Datos de Contacto
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...
dc.contributor.advisor | Moneriz Pretell, Carlos Enrique (Profesor(a) / Docente / Tutor(a)) | |
dc.contributor.advisor | Vergara Muñoz, Saray Stefany (Profesor(a) / Docente / Tutor(a)) | |
dc.contributor.author | Pedroza Bedoya, José Miguel | |
dc.date.accessioned | 2020-11-24T18:40:40Z | |
dc.date.available | 2020-11-24T18:40:40Z | |
dc.date.issued | 2020 | |
dc.description | Tesis (Magíster en Bioquímica) -- Universidad de Cartagena. Facultad de Medicina, 2020 | es |
dc.description.abstract | El género Murraya comprende alrededor de 35 especies de plantas pertenecientes a la familia Rutaceae. Entre las especies de este género se puede citar a M. koenigii, la cual posee en su extracto biológico el compuesto Murrayanina, que fue el primer alcaloide carbazolico biológicamente activo aislado de la planta Murraya koenigii. Este compuesto cuenta con una importancia etnofarmacéutica como estimulante, analgésico, astringente, antioxidante, antimicrobiano, febrífugo, etc. Sin embargo, Murrayanina es considerado un blanco sintético atractivo, ya que es el intermediario para la síntesis de otros alcaloides carbazolicos. Según estudios realizados por la Organización Mundial de la Salud (OMS), más del 80% de la población alrededor del mundo está utilizando como nueva alternativa terapéutica a los medicamentos producidos a partir de las plantas medicinales o sus componentes activos derivados. La flora en nuestro país está constituida por 202 familias botánicas conformadas por diversas especies vegetales con principios activos que son utilizados en el manejo terapéutico de diferentes condiciones de salud. No obstante, la mayor parte de su uso tiene una base empírica y carecen de evidencia científica que la convaliden. Por lo tanto, con la realización de esta investigación se podrá determinar el potencial biológico del compuesto Murrayanina, lo que servirá como línea de base para la identificación de nuevos principios activos para posterior producción de fármacos de origen natural y su posterior utilización en el tratamiento de enfermedades tropicales. | es |
dc.format.medium | application/pdf | es |
dc.identifier.citation | TM612.015 / P343 | es |
dc.identifier.uri | https://hdl.handle.net/11227/11224 | |
dc.identifier.uri | http://dx.doi.org/10.57799/11227/1094 | |
dc.language.iso | spa | es |
dc.publisher | Universidad de Cartagena | es |
dc.rights.access | openAccess | es |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | es |
dc.subject | Bioquímica | es |
dc.subject | Plantas - Análisis | es |
dc.subject | Medicamentos - Orgánicos | es |
dc.subject | Enfermedades infecciosas | es |
dc.title | Caracterización del compuesto murrayanina como fármaco potencial para el tratamiento de enfermedades infecciosas | es |
dc.type | Trabajo de grado - Maestría | spa |
dcterms.references | Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, et al. Modeling infectious disease dynamics in the complex landscape of global health. Science. 2015;347(6227):aaa4339. | |
dcterms.references | Padilla JC, Lizarazo FE, Murillo OL, Mendigaña FA, Pachón E, Vera MJ. Transmission scenarios of major vector-borne diseases in Colombia, 1990- 2016. Biomedica. 2017;37:27-40. | |
dcterms.references | Zientara ST, Verwoerd DW, Pastoret P-P. Introduction: New developments in major vector-borne diseases. Revue Scientifique et Technique Office International des Epizooties. 2015;34(1):17-27. | |
dcterms.references | Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). Statpearls [internet]: StatPearls Publishing; 2020. | |
dcterms.references | Palacios Cruz M, Santos E, Velázquez Cervantes MA, León Juárez M. COVID-19, una emergencia de salud pública mundial. Revista Clínica Española. 2020. | |
dcterms.references | ORGANIZATION WH. GLOBAL VECTOR CONTROL RESPONSE 2017- 2030. France World Health Organization 2017. | |
dcterms.references | Chinsembu KC. Plants as antimalarial agents in Sub-Saharan Africa. Acta Tropica. 2015;152:32-48. | |
dcterms.references | Rocha e Silva LF, Nogueira KL, Pinto ACdS, Katzin AM, Sussmann RAC, Muniz MP, et al. <em>In Vivo</em> Antimalarial Activity and Mechanisms of Action of 4-Nerolidylcatechol Derivatives. Antimicrobial Agents and Chemotherapy. 2015;59(6):3271-80. | |
dcterms.references | Guo Z. Artemisinin anti-malarial drugs in China. Acta Pharmaceutica Sinica B. 2016;6(2):115-24. | |
dcterms.references | Muthu C, Ayyanar M, Raja N, Ignacimuthu S. Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. Journal of Ethnobiology and Ethnomedicine. 2006;2(1):43. | |
dcterms.references | Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products. 2020;83(3):770-803. | |
dcterms.references | Organization WH. General guidelines for methodologies on research and evaluation of traditional medicine. World Health Organization, 2000. 13. Cordell GA. Phytochemistry and traditional medicine – A revolution in process. Phytochemistry Letters. 2011;4(4):391-8. | |
dcterms.references | Cordell GA, Quinn-Beattie ML, Farnsworth NR. The potential of alkaloids in drug discovery. Phytotherapy Research. 2001;15(3):183-205. | |
dcterms.references | Krishnamoorthy S, Chandrasekaran M, Raj GA, Jayaraman M, Venkatesalu V. Identification of chemical constituents and larvicidal activity of essential oil from Murraya exotica L. (Rutaceae) against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research. 2015;114(5):1839-45. | |
dcterms.references | Abdillah S, Tambunan RM, Farida Y, Sandhiutami NMD, Dewi RM. Phytochemical screening and antimalarial activity of some plants traditionally 67 used in Indonesia. Asian Pacific Journal of Tropical Disease. 2015;5(6):454- 7. | |
dcterms.references | Zhang J, Gao Y, Ma C, Wang Y. Murrayanine Induces Cell Cycle Arrest, Oxidative Stress, and Inhibition of Phosphorylated p38 Expression in A549 Lung Adenocarcinoma Cells. Medical science monitor: international medical journal of experimental and clinical research. 2019;25:2002. | |
dcterms.references | Osorio EJ, Robledo SM, Bastida J. Chapter 2 Alkaloids with Antiprotozoal Activity. In: Cordell GA, editor. The Alkaloids: Chemistry and Biology. 66: Academic Press; 2008. p. 113-90. | |
dcterms.references | Organization WH. Neglected tropical diseases. Frequently asked questions. 2010. | |
dcterms.references | Organization WH. Global Technical Strategy against Malaria 2016–2030. 2015. | |
dcterms.references | Mace KE, Arguin PM, Tan KR. Malaria surveillance—United States, 2015. MMWR Surveillance Summaries. 2018;67(7):1. | |
dcterms.references | Salud INdl. Protocolo de Vigilancia en Salud Publica Malaria. 2017. 23. Yanow SK, Gavina K, Gnidehou S, Maestre A. Impact of Malaria in Pregnancy as Latin America Approaches Elimination. Trends in Parasitology. 2016;32(5):416-27. | |
dcterms.references | Organization WH. World malaria report 2018. 2018 November 19 2018. Report No.: 9241565721. | |
dcterms.references | Salud OPdl. Actualización Epidemiológica: Malaria en las Américas en el contexto de la pandemia de COVID-19. 2020 Junio de 2020. Report No. 26. Rodríguez JCP, Uribe GÁ, Araújo RM, Narváez PC, Valencia SH. Epidemiology and control of malaria in Colombia. Memórias do Instituto Oswaldo Cruz. 2011;106:114-22. | |
dcterms.references | Galinski MR, Meyer EVS, Barnwell JW. Chapter One - Plasmodium vivax: Modern Strategies to Study a Persistent Parasite’s Life Cycle. In: Hay SI, Price R, Baird JK, editors. Advances in Parasitology. 81: Academic Press; 2013. p. 1-26. | |
dcterms.references | Poveda G, Rojas W, Quiñones ML, Vélez ID, Mantilla RI, Ruiz D, et al. Coupling between annual and ENSO timescales in the malaria-climate association in Colombia. Environmental health perspectives. 2001;109(5):489-93. | |
dcterms.references | Salud INdl. BOLETÍN EPIDEMIOLOGICO SEMANAL, COLOMBIA, SEMANA EPIDEMIOLÓGICA 23, 2020. 2020. | |
dcterms.references | Simmons CP, Farrar JJ, van Vinh Chau N, Wills B. Dengue. New England Journal of Medicine. 2012;366(15):1423-32. | |
dcterms.references | Akter R, Hu W, Gatton M, Bambrick H, Naish S, Tong S. Different responses of dengue to weather variability across climate zones in Queensland, Australia. Environmental Research. 2020;184:109222. | |
dcterms.references | Pare G, Neupane B, Eskandarian S, Harris E, Halstead S, Gresh L, et al. Genetic risk for dengue hemorrhagic fever and dengue fever in multiple ancestries. EBioMedicine. 2020;51:102584. | |
dcterms.references | Salud OPdl. Actualización Epidemiológica Dengue y otras Arbovirosis. 2020 10 de junio de 2020. Report No. | |
dcterms.references | Velandia-Romero ML, Coronel-Ruiz C, Castro-Bonilla L, Camacho-Ortega S, Calderón-Peláez MA, Castellanos A, et al. Prevalence of dengue antibodies in healthy children and adults in different Colombian endemic areas. International Journal of Infectious Diseases. 2020;91:9-16. | |
dcterms.references | Sitepu FY, Suprayogi A, Pramono D, Harapan H, Mudatsir M. Epidemiological investigation of chikungunya outbreak, West Kalimantan, Indonesia. Clinical Epidemiology and Global Health. 2020;8(1):113-6. | |
dcterms.references | Thiberville S-D, Moyen N, Dupuis-Maguiraga L, Nougairede A, Gould EA, Roques P, et al. Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Research. 2013;99(3):345-70. | |
dcterms.references | Amaral JK, Bilsborrow JB, Schoen RT. Chronic Chikungunya Arthritis and Rheumatoid Arthritis: What They Have in Common. The American Journal of Medicine. 2020;133(3):e91-e7. | |
dcterms.references | Organization PAHO-WH. Geographic Spread of Chikungunya in the America December 2013-December 2017. 2018:1. | |
dcterms.references | Abella J, Rojas Á, Rojas C, Rondón F, Medina Y, Peña M, et al. Clinical and immunological features of post-chikungunya virus chronic arthritis and its effect on functional ability and quality of life in a cohort of Colombian patients. Revista Colombiana de Reumatología (English Edition). 2019;26(4):253-9. | |
dcterms.references | Valerio Sallent L, Roure Díez S, Fernández Rivas G. Zika virus infection or the future of infectious diseases. Medicina Clínica (English Edition). 2016;147(7):300-5. | |
dcterms.references | Organization WH. Zika virus disease. 2016. | |
dcterms.references | Organization WH. Zika virus status report. 2017:5. | |
dcterms.references | Mendivelso Duarte FO, Robayo García A, Rodríguez Bedoya M, Suárez Rángel G. [Reporting of birth defects from the Zika outbreak in Colombia, 2015-2017Notificação de defeitos congênitos associados ao surto de vírus zika na Colômbia, 2015-2017]. Revista panamericana de salud publica = Pan American journal of public health [Internet]. 2019 2019; 43:[e38 p.]. Available from: http://europepmc.org/abstract/MED/31093262 | |
dcterms.references | Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine. 2020. | |
dcterms.references | Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar Peña R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Medicine and Infectious Disease. 2020;34:101623. | |
dcterms.references | Meo S, Alhowikan A, Al-Khlaiwi T, Meo I, Halepoto D, Iqbal M, et al. Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 2020;24(4):2012-9. | |
dcterms.references | Salud OPdl. Actualización Epidemiológica Enfermedad por Coronavirus (COVID-19) 2020 22 de mayo de 2020. Report No. | |
dcterms.references | Díaz-Guio DA, Villamil-Gómez WE, Dajud L, Pérez-Díaz CE, Bonilla-Aldana DK, Mondragon-Cardona A, et al. Will Colombian intensive care units collapse due to the COVID-19 pandemic? Travel Medicine and Infectious Disease. 2020. | |
dcterms.references | Organization PAH. Cumulative confirmed and probableCOVID-19 cases reported by countries and territories in the Americas,as of 16 June 2020. 2020 16 June 2020. Report No. | |
dcterms.references | Chakraborty D. On the constitution of murrayanine, a carbazole derivative isolated from Murraya Koengii Spreng. Tetrahedron. 1965;21:681. 51. Chakrabarty M, Nath AC, Khasnobis S, Chakrabarty M, Konda Y, Harigaya Y, et al. Carbazole alkaloids from Murraya koenigii. Phytochemistry. 1997;46(4):751-5. | |
dcterms.references | Orozco-Ugarriza M, Olivo Martínez Y, Pedroza Bedoya J. Modelamiento in silico de la interacción entre Murrayanina (3-formil-1-metoxicarbazol) frente a la enzima Fosfolipasa A2. Segundo Congreso Colombiano de Bioquímica y Biología Molecular; Medellin-Colombia 2016. | |
dcterms.references | Gupta S, Khajuria V, Wani A, Nalli Y, Bhagat A, Ali A, et al. Murrayanine Attenuates Lipopolysaccharide-induced Inflammation and Protects Mice from Sepsis-associated Organ Failure. Basic & clinical pharmacology & toxicology. 2019;124(4):351-9. | |
dcterms.references | Mahapatra DK, Chhajed SS, Shivhare RS. Development of Murrayanine Chalcone hybrids: An effort to combine two privilege scaffolds for enhancing hypoglycemic activity. Int J Pharm Chem Anal. 2017;4(2):30-4. | |
dcterms.references | Shivhare RS, Mahapatra DK, Nair RR, Deshmukh SN. Schiff’s base derivatives of murrayanine demonstrated enhanced anti-oxidant activity than its parent moiety. Indian J Pharm Edu Res. 2016;50(4):9-15. | |
dcterms.references | Chakraborty DP, Chowdhury BK. Synthesis of murrayanine. The Journal of Organic Chemistry. 1968;33(3):1265-8. | |
dcterms.references | Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic acids research. 2016;44(D1):D1202-D13. | |
dcterms.references | Cheminformatics M. Bratislava, Slovak Republic. 2014 | |
dcterms.references | Cheminformatics M. Web-enabled software for large-scale calculation of molecular properties and database searches, Free online molecular descriptor calculations (Last accessed on 22.11. 12). 2012. | |
dcterms.references | Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, et al. admetSAR: a comprehensive source and free tool for assessment of chemical ADMETproperties. ACS Publications; 2012. | |
dcterms.references | Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic acids research. 2014;42(W1):W53-W8. | |
dcterms.references | Schmidt U, Struck S, Gruening B, Hossbach J, Jaeger IS, Parol R, et al. SuperToxic: a comprehensive database of toxic compounds. Nucleic acids research. 2009;37(suppl_1):D295-D9. | |
dcterms.references | Kiss R, Sandor M, Szalai FA. http://Mcule. com: a public web service for drug discovery. Journal of cheminformatics. 2012;4(S1):P17. | |
dcterms.references | Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry. 2004;25(13):1605-12. | |
dcterms.references | O’Brien SE, Brown DG, Mills JE, Phillips C, Morris G. Computational tools for the analysis and visualization of multiple protein–ligand complexes. Journal of Molecular Graphics and Modelling. 2005;24(3):186-94. | |
dcterms.references | Sivaramakrishnan V, Ilamathi M, Ghosh K, Sathish S, Gowda T, Vishwanath B, et al. Virtual analysis of structurally diverse synthetic analogs as inhibitors of snake venom secretory phospholipase A2. Journal of Molecular Recognition. 2016;29(1):22-32. | |
dcterms.references | Parimelzanghan A, Lavanya P, Anbarasu A, Ramaiah S. Molecular docking study of catechins compounds from Camellia sinensis against UPPS in Staphylococcus aureus. International Journal for Computational Biology (IJCB). 2014;3(2):03-9. | |
dcterms.references | Lipinski CA. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced Drug Delivery Reviews. 2016;101:34-41. | |
dcterms.references | Espiña B, Otero P, Louzao MC, Alfonso A, Botana LM. 13-Desmethyl spirolide-c and 13,19-didesmethyl spirolide-c trans-epithelial permeabilities: Human intestinal permeability modelling. Toxicology. 2011;287(1):69-75. | |
dcterms.references | Quiñones S L, Rosero P M, Roco A Á, Moreno T I, Sasso A J, Varela F N, et al. Papel de las enzimas citocromo p450 en el metabolismo de fármacos antineoplásicos: Situación actual y perspectivas terapéuticas. Revista médica de Chile. 2008;136:1327-35. | |
dcterms.references | Menezes IR, Santana TI, Varela VJ, Saraiva RA, Matias EF, Boligon AA, et al. Chemical composition and evaluation of acute toxicological, antimicrobial and modulatory resistance of the extract of Murraya paniculata. Pharmaceutical biology. 2015;53(2):185-91. | |
dcterms.references | Choudhury S. CYTOTOXICITY ASSESSMENT OF MURRAYA KONEIGII AQUEOS EXTRACTS ON ALLIUM CEPA L. ROOT TIP CELLS. The Ecoscan. 2013:39-43. | |
dcterms.references | Hashim F, Amin NM, editors. Insights into the prominent effect of mahanimbine on Acanthamoeba castellanii: Cell profiling analysis based on microscopy techniques. AIP Conference Proceedings; 2017: AIP Publishing LLC. | |
dcterms.references | Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection. 2020. | |
dcterms.references | Raviprakash K, Sinha M, Hayes CG, Porter KR. Conversion of dengue virus replicative form RNA (RF) to replicative intermediate (RI) by nonstructural proteins NS-5 and NS-3. The American Journal of Tropical Medicine and Hygiene. 1998;58(1):90-5. | |
dcterms.references | Costa SM, Yorio AP, Gonçalves AJS, Vidale MM, Costa ECB, Mohana Borges R, et al. Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines. PloS one. 2011;6(10):e25685-e. | |
dcterms.references | Hazleton KZ, Ho Mc Fau - Cassera MB, Cassera Mb Fau - Clinch K, Clinch K Fau - Crump DR, Crump Dr Fau - Rosario I, Jr., Rosario I Jr Fau - Merino EF, et al. Acyclic immucillin phosphonates: second-generation inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. 2012(1879-1301 (Electronic)). | |
dcterms.references | Ducati RG, Namanja-Magliano HA, Harijan RK, Fajardo JE, Fiser A, Daily JP, et al. Genetic resistance to purine nucleoside phosphorylase inhibition in Plasmodium falciparum. 2018(1091-6490 (Electronic)). | |
dspace.entity.type | Publication |
Sede: Claustro de San Agustín, Centro Histórico, Calle de la Universidad Cra. 6 #36-100
Colombia, Bolívar, Cartagena
Ver más...