Publicación:
Effects of perchlorate at different trophic levels and characterization of reducing bacteria of this pollutant from hypersaline soils of the Colombian Caribbean.

dc.contributor.advisorOlivero Verbel, Jesús
dc.contributor.authorAcevedo Barrios, Rosa Leonor
dc.date.accessioned2023-06-22T14:58:25Z
dc.date.available2023-06-22T14:58:25Z
dc.date.issued2019
dc.description.abstractPerchlorate is an emerging contaminant that affects the functioning of the thyroid gland in humans and alters the normal development of living beings. This compound can be formed naturally and by different anthropogenic activities, which are responsible for its wide diffusion in all environmental matrices. This chemical compound is persistent in ecosystems; so, it is necessary to use different types of treatments for its degradation. For the reduction of perchlorate, biological treatment with aerobic, facultative and anaerobic bacteria degradation and/or reduction of this pollutant is preferably used because the chemical methods, such as ion exchange, used for this purpose, are neither very efficient, nor very selective and incomplete, thus generating contaminated resins that must be treated later, which, in some cases, becomes more toxic than the original compound. Although there are currently adequate bacterial methods for the degradation of perchlorate, there is, however, no evidence that these have a universal application and such application is not standardized in tropical environments; that is why it is necessary to isolate native bacteria from hypersaline soils from the Colombian Caribbean, as a new economic and effective alternative to reduce perchlorate, thus generating a lesser impact on ecosystems. Perchlorate-reducing bacteria are a promising strategy for the bioremediation of contaminated sites. In this study, ten strains were isolated that grew in media containing up to 30.0% NaCl, pH variations (6.5-12.0) and moderately high concentrations of KClO4 (up to 10000 mg/kg), suggesting that these are halotolerant organisms. According to the sequencing of the 16S ribosomal gene, such strains belong to Vibrio, Bacillus, Salinovibrio, Staphylococcus and Nesiotobacter genus. These bacteria could reduce perchlorate levels from 10 to 25%. The main objective of this study was to evaluate the reduction of perchlorate in native bacteria isolated from hypersaline soils of Galerazamba (Bolivar), Parque Salamanca (Magdalena) and Manaure (Guajira) in the Colombian Caribbean; as well as to determine the toxic effects of this pollutant in in-vitro and in-vivo models. For this purpose, the ecotoxicological evaluation of perchlorate exposure was carried out in HEK, N2a, and 3T3 cell lines, as well as in the biological models Vibrio fischeri, Pseudokirchneriella subcapitata, Daphnia magna and Eisenia fetida, and the evaluation of several endpoints and the multivariate analysis between the chemical concentration of the pollutant and the toxicological responses of the models was evaluated. The ecotoxicological evaluation this contaminant’s toxic effects in different biological models exhibited a similar toxicity against the cell lines analyzed, with LC50 values of 19, 15 and 19 mM for HEK, N2a and 3T3 respectively; while in V. fischeri, the toxicity examined was considerably lower (EC50=715mM) with reduction of bioluminescence, while the survival of freshwater algae P. subcapitata was significantly affected by perchlorate (LC50=72 mM), and its effect on lethality in crustacean D. magna was significant (LC50=5mM). For the E. fetida earthworm, the LC50 was 56 mM in the soil. In the latter organism, perchlorate induced avoidance behavior, weight loss, decreased the production of eggs and offspring, as well as morphological and histopathological effects, such as malformations, dwarfism and necrosis. In conclusion, the environmental risk assessment by exposure varies according to the species, which presents a high environmental risk to the biota and the health of the ecosystems. This study evaluated the ecotoxicological impacts at different trophic levels; the results could be used as basic information to make decisions about the regulation of perchlorate in the environment. E. fetida is proposed as a sensitive model to generate information on the toxicological impact of KClO4 in soils. It is concluded that native bacteria isolated from hypersaline environments of the Colombian Caribbean are a promising tool for the reduction of this contaminant; this will improve the environmental quality of soils in tropical environments contaminated with perchlorate.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor(a) en Toxicología Ambientalspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://hdl.handle.net/11227/16548
dc.identifier.urihttp://dx.doi.org/10.57799/11227/11882
dc.language.isoengspa
dc.publisherUniversidad de Cartagenaspa
dc.publisher.facultyFacultad de Ciencias Farmacéuticasspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.programDoctorado en Toxicología Ambientalspa
dc.rightsDerechos Reservados - Universidad de Cartagena, 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcCompuestos organoclorados
dc.subject.armarcCompuestos de cloro
dc.subject.armarcSoil pollution
dc.subject.armarcThyroid gland – Diseases
dc.titleEffects of perchlorate at different trophic levels and characterization of reducing bacteria of this pollutant from hypersaline soils of the Colombian Caribbean.eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.referencesAbbondanzi, F., Cachada, A., Campisi, T., Guerra, R., Raccagni, M., and Iacondini, A. (2003). Optimisation of a microbial bioassay for contaminated soil monitoring: bacterial inoculum standardisation and comparison with Microtox® assay. Chemosphere. Vol. 53(8): p.889-897.spa
dcterms.referencesAcevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., and Olivero-Verbel, J. (2016). Perchlorate tolerant bacteria from saline environments at the Caribbean region of Colombia. Toxicology Letters. Vol. 259: p.S103.spa
dcterms.referencesAcevedo-Barrios, R., Sabater-Marco, C., and Olivero-Verbel, J. (2018). Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research. Vol. 25(14): p.13697-13708.spa
dcterms.referencesAhn, C. H., Oh, H., Ki, D., Van Ginkel, S. W., Rittmann, B. E., and Park, J. (2009). Bacterial biofilm-community selection during autohydrogenotrophic reduction of nitrate and perchlorate in ion-exchange brine. Applied Microbiology and Biotechnology. Vol. 81(6): p.1169-1177.spa
dcterms.referencesAlbuquerque, L., Tiago, I., Taborda, M., Nobre, M. F., Veríssimo, A., and da Costa, M. S. (2008). Bacillus isabeliae sp. nov., a halophilic bacterium isolated from a sea salt evaporation pond. International Journal of Systematic and Evolutionary Microbiology. Vol. 58(Pt 1): p.226-230.spa
dcterms.referencesAli Amoozegar, M., Zahra Fatemi, A., Reza Karbalaei-Heidari, H., and Reza Razavi, M. (2007). Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Microbiological Research. Vol. 162(4): p.369-377.spa
dcterms.referencesAlonso, J. L., Cuesta, G., Ramírez, G. W., Morenilla, J. J., Bernácer, I., and Lloret, R. M. (2009). Manual de técnicas avanzadas para la identificación y control de bacterias filamentosas. EPSAR-Generalitat Valenciana.spa
dcterms.referencesBahamdain, L., Fahmy, F., Lari, S., and Aly, M. (2015). Characterization of some Bacillus strains obtained from marine habitats using different taxonomical methods. Life Science Journal. Vol. 12.spa
dcterms.referencesBardiya, N., and Bae, J. H. (2005). Bioremediation potential of a perchlorate-enriched sewage sludge consortium. Chemosphere. Vol. 58(1): p.83-90.spa
dcterms.referencesBardiya, N., and Bae, J. H. (2011). Dissimilatory perchlorate reduction: a review. Microbiological Research. Vol. 166(4): p.237-254.spa
dcterms.referencesBernhardt, R. R., Von Hippel, F. A., and O'Hara, T. M. (2011). Chronic perchlorate exposure causes morphological abnormalities in developing stickleback. Environmental Toxicology and Chemistry. Vol. 30(6): p.1468-1478.spa
dcterms.referencesBlount, B. C., Alwis, K. U., Jain, R. B., Solomon, B. L., Morrow, J. C., and Jackson, W. A. (2010). Perchlorate, nitrate, and iodide intake through tap water. Environmental Science & Technology. Vol. 44: p.9564-9570.spa
dcterms.referencesBoluda, R., Gamón, M., Gómez De Barreda, D., Sáez, E., Gil, J., García De La Cuadra, J., Ten, A., Lleó De Otal, C., Lorenzo, E., and Pelegri, R. (2001). Monitoring of pesticide levels in water from irrigation channels of the Albufera Natural Park (Valencia, Spain). In Handling of Environmental and Biological Samples in Chromatographyspa
dcterms.referencesBoone, D. R., Castenholz, R. W., Garrity, G. M., Brenner, D. J., Krieg, N. R., and Staley, J. T. (2005). Bergey’s Manual® of Systematic Bacteriology. Bergey’s Manual® of Systematic Bacteriology. Vol. 2.spa
dcterms.referencesBreed, R. S., Murray, E. G. D., and Smith, N. R. (1957). Bergey's Manual of. Determinative Bacteriology. 7th edition, The Williams and Wilkins Company, Baltimore.spa
dcterms.referencesBruce, R. A., Achenbach, L. A., and Coates, J. D. (1999). Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environmental Microbiology. Vol. 1(4): p.319-329.spa
dcterms.referencesCáceres, T., Megharaj, M., and Naidu, R. (2008). Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp. Science of the Total Environment. Vol. 398: p.53-59.spa
dcterms.referencesCang, Y., Roberts, D. J., and Clifford, D. A. (2004). Development of cultures capable of reducing perchlorate and nitrate in high salt solutions. Water Research. Vol. 38(14-15): p.3322-3330.spa
dcterms.referencesCañas, J. E., Cheng, Q., Tian, K., and Anderson, T. A. (2006). Optimization of operating conditions for the determination of perchlorate in biological samples using preconcentration/preelution ion chromatography. Journal of Chromatography A. Vol. 1103: p.102-109.spa
dcterms.referencesChaudhuri, S. K., O'Connor, S. M., Gustavson, R. L., Achenbach, L. A., and Coates, J. D. (2002). Environmental Factors That Control Microbial Perchlorate Reduction. Applied and Environmental Microbiology. Vol. 68(9): p.4425-4430.spa
dcterms.referencesChen, H., Wu, L., Wang, X., Liu, Q., Ding, M., Peng, K., and Meng, Z. (2014). Perchlorate exposure and thyroid function in ammonium perchlorate workers in Yicheng, China. International Journal of Environmental Research and Public Health. Vol. 11(5): p.4926-4938.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
2019_TESIS DE GRADO_ROSA LEONOR ACEVEDO BARRIOS.pdf
Tamaño:
4.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
GRADO FORMATO CESION DE DERECHOS DE AUTOR GRADO ROSA ACEVEDO.pdf
Tamaño:
309.14 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: