Publicación:
Toxicological impact on environmental matrices by trace elements from gold mining in the biogeographic Choco, Colombia.

dc.contributor.advisorOlivero Verbel, Jesús
dc.contributor.authorPalacios Torres, Yuber
dc.date.accessioned2023-06-20T16:16:44Z
dc.date.available2023-06-20T16:16:44Z
dc.date.issued2019
dc.description.abstractMining and technology industries are using trace elements throughout the world to manufacture new technologies and products for daily use which are released into the environmental until reaching biological and environmental compartiments. Other the anthropogenic factors, such as extraction of minerals, wood an agriculture, modify the natutal levels of metals in earth´s crust. Among the trace elements, heavy metals are considered the main pollutants because they remain for long periods of time in the environment, they cannot metabolized, but if they bioaccumulate in the tissues of different organisms of terrestrial and aquatic ecosystems causing lesions such as, decrease in the production of sperm, nervous system, bones, kidneys, neurologicals, cancer, pulmonary diseases, motor and conigtive dysfunción, among others, are derivated from metals such as Pb, Cd, Hg, As, Ni, Cu, Rb, Cs, Ta, and some of the rare elements of the earth. In the Atrato basin, tropical rainforests house exceptional wildlife species, placing it among one of the richest sites in biodiversity on the planet, currently threatened by massive gold mining, one of the main sources of mercury pollution (Hg), it is a harmful pollutant released into the environment, it represents a risk to human health and ecosystems. The first objective of this study was to evaluate the levels of total Hg (T-Hg) in human hair, fish, sediments and air; and determine the risks based on the consumption of fish by ingestion of T-Hg in the region of Choco biogeographical, a site of high global biodiversity located at the Colombian Pacific. Mercury concentrations in hair were measured in two places, Quibdo, the capital of the department, and Paimado, a riversine community. The median value of T-Hg in human hair in Quibdo was 1.26 µg/g (range: 0.02-116.40 µg/g), while in Paimado it was 0.67 µg/g (range: 0.07-6.47 µg/g). Mercury levels in locations examined were weakly associated with height (r=0.145, P=0.024). The levels of THg in the air in Quibdo were high inside gold shops, being up to 200.9 times higher than the reference site. Mercury concentrations in fish from Atrato River were above WHO limit (0.5 µg/g), with the highest levels in Pseudopimelodus schultzi, Ageneiosus pardalis, Sternopygus aequilabiatus, Rhamdia quelen and Hoplias malabaricus, while the lowest appeared in Cyphocharax magdalenae and Hemiancistrus wilsoni. Based on fish consumption, these last two species offer low risk to human health. Sediment samples from fifty different sites of the Atrato River showed low concentrations of T-Hg, with little variability between stations. However, contamination factors (CF) revealed moderate pollution in 44% of sampling sites along the river. In addition to Hg, other trace elements threaten this site of high biodiversity. To protect this natural resource, the Constitutional Court of Colombia declared that the river as a subject of legal rights. The objective of this study was to quantify trace elements in sediments and fish from the Atrato basin, assessing their environmental and human health risk. Forty-two trace elements were quantified using ICP-MS. Thirty-one elements increased their concentration downstream of the river. The CF suggests that the sediments were moderately polluted by Cr, Cu, Cd and heavily polluted by As. Most stations had higher Cr (98%) and Ni (78%) concentrations greater than the criterion of Probable Effect Concentration (PEC). Together, toxic elements generate a pollution Load Index (PLI) and a potential ecological risk index (RI) that categorized 54% of the sediments as polluted and 90% as moderate polluted, respectively. Hemiancistrus wilsoni, a low trophic guild fish species, had the greater average levels of Ni, Cu, As and Cd, among other elements. Rubidium and Cs showed a positive correlation with the fish trophic network, suggesting that these two metals are biomagnified according to the food chain. The Hazard Quotient (HQ) for As was greater than 1 for several species, indicating a potential risk to human health. In conclusion, pollution by Hg is widespread in the Biogeographic Choco, collectively, the data suggests that the extraction of gold carried out in this area of high biodiversity releases toxic elements that decline the quality of sediments in the Atrato River, incorporationing in the trophic chain which constitutes a great threat on the health of human and the environmental due to the consumption of fish, altering the chances of survival of species in impacted ecosystems, due to this urgent legal and civil actions should be implemented to stop massive deforestation driven by the mining, enforcing the right of the Atrato River, protecting of the populations and preserving this site of high biodiversity, government actions must be applied to anthropogenic activities.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor(a) en Toxicología Ambientalspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://hdl.handle.net/11227/16523
dc.identifier.urihttp://dx.doi.org/10.57799/11227/11857
dc.language.isospaspa
dc.publisherUniversidad de Cartagenaspa
dc.publisher.facultyFacultad de Ciencias Farmacéuticasspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.programDoctorado en Toxicología Ambientalspa
dc.rightsDerechos Reservados - Universidad de Cartagena, 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcToxicológical chemistry
dc.subject.armarcToxicology
dc.subject.armarcChocó (Colombia: Departamento)
dc.titleToxicological impact on environmental matrices by trace elements from gold mining in the biogeographic Choco, Colombia.eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.referencesAndreani, G., Cannavacciuolo, A., Menotta, S., Spallucci, V., Fedrizzi, G., Carpenè, E., Isani, G. 2019. Environmental exposure to non-essential trace elements in two bat species from urbanised (Tadarida teniotis) and open land (Miniopterus schreibersii) areas in Italy. Environ. Pollut. 254, 113034.spa
dcterms.referencesAnandkumar, A., Nagarajan, R., Prabakaran, K., Bing, C. H., Rajaram, R., Li, J., Du, D. 2019. Bioaccumulation of trace metals in the coastal Borneo (Malaysia) and health risk assessment. Mar. Pollut. Bull. 145: 56-66.spa
dcterms.referencesArulkumar, A., Nigariga, P., Paramasivam, S., Rajaram, R. 2019. Metals accumulation in edible marine algae collected from Thondi coast of Palk Bay, Southeastern India. Chemosphere. 221: 856-862.spa
dcterms.referencesEl Mahmoud-Hamed, M. S., Montesdeoca-Esponda, S., Santana-Del Pino, A., Zamel, M. L., Brahim, M., T’feil, H., Santana-Rodiguez, J. J., Sidoumou, Z., Sidi’Ahmed-Kankou, M. 2019. Distribution and health risk assessment of cadmium, lead, and mercury in freshwater fish from the right bank of Senegal River in Mauritania. Environ. Monit. Assess. 191(8): 493.spa
dcterms.referencesJena, S., Perwez, A., Singh, G. 2019. Trace element characterization of fine particulate matter and assessment of associated health risk in mining area, transportation routes and institutional area of Dhanbad, India. Environ. Geochem. health. 1-17.spa
dcterms.referencesKumar, S. B., Padhi, R. K., Satpathy, K. K. 2019. Trace metal distribution in crab organs and human health risk assessment on consumption of crabs collected from coastal water of South East coast of India. Mar. Pollut. Bull. 141: 273-282.spa
dcterms.referencesMahaffey, K.R., 1999. Methylmercury: a new look at the risks. Public Health Rep. 114, 396.spa
dcterms.referencesMaramba, N. P., Reyes, J. P., Francisco-Rivera, A. T., Panganiban, L. C. R., Dioquino, C., Dando, N., Timbang, R., Akagi, H., Castillo, M. T., Quitoriano, C., Afuang, M., Matsuyama, A., Eguchi, T., Fuchigami, Y. 2006. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: A toxic legacy. J. Environ manage. 81(2): 135- 145.spa
dcterms.referencesMhlongo, S. E., Amponsah-Dacosta, F., Muzerengi, C., Gitari, W. M., Momoh, A. 2019. The impact of artisanal mining on rehabilitation efforts of abandoned mine shafts in Sutherland goldfield, South Africa. Jàmbá: Journal of Disaster Risk Studies, 11(2), 7.spa
dcterms.referencesLangeland, A. L., Hardin, R. D., Neitzel, R. L. 2017. Mercury Levels in Human Hair and Farmed Fish near Artisanal and Small-Scale Gold Mining Communities in the Madre de Dios River Basin, Peru. Int. J. Environ. Res. Public Health. 14, 302.spa
dcterms.referencesLiang-Ching, H., Ching-Yi, H., Yen-Hsun, C., Ho-Wen, C., YaTing, C., Heng, Y. T., Tsan-Yao, C., Chiung-Fen, C., Yu-Ting, L., Yu-Min, T. 2016. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries. Sci. Rep. 6.34250.spa
dcterms.referencesOlivero-Verbel, J., Caballero-Gallardo, K., Negrete-Marrugo, J., 2011. Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, north of Colombia. Biol. Trace Elem. Res. 144, 118-132.spa
dcterms.referencesOlivero-Verbel, J., Carranza-Lopez, L., Caballero-Gallardo, K., Ripoll-Arboleda, A., Muñoz-Sosa, D., 2016. Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon. Environ. Sci. Pollut. Res. 23, 20761-20771.spa
dcterms.referencesPalacios-Torres, Y., Caballero-Gallardo, K., Olivero-Verbel, J., 2018. Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia. Chemosphere. 193, 421-430.spa
dcterms.referencesPalacios-Torres, Y., de la Rosa, J.D., Olivero-Verbel, J. 2019. Trace elements in sediments and fish from Atrato River: An ecosystem with legal rights impacted by gold mining at the Colombian Pacific. Environ. Pollut. 113290.spa
dcterms.referencesRibeiro, C., Couto, C., Ribeiro, A. R., Maia, A. S., Santos, M., Tiritan, M. E., Pinto, E., Almeida, A. A. 2018. Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal. Sci. Total Environ. 639, 1381-1393.spa
dcterms.referencesSelin, N.E., 2009. Global biogeochemical cycling of mercury: a review. Annu. Rev. Environ. Resour. 34, 43-63.spa
dcterms.referencesAl-Ayadhi, L. Y. 2005. Heavy metals and trace elements in hair samples of autistic children in central Saudi Arabia. Neurosciences (Riyadh, Saudi Arabia), 10(3), 213- 218.spa
dcterms.referencesArmenteras, D., Rodriguez, N., Retana, J. 2009. Are conservation strategies effective in avoiding the deforestation of the Colombian Guyana Shield? Biol Conserv.; 142: 1411–1419.spa
dcterms.referencesAtique Ullah, A. K. M., Maksud, M.A., Khan, S.R., Lutfa, L. N., Shamshad, B., Quraishi. 2017. Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. Toxicology Reports 4:574–579.spa
dcterms.referencesBurns, D. A., Riva-Murray, K., Bradley, P. M., Aiken, G. R., Brigham, M. E. 2012. Landscape controls on total and methyl Hg in the upper Hudson River basin, New York, USA. J Geophys Res Biogeosci 117:G01034.spa
dcterms.referencesDavis, J. A., Ross, J. R. M., Bezalel, S., Sim, L., Bonnema, A., Ichikawa, G., Ackerman, J. T. 2016. Hg concentrations in fish from coastal waters of California and Western North America. Science of The Total Environment. (2016).spa
dcterms.referencesDrenner R. W., Chumchal, M. M., Jones, C. M., Lehmann, C. M. B., Gay, D. A., Donato, D. I. 2013. Effects of mercury deposition and coniferous forests on the mercury contamination of fish in the South-Central United States. Environ Sci Technol 47:1274–1279.spa
dcterms.referencesFagua, J. C., Ramsey, R. D. 2019. Geospatial modeling of land cover changes in the Choco´-Darien global ecoregion of South America; One of most biodiverse and rainy areas in the world. PLoS ONE. 14(2): e0211324.spa
dcterms.referencesFall, C., Hinojosa-Peña, A., Carreño-de-León, M. C. 2007. Design of a monitoring network and assessment of the pollution on the Lerma River and its tributaries by wastewaters disposal. Sci. Total Environ. 373, 208–219.spa
dcterms.referencesAmat-García, G.D., Blanco-Vargas, E., Reyes-Castillo, P., 2004. Lista de especies de los escarabajos pasálidos (Coleoptera: Passalidae) de Colombia. Rev. Biota Colombiana. 5, 173-182.spa
dcterms.referencesAschner, M., Aschner, J.L., 1990. Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci. Biobehav. Rev. 14, 169-176.spa
dcterms.referencesBernhoft, R.A. 2012. Mercury toxicity and treatment: a review of the literature. J. Environ. Public Health. 2012, 460508.spa
dcterms.referencesCastaño, O., G. Cárdenas, E. Hernández y F. Castro. 2004. Reptiles en el Chocó biogeográfico. In: Rangel-Ch., (ed.). Diversidad biótica. Tomo IV. Bogotá: Editorial Guadalupe Ltda. p. 277-324.spa
dcterms.referencesCastellanos, A., Chaparro-Narváez, P., Morales-Plaza, C.D., Alzate, A., Padilla, J., Arévalo, M., Herrera, S. 2016. Malaria in gold-mining areas in Colombia. Mem. Inst. Oswaldo Cruz. 111, 59-66.spa
dcterms.referencesCastilhos, Z., Bidone, E., Lacerda, L., 1998. Increase of the background human exposure to mercury through fish consumption due to gold mining at the Tapajós River region, Pará State, Amazon. Bull. Environ. Contam. Toxicol. 61, 202-209.spa
dcterms.referencesCopat, C., Arena, G., Fiore, M., Ledda, C., Fallico, R., Sciacca, S., Ferrante, M., 2013a. Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories. Food Chem. Toxicol. 53, 33-37.spa
dcterms.referencesCopat, C., Conti, G.O., Signorelli, C., Marmiroli, S., Sciacca, S., Vinceti, M., Ferrante, M., 2013b. Risk assessment for metals and PAHs by mediterranean seafood. Food Nut. Sci. 4, 10.spa
dcterms.referencesCordy, P., Veiga, M.M., Salih, I., Al-Saadi, S., Console, S., Garcia, O., Mesa, L.A., Velásquez-López, P.C., Roeser, M., 2011. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world's highest per capita mercury pollution. Sci. Total Environ. 410-411, 154-160.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
2019_TESIS DE GRADO_YUBER PALACIOS TORRES.pdf
Tamaño:
5.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Formato Biblioteca_Yuber Palacios Torres .pdf
Tamaño:
442.7 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: