Publicación:
La neuroglobina y su potencial relación con la función cerebral y el sueño.

dc.contributor.authorAcosta Hernández, Mario Eduardospa
dc.contributor.authorRendón Bautista, Luisspa
dc.contributor.authorPriego Fernández, Sergiospa
dc.contributor.authorPeña Escudero, Carolinaspa
dc.contributor.authorMartínez Cruz, Betsyspa
dc.contributor.authorMelgarejo Gutiérrez, Montserratspa
dc.contributor.authorGarcía García, Fabiospa
dc.date.accessioned2016-07-15 00:00:00
dc.date.available2016-07-15 00:00:00
dc.date.issued2016-07-15
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.32997/rcb-2016-2857
dc.identifier.eissn2389-7252
dc.identifier.issn2215-7840
dc.identifier.urlhttps://doi.org/10.32997/rcb-2016-2857
dc.language.isospaspa
dc.publisherUniversidad de Cartagenaspa
dc.relation.bitstreamhttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/2857/2400
dc.relation.citationeditionNúm. 2 , Año 2016spa
dc.relation.citationendpage295
dc.relation.citationissue2spa
dc.relation.citationstartpage285
dc.relation.citationvolume7spa
dc.relation.ispartofjournalRevista Ciencias Biomédicasspa
dc.relation.referencesFuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms. 2006; 6: 482-493. https://doi.org/10.1177/0748730406294627spa
dc.relation.referencesStenberg, D. Neuroanatomy and neurochemistry of sleep. Cell Mol Life Sc. 2007, 64: 1187-1204. https://doi.org/10.1007/s00018-007-6530-3spa
dc.relation.referencesBeersma DG. Models of human sleep regulation. Sleep Med Rev. 1998; 2: 31-43. https://doi.org/10.1016/S1087-0792(98)90052-1spa
dc.relation.referencesWalker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron. 2004; 44: 121-133. https://doi.org/10.1016/j.neuron.2004.08.031spa
dc.relation.referencesTimo-Iaria C, Negrão N, Schmidek WR, Hoshino K, Lobato de Menezes CE, Leme da Rocha T. Phases and states of sleep in the rat. PhysiolBehav. 1970; 5(9): 1057-62. https://doi.org/10.1016/0031-9384(70)90162-9spa
dc.relation.referencesJin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell. 1999; 96: 1-20. https://doi.org/10.1016/S0092-8674(00)80959-9spa
dc.relation.referencesReppert SM. and Weaver DR. Coordination of circadian timing in mammals. Nature. 2002; 418: 935-941. https://doi.org/10.1038/nature00965spa
dc.relation.referencesMoore RY. The suprachiasmatic nucleus and sleep-wake regulation. Postgrad Med. 2004; 116(6 Suppl Primary): 6-9.spa
dc.relation.referencesCassone VM, Chesworth MJ, Armstrong SM. Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiol Behav. 1986; 36: 1111-1121. https://doi.org/10.1016/0031-9384(86)90488-9spa
dc.relation.referencesJohnson RF, Moore RY. and Morin LP. Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res. 1988; 460: 297-313. https://doi.org/10.1016/0006-8993(88)90374-5spa
dc.relation.referencesGooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception. J Neurosci. 2003; 23: 7093-7106. https://doi.org/10.1523/JNEUROSCI.23-18-07093.2003spa
dc.relation.referencesWatts AG, Swanson LW, Sanchez-Watts G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol. 1987; 258: 204-229. https://doi.org/10.1002/cne.902580204spa
dc.relation.referencesChamberlin NL, Arrigoni E, Chou TC, Scammell TE, Greene RW, Saper CB. Effects of adenosine on GABAergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience. 2003; 119: 913-918. https://doi.org/10.1016/S0306-4522(03)00246-Xspa
dc.relation.referencesSakurai T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev. 2005; 4: 231-241. https://doi.org/10.1016/j.smrv.2004.07.007spa
dc.relation.referencesYoshida K, McCormack S, España, RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006; 5: 845-861. https://doi.org/10.1002/cne.20859spa
dc.relation.referencesLu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper, CB. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleepwake cycle and temperature regulation. J Neurosci. 2001; 21: 4864-4874. https://doi.org/10.1523/JNEUROSCI.21-13-04864.2001spa
dc.relation.referencesDeurveilher S and Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience. 2005; 130: 165-183. https://doi.org/10.1016/j.neuroscience.2004.08.030spa
dc.relation.referencesChou TC, et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci. 2003; 23: 10691-10702. https://doi.org/10.1523/JNEUROSCI.23-33-10691.2003spa
dc.relation.referencesChou TC, Bjorkum, AA, Gaus SE, Lu J, Scammell TE, Saper, CB. Afferents to the ventrolateral preoptic nucleus. J Neurosci. 2002; 22: 977-990. https://doi.org/10.1523/JNEUROSCI.22-03-00977.2002spa
dc.relation.referencesThompson R, Swanson LW, Canteras N. Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol. 1997; 376: 143-173. https://doi.org/10.1002/(SICI)1096-9861(19961202)376:1143::AID-CNE93.0.CO;2-3spa
dc.relation.referencesPeyron C, Tighe DK, Van den Pol AN, De Lecea L, Heller HC, Sutcliffe JG, Kilduff TS. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 1998; 18: 9996-10015. https://doi.org/10.1523/JNEUROSCI.18-23-09996.1998spa
dc.relation.referencesChemelli RM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999; 98: 437-451. https://doi.org/10.1016/S0092-8674(00)81973-Xspa
dc.relation.referencesHankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs T, Roesner A, et. al. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. Journal of Inorganic Biochemistry. 2005; 99: 110-119. https://doi.org/10.1016/j.jinorgbio.2004.11.009spa
dc.relation.referencesMarchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, et. al. CDD: NCBI's conserved domain database. Nucleic acids res 2015 Jan;43 (Database issue): D222-6. doi: 10.1093/nar/gku1221. Epub 2014 Nov 20. https://doi.org/10.1093/nar/gku1221spa
dc.relation.referencesKugelstadt D, Haberkamp M, Hankeln T, Burmester T. Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken Biochemical and Biophysical. Research Communications 2004; 325: 719-725. https://doi.org/10.1016/j.bbrc.2004.10.080spa
dc.relation.referencesBurmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, Gerlach F, et. al. Neuroglobin and cytoglobin: genes, proteins and evolution. Life, 2004; 56(11-12): 703-707. https://doi.org/10.1080/15216540500037257spa
dc.relation.referencesBrunori M and Vallone B. Neuroglobin, seven years after. Cell. Mol. Life Sci. 2007; 64: 1259-1268. https://doi.org/10.1007/s00018-007-7090-2spa
dc.relation.referencesRoesner A, Fuchs C, Hankeln T and Burmester T. A globin gene of ancient evolutionary origin in lower vertebrates: Evidence for two distinct globin families in animals. Mol. Biol. Evol. 2005; 22: 12-20. https://doi.org/10.1093/molbev/msh258spa
dc.relation.referencesPesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T and Bolognesi. Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure. 2003; 11: 1087-1095. https://doi.org/10.1016/S0969-2126(03)00166-7spa
dc.relation.referencesLin YW, Wang J. Structure and function of heme proteins in non-native states: a mini-review. Journal of Inorganic Biochemistry. 2013; 129: 162-171. https://doi.org/10.1016/j.jinorgbio.2013.07.023spa
dc.relation.referencesVallone B., Nienhaus K., Brunori M., Nienhaus G.U. The structure of murine neuroglobin: novel pathways for ligand migration and binding. Proteins. 2004; (56): 85-92. https://doi.org/10.1002/prot.20113spa
dc.relation.referencesWystub S, Laufs T, Schmidt M, Burmester T, Maas U, Saaler-Reinhardt S, Hankeln T, Reuss S. Localization of neuroglobin protein in the mouse brain. Neuroscience Letters. 2003; 346: 114-116. https://doi.org/10.1016/S0304-3940(03)00563-9spa
dc.relation.referencesChen X, Liu Y, Zhang L, Zhu P, Zhu H, Yang Y, Guan P. Long-term neuroglobin expression of human astrocytes following brain trauma. Neuroscience Letters. 2015; 606: 194-199. https://doi.org/10.1016/j.neulet.2015.09.002spa
dc.relation.referencesPesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankelnd T, Burmestere T, Bolognesi M. The human brain hexacoordinatedneuroglobin three-dimensional structure. Micron. 2004; 35: 63-65. https://doi.org/10.1016/j.micron.2003.10.013spa
dc.relation.referencesForrellat-Barrios M, Hernández-Ramírez P. Neuroglobina: nuevo miembro de la familia de las globinas. Revista Cubana de Hematología, Inmunología y Hemoterapia. 2011; 27(3): 291-296.spa
dc.relation.referencesMelgarejo-Gutiérrez M, Acosta-Peña E, Venebra-Muñoz A, Escobar C, Santiago-García J and Garcia-Garcia F. Sleep deprivation reduces neuroglobin immunoreactivity in the rat brain. Neuroreport. 2013; 24(3): 120-125. https://doi.org/10.1097/WNR.0b013e32835d4b74spa
dc.relation.referencesHundahl CA, Allen GC, Nyengaard SD, Douglas Carter B, Kelsen J, Hay-Schmidt A. Neuroglobin in the rat brain: localization. Neuroendocrinology. 2008; 88: 173-182. https://doi.org/10.1159/000129698spa
dc.relation.referencesDewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden M, et al. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J. biological chemistry. 2001; 42(19): 38949-38955. https://doi.org/10.1074/jbc.M106438200spa
dc.relation.referencesLiu ZF, Zhang X, Qiao Y, Xu W, Ma C, Gu H, Zhou X, Shi L, Cui C, Xia D, Chen Y. Neuroglobin protects cardiomyocytes against apoptosis and cardiac hypertrophy induced by isoproterenol in rats. Int J Clin Exp Med. 2015; 8(4): 5351-5360.spa
dc.relation.referencesYu Z, Poppe JL and Wang X. Mitochondrial mechanisms of neuroglobin's neuroprotection. Oxid Med Cell Longev. 2013; 2013: 756989. doi: https://doi.org/10.1155/2013/756989spa
dc.relation.referencesDuong TT, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH. Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia reoxygenation injury. J Neurochem. 2009; 108(5): 1143-1154. https://doi.org/10.1111/j.1471-4159.2008.05846.xspa
dc.relation.referencesHankeln T, Wystub S, Laufs T, Schmidt M, Gerlach F, Saaler-Reinhardt S, Reuss S, Burmester T. The cellular and subcellular localization of neuroglobin and cytoglobin - a clue to their function? IUBMB Life. 2004; 56 (11-12): 671-679. https://doi.org/10.1080/15216540500037794spa
dc.relation.referencesAcosta-Peña E, García-García F. Restauración cerebral: una función del sueño. Revista Mexicana de Neurociencia. 2009; 10(4): 274-280.spa
dc.relation.referencesFiocchetti M, De Marinis E, Ascenzi P, Marino M. Neuroglobin and neuronal cellsurvival. Biochimica et Biophysica Acta. 2013; 1834: 1744-1749. https://doi.org/10.1016/j.bbapap.2013.01.015spa
dc.relation.referencesHundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, et al. Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain. Brain Res. 2010; 1331: 58-73. https://doi.org/10.1016/j.brainres.2010.03.056spa
dc.relation.referencesHundahl CA, Allen GC, Nyengaard JR, Dewilde S, Carter BD, Kelsen J, et al. Neuroglobin in the rat brain: localization. Neuroendocrinology 2008; 88: 173-182. https://doi.org/10.1159/000129698spa
dc.relation.referencesSzymusiak R, Alam N, McGinty D. Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep. Behav Brain Res. 2000; 115: 171-182. https://doi.org/10.1016/S0166-4328(00)00257-6spa
dc.relation.referencesGopalakrishnan A, Ji LL, Cirelli C. Sleep deprivation and cellular responses to oxidative stress. Sleep. 2004; 27: 27-35. https://doi.org/10.1093/sleep/27.1.27spa
dc.relation.referencesEverson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep. 2014; 37: 1929-1240. https://doi.org/10.5665/sleep.4244spa
dc.relation.referencesXu M, Yang Y, Zhang J. Levels of neuroglobin in serum and neurocognitive impairments in Chinese patients with obstructive sleep apnea. Sleep Breath. 2012; Published on line 7 June, DOI https://doi.org/10.1007/s11325-012-0723-1spa
dc.relation.referencesGarry DJ, Mammen PP. Neuroprotection and the role of neuroglobin. Lancet. 2003; 362: 342-343. https://doi.org/10.1016/S0140-6736(03)14055-Xspa
dc.relation.referencesHundahl CA, Kelsen J, Dewilde S, Hay-Schmidt A. Neuroglobin in the rat brain (II): colocalisation with neurotransmitters. Neuroendocrinology. 2008; 88(3): 183-198. https://doi.org/10.1159/000135617spa
dc.relation.referencesHundahl CA, Hannibal J, Fahrenkrug J,Dewilde S,Hay-Schmidt A. Neuroglobin expression in the rat suprachiasmatic nucleus: colocalization, innervation, and response to light. J Comp Neurol. 2010; 518(9): 1556-69. https://doi.org/10.1002/cne.22290spa
dc.relation.referencesHundahl CA, Fahrenkrug J, Hay-Schmidt A, Georg B, Faltoft B, Hannibal J. Circadian behaviour in neuroglobin deficient mice. PLoS One. 2012; 7(4): e34462. https://doi.org/10.1371/journal.pone.0034462spa
dc.rightsRevista Ciencias Biomédicas - 2016spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/2857spa
dc.subjectPrivación de sueñospa
dc.subjectEstrés oxidativospa
dc.subjectGlobinasspa
dc.subjectOrexinaspa
dc.subjectSleep deprivationeng
dc.subjectOxidative stresseng
dc.subjectGlobineng
dc.subjectOrexineng
dc.titleLa neuroglobina y su potencial relación con la función cerebral y el sueño.spa
dc.title.translatedThe potential role of neuroglobin in the cerebral function and sleep.eng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: