el tamaño de próstata y vesícula seminal al compararse con el grupo control tratado solo con testosterona. El estudio de docking molecular reveló que la mayoría de interacciones que se presentan entre la enzima 3α-HSD y los ligandos son de carácter hidrofóbico. Los compuestos 5c y 6a presentaron buena afinidad por el sitio activo de la enzima con energías libres de -6,06 y -6,31 kcal/mol, respectivamente. Por otro parte, el compuesto 4a mostró potente actividad citotoxica con buena selectividad frente a las líneas celulares HT-29 (IC50= 8,2 ± 0,06 μM), MDA-MB-231 (IC50= 6,43 ± 0,28 μM) y PC3 (IC50= 11,65 ± 1,54 μM). Como conclusión general, los compuestos 5c y 6a pueden considerase como posibles cabezas de series para el diseño de fármacos en el tratamiento de cáncer de próstata resistente a la castración, como inhibidores de las enzimas AKR1Cs. Y el compuesto 4a podría proponerse como molécula cabeza de serie para el diseño de análogos que puedan utilizarse como fármacos en el tratamiento de canceres andrógenos dependientes.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor(a) en Ciencias Biomédicasspa
dc.format.extent159 hojasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://hdl.handle.net/11227/13521
dc.identifier.urihttp://dx.doi.org/10.57799/11227/80
dc.language.isospaspa
dc.publisherUniversidad de Cartagenaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.programDoctorado en Ciencias Biomédicasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcPróstata - Cáncer
dc.subject.armarcAntígenos tumorales
dc.subject.armarcAntígenos carcinoembriónicos - Biosíntesis
dc.subject.armarcAntiandrógenos - Síntesis química
dc.subject.armarcNaftoquinonas - Síntesis química
dc.titleSíntesis y evaluación biológica de derivados naftoquinonicos con potencial uso en la terapia de cáncer de próstata (cp)spa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.referencesAaron, L. T., Franco, O. E., & Hayward, S. W. (2016). Review of Prostate Anatomy and Embryology and the Etiology of Benign Prostatic Hyperplasia. Urologic Clinics of North America, 43(3), 279–288. https://doi.org/10.1016/j.ucl.2016.04.012
dcterms.referencesAbedinpour, P., Baron, V. T., Chrastina, A., Rondeau, G., Pelayo, J., Welsh, J., & Borgström, P. (2017). Plumbagin improves the efficacy of androgen deprivation therapy in prostate cancer: A pre-clinical study. Prostate, 77(16), 1550–1562. https://doi.org/10.1002/pros.23428
dcterms.referencesAcuña, J., Piermattey, J., Caro, D., Bannwitz, S., Barrios, L., López, J., Ocampo, Y., Vivas-Reyes, R., Aristizábal, F., Gaitán, R., Müller, K., & Franco, L. (2018). Synthesis, anti-proliferative activity evaluation and 3D-QSAR study of naphthoquinone derivatives as potential anti-colorectal cancer agents. Molecules, 23(1). https://doi.org/10.3390/molecules23010186
dcterms.referencesAhumedo, M., Drosos, J. C., & Vivas-Reyes, R. (2014). Application of molecular docking and ONIOM methods for the description of interactions between antiquorum sensing active (AHL) analogues and the Pseudomonas aeruginosa LasR binding site. Molecular BioSystems, 10(5), 1162–1171. https://doi.org/10.1039/c3mb70181f
dcterms.referencesAmerican Cancer Society. (2016). Cáncer de próstata ¿Qué es el cáncer de próstata? http://www.cancer.org/acs/groups/cid/documents/webcontent/002319-pdf.pdf
dcterms.referencesAmerican Cancer Society. (2021). Home | American Cancer Society - Cancer Facts & Statistics. Cancer Statistics Center. https://cancerstatisticscenter.cancer.org/?_ga=2.182347747.554610333.1620 979911-1556184260.1620979911#!/
dcterms.referencesAmin, M., & Khalid, A. (2011). Zonal Anatomy of Prostate. Annals of King Edward …, 16(3), 138–142. http://www.annalskemu.org/journal/index.php/annals/article/viewArticle/212
dcterms.referencesArnone, A., Merlini, L., Nasini, G., & Pava, O. V. De. (2007). Direct Amination of Naphthazarin , Juglone , and Some Derivatives. Synthetic Communications, 37(15), 2569–2577. https://doi.org/10.1080/00397910701462864
dcterms.referencesAzzouni, F., Godoy, A., Li, Y., & Mohler, J. (2012). The 5 alpha-reductase isozyme family: A review of basic biology and their role in human diseases. Advances in Urology, 2012. https://doi.org/10.1155/2012/530121
dcterms.referencesBabula, P., Adam, V., Havel, L., & Kizek, R. (2009). Noteworthy Secondary Metabolites Naphthoquinones – their Occurrence, Pharmacological Properties and Analysis. Current Pharmaceutical Analysis, 5(1), 47–68. https://doi.org/10.2174/157341209787314936
dcterms.referencesBarone, V., & Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A, 102(97), 1995–2001. http://pubs.acs.org/doi/abs/10.1021/jp9716997
dcterms.referencesBauman, D. R., Steckelbroeck, S., Williams, M. V., Peehl, D. M., & Penning, T. M. (2006). Identification of the major oxidative 3α-hydroxysteroid dehydrogenase in human prostate that converts 5α-androstane-3α,17β-diol to 5αdihydrotestosterone: A potential therapeutic target for androgen-dependent disease. Molecular Endocrinology, 20(2), 444–458. https://doi.org/10.1210/me.2005-0287
dcterms.referencesBittner, S., & Lempert, D. (1994). Reaction of Hydroxylamines with 1,4-Quinones: A new Direct Synthesis of Aminoquinones. Synthesis, 1994(9), 917–919.
dcterms.referencesBratoeff, E., Moreno, I., Cortes-Benitez, F., Heuze, Y., Bravo, M., & Cabeza, M. (2018). 17β-N-arylcarbamoylandrost-4-en-3-one Derivatives as Inhibitors of the Enzymes 3α-Hydroxysteroid Dehydrogenase and 5α-Reductase. Current Enzyme Inhibition, 14(1), 36–50. https://doi.org/10.2174/1573408013666170504155043
dcterms.referencesBratoeff, E., Zambrano, A., Heuze, I., Palacios, A., Ramríez, D., & Cabeza, M. (2010). Synthesis and biological activity of progesterone derivatives as 5αreductase inhibitors, and their effect on hamster prostate weight. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(3), 306–311. https://doi.org/10.3109/14756360903179401
dcterms.referencesBray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492
dcterms.referencesCabeza, M., Heuze, Y., Quintana, H., & Bratoeff, E. (2010). Comparison between two different hamster models used for the determination of testosterone and finasteride activity. Asian Journal of Animal and Veterinary Advances, 5(3), 202–209.
dcterms.referencesCabeza, M., Piermattey, J., Gaitán, R., Soriano, J., & Heuze, Y. (2020). Activity of pure, novel and non-steroidal molecules as inhibitors of AK1C enzyme. In 22nd European Congress of Endocrinology (Vol. 70). BioScientifica.
dcterms.referencesCao, L., Ding, J., Gao, M., Wang, Z., Li, J., & Wu, A. (2009). Novel and Direct Transformation of Methyl Ketones or Carbinols to Primary Amides by Employing Aqueous Ammonia. Organic Letters, 11(17), 3810–3813.
dcterms.referencesCao, S., Ye, L., Wu, Y., Mao, B., Chen, L., Wang, X., Huang, P., Su, Y., & Ge, R. S. (2017). The effects of fungicides on human 3β-hydroxysteroid dehydrogenase 1 and aromatase in human placental cell line JEG-3. Pharmacology, 100(3–4), 139–147. https://doi.org/10.1159/000475531
dcterms.referencesCaro, J. M., Cortijo Cascajares, S., Escribano Valenciano, I., Serrano Garrote, O., & Ferrari Piquero, J. M. (2014). Uso, efectividad y seguridad de abiraterona en cáncer de próstata. Farmacia Hospitalaria, 38(2), 118–122. https://doi.org/10.7399/FH.2014.38.2.1154
dcterms.referencesCarreño, M. C., Ruano, J. L. G., Sanz, G., Toledo, M. A., & Urbano, A. (1996). Mild and Regiospecific Nuclear Iodination of Methoxybenzenes and Naphthalenes with N-Iodosuccinimide in Aeetonitrile. Tetrahedron Letters, 37(23), 4081– 4084.
dcterms.referencesChandrasekar, T., Yang, J. C., Gao, A. C., & Evans, C. P. (2015). Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Translational Andrology and Urology, 4(3), 365–380. https://doi.org/10.3978/j.issn.2223- 4683.2015.05.02
dcterms.referencesChang, B. L., Zheng, S. L., Hawkins, G. A., Isaacs, S. D., Wiley, K. E., Turner, A., Carpten, J. D., Bleecker, E. R., Walsh, P. C., Trent, J. M., Meyers, D. A., Isaacs, W. B., & Xu, J. (2000). Joint effect of HSD3B1 and HSD3B2 genes is associated with hereditary and sporadic prostate cancer susceptibility. Cancer Research, 62(6), 1784–1789.
dcterms.referencesCochrane, D. R., Bernales, S., Jacobsen, B. M., Cittelly, D. M., Howe, E. N., D’Amato, N. C., Spoelstra, N. S., Edgerton, S. M., Jean, A., Guerrero, J., Gómez, F., Medicherla, S., Alfaro, I. E., McCullagh, E., Jedlicka, P., Torkko, K. C., Thor, A. D., Elias, A. D., Protter, A. A., & Richer, J. K. (2014). Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Research, 16(1), 1–19. https://doi.org/10.1186/bcr3599
dcterms.referencesCooperberg, M. R., & Chan, J. M. (2017). Epidemiology of prostate cancer. In World Journal of Urology (Vol. 35, Issue 6). https://doi.org/10.1007/s00345- 017-2038-0
dcterms.referencesCouladouros, E. A., Plyta, Z. F., Haroutounian, S. A., & Papageorgiou, V. P. (1997). Efficient Synthesis of Aminonaphthoquinones and Azidobenzohydroquinones: Mechanistic Considerations of the Reaction of Hydrazoic Acid with Quinones. An Overview. Journal of Organic Chemistry, 62(1), 6–10. https://doi.org/10.1021/jo9614708
dcterms.referencesDaina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(October 2016), 1–13. https://doi.org/10.1038/srep42717
dcterms.referencesDavey, R. A., & Grossmann, M. (2016). Androgen Receptor Structure, Function and Biology: From Bench to Bedside. The Clinical Biochemist. Reviews, 37(1), 3–15. http://www.ncbi.nlm.nih.gov/pubmed/27057074%0Ahttp://www.pubmedcentral. nih.gov/articlerender.fcgi?artid=PMC4810760
dcterms.referencesDennington, R., Keith, T., & Millan, J. (2016). GaussView, version 6.1 (6.1). Semichem Inc., Shawnee Mission, KS.
dcterms.referencesDi Lauro, L., Barba, M., Pizzuti, L., Vici, P., Sergi, D., Di Benedetto, A., Mottolese, M., Speirs, V., Santini, D., De Maria, R., & Maugeri-Saccà, M. (2015). Androgen receptor and antiandrogen therapy in male breast cancer. Cancer Letters, 368(1), 20–25. https://doi.org/10.1016/j.canlet.2015.07.040
dcterms.referencesDi Lauro, L., Vici, P., Barba, M., Pizzuti, L., Sergi, D., Rinaldi, M., Di Benedetto, A., Sperduti, I., Shaaban, A. M., Speirs, V., Mottolese, M., De Maria, R., & Maugeri-Saccà, M. (2014). Antiandrogen therapy in metastatic male breast cancer: results from an updated analysis in an expanded case series. Breast Cancer Research and Treatment, 148(1), 73–80. https://doi.org/10.1007/s10549-014-3138-9
dcterms.referencesDing, J., Cao, L., Wang, J., Xue, W., Zhu, Y., & Wu, A. (2011). The conversion of aryl and heteroaryl methylketones to the corresponding secondary or tertiary amides. Journal of Chemical Research, 35(5), 298–301. https://doi.org/10.3184/174751911X13053065216840
dcterms.referencesDurán, A. G., Chinchilla, N., Molinillo, J. M. G., & Macías, F. A. (2019). Structureactivity relationship studies on naphthoquinone analogs. The search for new herbicides based on natural products. Pest Management Science, 75(9), 2517–2529. https://doi.org/10.1002/ps.5442
dcterms.referencesEvaul, K., Li, R., Papari-Zareei, M., Auchus, R. J., & Sharifi, N. (2010). 3ΒHydroxysteroid Dehydrogenase Is a Possible Pharmacological Target in the Treatment of Castration-Resistant Prostate Cancer. Endocrinology, 151(8), 3514–3520. https://doi.org/10.1210/en.2010-0138
dcterms.referencesEysenck, L. G. (2002). A history of prostate cancer treatment. Nature Reviews Cancer, 2(5), 389–396.
dcterms.referencesFaragalla, J., Bremner, J., Brown, D., Griffith, R., & Heaton, A. (2003). Comparative pharmacophore development for inhibitors of human and rat 5-αreductase. Journal of Molecular Graphics and Modelling, 22(1), 83–92. https://doi.org/10.1016/S1093-3263(03)00138-4
dcterms.referencesFeldman, B. J., & Feldman, D. (2001). The development of androgen-independent prostate cancer. Nature Reviews Cancer, 1(1), 34–45. https://doi.org/10.1038/35094009
dcterms.referencesFeng, Y., Huang, S. L., Dou, W., Zhang, S., Chen, J. H., Shen, Y., Shen, J. H., & Leng, Y. (2010). Emodin, a natural product, selectively inhibits 11βhydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice. British Journal of Pharmacology, 161(1), 113–126. https://doi.org/10.1111/j.1476-5381.2010.00826.x
dcterms.referencesFerraldeschi, R., Welti, J., Luo, J., Attard, G., & De Bono, J. S. (2014). Targeting the androgen receptor pathway in castration-resistant prostate cancer: Progresses and prospects. Oncogene, 34(14), 1745–1757. https://doi.org/10.1038/onc.2014.115
dcterms.referencesFerrandi, E. E., Bertuletti, S., Monti, D., & Riva, S. (2020). Hydroxysteroid Dehydrogenases: An Ongoing Story. European Journal of Organic Chemistry, 2020(29), 4463–4473. https://doi.org/10.1002/ejoc.202000192
dcterms.referencesForadori, C. D., Weiser, M. J., & Handa, R. J. (2008). Non-genomic actions of androgens. Frontiers in Neuroendocrinology, 29(2), 169–181. https://doi.org/10.1016/j.yfrne.2007.10.005
dcterms.referencesFoster, H. E., Dahm, P., Köhler, T. S., Lerner, L. B., Parsons, J. K., Wilt, T. J., & McVary, K. T. (2020). Surgical Management of Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia: AUA Guideline Amendment 2019. The Journal of Urology, 202, 592–598. https://doi.org/10.1097/JU.0000000000001298
dcterms.referencesGeldof, A., Dijkstra, I., Newling, D., & Rao, B. (1995). Inhibition of 3 betahydroxysteroid-dehydrogenase: an approach for prostate cancer treatment? Anticancer Research, 15(4), 1349–1354.
dcterms.referencesGiatti, S., Diviccaro, S., Panzica, G., & Melcangi, R. C. (2018). Post-finasteride syndrome and post-SSRI sexual dysfunction: two sides of the same coin? Endocrine, 61(2), 180–193. https://doi.org/10.1007/s12020-018-1593-5
dcterms.referencesGiovannelli, P., Di Donato, M., Galasso, G., Di Zazzo, E., Bilancio, A., & Migliaccio, A. (2018). The androgen receptor in breast cancer. Frontiers in Endocrinology, 9(AUG), 1–8. https://doi.org/10.3389/fendo.2018.00492
dcterms.referencesGrimme, S., Ehrlich, S., & Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32(7), 1456–1465. https://doi.org/10.1002/jcc
dcterms.referencesGucalp, A., Tolaney, S., Isakoff, S. J., Ingle, J. N., Liu, M. C., Carey, L. A., Blackwell, K., Rugo, H., Nabell, L., Forero, A., Stearns, V., Doane, A. S., Danso, M., Moynahan, M. E., Momen, L. F., Gonzalez, J. M., Akhtar, A., Giri, D. D., Patil, S., … Traina, T. A. (2013). Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clinical Cancer Research, 19(19), 5505–5512. https://doi.org/10.1158/1078-0432.CCR-12-3327
dcterms.referencesGuimaraes, C. T. S., Sauer, L. J., Romano, R. F. T., Pacheco, E. O., & Bittencourt, L. K. (2020). Prostate Benign Diseases. Topics in Magnetic Resonance Imaging, 29(1), 1–16. https://doi.org/10.1097/RMR.0000000000000227
dcterms.referencesHammerich, K. H., Ayala, G. E., & Wheeler, T. M. (2009). Anatomy of the prostate gland and surgical pathology of prostate cáncer. In H. Hricak & P. Scardino (Eds.), Prostate Cancer (pp. 1–14). Cambridge University Press
dcterms.referencesHanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 1–17. https://doi.org/10.1016/j.aim.2014.05.019
dcterms.referencesHeinlein, C. A., & Chang, C. (2002). The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Molecular Endocrinology, 16(10), 2181–2187. https://doi.org/10.1210/me.2002-0070
dcterms.referencesHellweg, A., Hättig, C., Höfener, S., & Klopper, W. (2007). Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theoretical Chemistry Accounts, 117(4), 587–597. https://doi.org/10.1007/s00214-007-0250-5
dcterms.referencesHsing, A. W. (2001). Hormones and Prostate Cancer: What’s Next? [Miscellaneous Article]. Public Health, 23(1), 42–58. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext& D=ovfte&AN=00003690-200100010-00009
dcterms.referencesIshizaki, F., Nishiyama, T., Kawasaki, T., Miyashiro, Y., Hara, N., Takizawa, I., Naito, M., & Takahashi, K. (2013). Androgen deprivation promotes intratumoral synthesis of dihydrotestosterone from androgen metabolites in prostate cancer. Scientific Reports, 3, 24–28. https://doi.org/10.1038/srep01528
dcterms.referencesIsomaa, V., Parvinen, M., Janne, O. A., & Bardin, C. W. (1985). Nuclear Androgen Receptors in Different Stages of the Seminiferous Epithelial Cycle and the Interstitial Tissue of Rat Testis. Endocrinology, 116(1), 132–137.
dcterms.referencesIUPHAR. (2021). Androgen receptor/3C. 3-Ketosteroid receptors. IUPHAR/BPS. https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId= 628
dcterms.referencesIvashkina, N. V., Yakovleva, E. A., Ivanchikova, I. D., Moroz, A. A., & Shvartsberg, M. S. (2005). Iodinated 1,4-naphthoquinones. Russian Chemical Bulletin, 54(6), 1509–1513. https://doi.org/10.1007/s11172-005-0437-7
dcterms.referencesJain, R., Monthakantirat, O., Tengamnuay, P., & De-Eknamkul, W. (2014). Avicequinone C isolated from Avicennia marina exhibits 5α-reductase- Type 1 inhibitory activity using an androgenic alopecia relevant cell-based assay system. Molecules, 19(5), 6809–6821. https://doi.org/10.3390/molecules19056809
dcterms.referencesJang, S. Y., Jang, E. H., Jeong, S. Y., & Kim, J. H. O. (2014). Shikonin inhibits the growth of human prostate cancer cells via modulation of the androgen receptor. International Journal of Oncology, 44(5), 1455–1460. https://doi.org/10.3892/ijo.2014.2306
dcterms.referencesJun, J. E. J., Kinkade, A., Tung, A. C. H., & Tejani, A. M. (2017). 5a-reductase inhibitors for treatment of benign prostatic hyperplasia: A systematic review and meta-analysis. Canadian Journal of Hospital Pharmacy, 70(2), 113–119. https://doi.org/10.4212/cjhp.v70i2.1643.
dcterms.referencesKaraman, R. (2011). Analyzing the efficiency in intramolecular amide hydrolysis of Kirby’s N-alkylmaleamic acids - A computational approach. Computational and Theoretical Chemistry, 974(1–3), 133–142. https://doi.org/10.1016/j.comptc.2011.07.025
dcterms.referencesKarnsomwan, W., Netcharoensirisuk, P., Rungrotmongkol, T., De-Eknamkul, W., & Chamni, S. (2017). Synthesis, biological evaluation and molecular docking of avicequinone C analogues as potential steroid 5α-reductase inhibitors. Chemical and Pharmaceutical Bulletin, 65(3), 253–260. https://doi.org/10.1248/cpb.c16-00727
dcterms.referencesKaushal, S., & Sinha, M. (2015). 5-α-REDUCTASE INHIBITOR – A REVIEW. World Journal of Pharmaceutical Research, 4(8), 2393–2402.
dcterms.referencesKhanna, M., Qin, K. N., Wang, R. W., & Cheng, K. C. (1995). Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3αhydroxysteroid dehydrogenases. In Journal of Biological Chemistry (Vol. 270, Issue 34, pp. 20162–20168). https://doi.org/10.1074/jbc.270.34.20162
dcterms.referencesKinoshita, Y. (1981). Studies on the human epididymis: partial characterization of 3 alpha- and 3 beta-hydroxysteroid dehydrogenases, regional distribution of 5 alpha-reductase and inhibitory effect of 4 delta-3-oxosteroids on 5α-reductase. Endocrinologia Japonica, 28(4), 499–513.
dcterms.referencesKonosu-Fukaya, S., Nakamura, Y., Satoh, F., Felizola, S. J. A., Maekawa, T., Ono, Y., Morimoto, R., Ise, K., Takeda, K. ichiro, Katsu, K., Fujishima, F., Kasajima, A., Watanabe, M., Arai, Y., Gomez-Sanchez, E. P., Gomez-Sanchez, C. E., Doi, M., Okamura, H., & Sasano, H. (2015). 3Β-Hydroxysteroid Dehydrogenase Isoforms in Human Aldosterone-Producing Adenoma. Molecular and Cellular Endocrinology, 408, 205–212. https://doi.org/10.1016/j.mce.2014.10.008
dcterms.referencesKregel, S., Wang, C., Han, X., Xiao, L., Fernandez-Salas, E., Bawa, P., McCollum, B. L., Wilder-Romans, K., Apel, I. J., Cao, X., Speers, C., Wang, S., & Chinnaiyan, A. M. (2020). Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. Neoplasia (United States), 22(2), 111–119. https://doi.org/10.1016/j.neo.2019.12.003
dcterms.referencesKurup, A., Garg, R., & Hansch, C. (2000). Comparative QSAR Analysis of 5αReductase Inhibitors. Chemical Reviews, 100(3), 909–924. https://doi.org/10.1021/cr990028x
dcterms.referencesLi, J., & Al-Azzawi, F. (2009). Mechanism of androgen receptor action. Maturitas, 63(2), 142–148. https://doi.org/10.1016/j.maturitas.2009.03.008
dcterms.referencesLiao, S., Witte, D., Schilling, K., & Chang, C. (1984). THE USE OF A HYDROXYLAPATITE-FILTER STEROID RECEPTOR ASSAY METHOD IN THE STUDY OF THE MODULATION OF ANDROGEN RECEPTOR INTERACTION. Journal of Steroid Biochemistry, 20(1), 11–17.
dcterms.referencesLin, J. H., Zhang, S. M., Rexrode, K. M., Manson, J. A. E., Chan, A. T., Wu, K., Tworoger, S. S., Hankinson, S. E., Fuchs, C., Gaziano, J. M., Buring, J. E., & Giovannucci, E. (2013). Association between sex hormones and colorectal cancer risk in men and women. Clinical Gastroenterology and Hepatology, 11(4), 419–424. https://doi.org/10.1016/j.cgh.2012.11.012
dcterms.referencesLitwin, M. S., & Tan, H. J. (2017). The diagnosis and treatment of prostate cancer:Litwin, M. S., & Tan, H. J. (2017). The diagnosis and treatment of prostate cancer: A review. Journal of the American Medical Association, 317(24), 2532–2542. https://doi.org/10.1001/jama.2017.7248 A review. Journal of the American Medical Association, 317(24), 2532–2542. https://doi.org/10.1001/jama.2017.7248
dcterms.referencesMacias, M., López, L., Sáenz, A., & Silva, S. (2013). Síntesis de derivados de 1,4- naftoquinona por metodologías verdes y su importancia biológica. Revista Científica de La Universidad Autónoma de Coahuila, 5(10), 20–26.
dcterms.referencesMohler, J. L., Titus, M. A., Bai, S., Kennerley, B. J., Lih, F. B., Tomer, K. B., & Wilson, E. M. (2011). Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Research, 71(4), 1486–1496. https://doi.org/10.1158/0008-5472.CAN10-1343
dcterms.referencesMohler, J. L., Titus, M. A., & Wilson, E. M. (2011). Potential prostate cancer drug target: Bioactivation of androstanediol by conversion to dihydrotestosterone. Clinical Cancer Research, 17(18), 5844–5849. https://doi.org/10.1158/1078- 0432.CCR-11-0644
dcterms.referencesMonks, D. A., & Holmes, M. M. (2018). Androgen receptors and muscle: a key mechanism underlying life history trade-offs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 204(1), 51–60. https://doi.org/10.1007/s00359-017-1222-4
dcterms.referencesMorris, G., Huey, R., Lindstrom, W., Sanner, M., Belew, R., Goodsell, D., & Olson, A. (2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
dcterms.referencesNahoum, V., Gangloff, A., Legrand, P., Zhu, D. W., Cantin, L., Zhorov, B. S., LuuThe, V., Labrie, F., Breton, R., & Lin, S. X. (2001). Structure of the Human 3αHydroxysteroid Dehydrogenase Type 3 in Complex with Testosterone and NADP at 1.25-Å Resolution. In Journal of Biological Chemistry (Vol. 276, Issue 45, pp. 42091–42098). https://doi.org/10.1074/jbc.M105610200
dcterms.referencesNeese, F. (2012). The ORCA program package. Wiley Interdiscip. Rev.-Comput. Mol. Sci, 2, 73–78.
dcterms.referencesNeese, F. (2018). Software update: the ORCA program system, version 4.0. Wiley Interdisciplinary Reviews: Computational Molecular Science, 8(1), 1–6. https://doi.org/10.1002/wcms.1327
dcterms.referencesNi, M., Chen, Y., Lim, E., Wimberly, H., Bailey, S. T., Imai, Y., Rimm, D. L., Shirley Liu, X., & Brown, M. (2011). Targeting Androgen Receptor in Estrogen Receptor-Negative Breast Cancer. Cancer Cell, 20(1), 119–131. https://doi.org/10.1016/j.ccr.2011.05.026
dcterms.referencesOcampo, Y., Caro, D., Rivera, D., Piermattey, J., Gaitán, R., & Franco, L. (2020). Transcriptome Changes in Colorectal Cancer Cells upon Treatment with Avicequinone B. Advanced Pharmaceutical Bulletin, 10(4), 638–647. https://doi.org/10.15171/jcvtr.2015.24
dcterms.referencesOMS. (2021). Cancer Today. IARC. https://gco.iarc.fr/today/online-analysis-multibars?v=2020&mode=cancer&mode_population=countries&population=900&p opulations=170&key=asr&sex=1&cancer=39&type=0&statistic=5&prevalence= 0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&n b_items=10&
dcterms.referencesPark, J. C., & Eisenberger, M. A. (2015). Advances in the Treatment of Metastatic Prostate Cancer. Mayo Clinic Proceedings, 90(12), 1719–1733. https://doi.org/10.1016/j.mayocp.2015.10.010
dcterms.referencesPatel, N., & Parsons, J. K. (2014). Epidemiology and etiology of benign prostatic hyperplasia and bladder outlet obstruction. Indian Journal of Urology, 30(2), 170–176.
dcterms.referencesPenning, T., Jin, Y., Steckelbroeck, S., Rižner, T. L., & Lewis, M. (2004). Structurefunction of human 3α-hydroxysteroid dehydrogenases: Genes and proteins. Molecular and Cellular Endocrinology, 215(1–2), 63–72. https://doi.org/10.1016/j.mce.2003.11.006
dcterms.referencesPenning, T. M. (1997). Molecular endocrinology of hydroxysteroid dehydrogenases. Endocrine Reviews, 18(3), 281–305. https://doi.org/10.1210/er.18.3.281
dcterms.referencesPenning, T. M. (2003). Hydroxysteroid dehydrogenases and pre-receptor regulation of steroid hormone action. Human Reproduction Update, 9(3), 193– 205. https://doi.org/10.1093/humupd/dmg022
dcterms.referencesPenning, T. M. (2014). Androgen biosynthesis in castration-resistant prostate cancer. Endocrine-Related Cancer, 21(4). https://doi.org/10.1530/ERC-14- 0109
dcterms.referencesPenning, T. M., & Detlefsen, A. J. (2020). Intracrinology-revisited and prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 196, 105499. https://doi.org/10.1016/j.jsbmb.2019.105499
dcterms.referencesPereyra, C. E., Dantas, R. F., Ferreira, S. B., Gomes, L. P., & Silva, F. P. (2019). The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell International, 19(1), 1–20. https://doi.org/10.1186/s12935-019- 0925-8
dcterms.referencesPerez, A. L., Lamoureux, G., & Herrera, A. (2004). Synthesis of iodinated naphthoquinones using morpholine-iodine complex. Synthetic Communications, 34(18), 3389–3397. https://doi.org/10.1081/SCC-200030621
dcterms.referencesPetrenko, T., George, D., Aliaga-alcalde, N., & Bill, E. (2007). Characterization of a Genuine Iron ( V ) Nitrido Species by Nuclear Resonant Vibrational Spectroscopy Coupled to. J. Am. Chem. Soc., 129(V), 11053–11060.
dcterms.referencesPinho, B. R., Sousa, C., Oliveira, J. M. A., Valentão, P., & Andrade, P. B. (2012). Naphthoquinones’ biological activities and toxicological effects. Bioactive Compounds: Types, Biological Activities and Health Effects, January 2016, 181–218.
dcterms.referencesPirog, E. C., & Collins, D. C. (1999). Metabolism of dihydrotestosterone in human liver: Importance of 3α- and 3β-hydroxysteroid dehydrogenase. Journal of Clinical Endocrinology and Metabolism, 84(9), 3217–3221. https://doi.org/10.1210/jcem.84.9.5963
dcterms.referencesPrice, D., & Hsing, A. (2010). Androgens and Prostate Cancer. In W. Figg, C. Chau, & E. Small (Eds.), Drug Management of Prostate Cancer (pp. 1–26). Springer US. https://doi.org/10.1007/978-1-60327-829-4
dcterms.referencesRittmaster, R. S. (2008). 5Α-Reductase Inhibitors in Benign Prostatic Hyperplasia and Prostate Cancer Risk Reduction. Best Practice and Research: Clinical Endocrinology and Metabolism, 22(2), 389–402. https://doi.org/10.1016/j.beem.2008.01.016
dcterms.referencesRoell, D., & Baniahmad, A. (2011). The natural compounds atraric acid and Nbutylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth. Molecular and Cellular Endocrinology, 332(1–2), 1–8. https://doi.org/10.1016/j.mce.2010.09.013
dcterms.referencesRondeau, G., Abedinpour, P., Chrastina, A., Pelayo, J., Borgstrom, P., & Welsh, J. (2018). Differential gene expression induced by anti-cancer agent plumbagin is mediated by androgen receptor in prostate cancer cells. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-20451-9
dcterms.referencesRoshan, M. H. K., Tambo, A., & Pace, N. P. (2016). The role of testosterone in colorectal carcinoma: Pathomechanisms and open questions. EPMA Journal, 7(1), 1–10. https://doi.org/10.1186/s13167-016-0071-5
dcterms.referencesSalentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
dcterms.referencesSartor, O., Zheng, Q., & Eastham, J. A. (1999). Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer. Urology, 53(2), 378–380. https://doi.org/10.1016/S0090-4295(98)00481-6
dcterms.referencesSchmidt, T. J., Miller-Diener, A., & Litwack, G. (1984). β-Lapachone, a specific competitive inhibitor of ligand binding to the glucocorticoid receptor. Journal of Biological Chemistry, 259(15), 9536–9543
dcterms.referencesSharifi, N. (2010). New agents and strategies for the hormonal treatment of castration-resistant prostate cancer. Expert Opinion on Investigational Drugs, 19(7), 837–846. https://doi.org/10.1517/13543784.2010.494178
dcterms.referencesSharma, J., Singh, P. K., Singh, K. P., & Khanna, R. N. (1955). Iodination of Naphthoquinones and Coumarin Catalyzed by Ceric Ammonium and Mercuric Nitrates. Organic Preparations and Procedures International : The New Journal for Organic Synthesis, 27(1), 84–86.
dcterms.referencesSteckelbroeck, S., Jin, Y., Gopishetty, S., Oyesanmi, B., & Penning, T. M. (2004). Human cytosolic 3α-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3β-hydroxysteroid dehydrogenase activity: Implications for steroid hormone metabolism and action. Journal of Biological Chemistry, 279(11), 10784–10795. https://doi.org/10.1074/jbc.M313308200
dcterms.referencesStephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. Journal of Physical Chemistry®, 98(45), 11623– 11627. https://doi.org/10.1021/j100096a001
dcterms.referencesStewart, J. J. P. (2009). Application of the PM6 method to modeling proteins. Journal of Molecular Modeling, 15(7), 765–805. https://doi.org/10.1007/s00894-008-0420-y
dcterms.referencesSwami, U., McFarland, T. R., Nussenzveig, R., & Agarwal, N. (2020). Advanced Prostate Cancer: Treatment Advances and Future Directions. Trends in Cancer, 6(8), 702–715. https://doi.org/10.1016/j.trecan.2020.04.010
dcterms.referencesTindall, D. J., & Rittmaster, R. S. (2008). The Rationale for Inhibiting 5α-Reductase Isoenzymes in the Prevention and Treatment of Prostate Cancer. Journal of Urology, 179(4), 1235–1242. https://doi.org/10.1016/j.juro.2007.11.033
dcterms.referencesTrapani, G., Dazzi, L., Pisu, M. G., Reho, A., Seu, E., & Biggio, G. (2002). A rapid method for obtaining finasteride, a 5α-reductase inhibitor, from commercial tablets. Brain Research Protocols, 9(2), 130–134. https://doi.org/10.1016/S1385-299X(02)00146-0
dcterms.referencesTrewartha, D., & Carter, K. (2013). Advances in prostate cancer treatment. Nature Reviews Drug Discovery, 12(11), 823–824. https://doi.org/10.1038/nrd4068
dcterms.referencesUmbreit, E., Shimko, M., & Gettman, M. (2012). Prostate Anatomy and Prostate Cancer Screening, Diagnosis, Staging, and Prevention. In L. Ponsky, D. Fuller, R. Meier, & C. Ma (Eds.), Robotic Radiosurgery: Treating Prostate Cancer and Related Genitourinary Applications (pp. 29–40). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-11495-3
dcterms.referencesWeigend, F. (2006). Accurate Coulomb-fitting basis sets for H to Rn. Physical Chemistry Chemical Physics, 8(9), 1057–1065. https://doi.org/10.1039/b515623h
dcterms.referencesWeigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracyElectronic supplementary information (ESI) available:[DETAILS]. See http://dx. doi. org/10.1039/b508541a. Phys. Chem. Chem. Phys., 7(18), 3297–3305.
dcterms.referencesWidhalm, J. R., & Rhodes, D. (2016). Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. Horticulture Research, 3, 1–17. https://doi.org/10.1038/hortres.2016.46
dcterms.referencesWirth, M. P., Hakenberg, O. W., & Froehner, M. (2007). Antiandrogens in the Treatment of Prostate Cancer. European Urology, 51(2), 306–314. https://doi.org/10.1016/j.eururo.2006.08.043
dcterms.referencesYe, L., Guo, J., & Ge, R. S. (2014). Environmental Pollutants and Hydroxysteroid Dehydrogenases. Vitamins and Hormones, 94, 349–390. https://doi.org/10.1016/B978-0-12-800095-3.00013-4
dcterms.referencesYuen Teo, M., Rathkopf, D. E., & Kantoff, P. (2019). Treatment of Advanced Prostate Cancer. Annual Review of Medicine, 70, 479–499.
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
person.identifier.gsidhttps://scholar.google.es/citations?user=KJUqvJUAAAAJ&hl=es&oi=ao
person.identifier.orcid0000-0002-7319-4577
relation.isAuthorOfPublicationed87bc34-6683-40ec-ab44-a38918ff67ba
relation.isAuthorOfPublication.latestForDiscoveryed87bc34-6683-40ec-ab44-a38918ff67ba

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
trabajo de grado.pdf
Tamaño:
13.55 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: