Publicación:
Toxic effects induced by nonylphenol (NP) and ethoxylated nonylphenol (NP-9) in Caenorhabditis elegans

dc.contributor.advisorOlivero Verbel, Jesús
dc.contributor.authorDe la Parra Guerra, Ana Cristina
dc.date.accessioned2023-06-20T16:56:38Z
dc.date.available2023-06-20T16:56:38Z
dc.date.issued2020
dc.description.abstractNeeds in the field of cleanliness and asepsis have evolved over time. Among the most widely used chemicals in the world today are emerging pollutants. One of these contaminants is nonylphenol ethoxylate (NP-9), also known as Tergitol, and its degradation product, nonylphenol (NP), active ingredients present in nonionic surfactants used as herbicides, cosmetics, paints, plastics, disinfectants and detergents. These chemicals and their metabolites are commonly found in environmental matrices. The objectives of this research work were: 1. To assess the toxicity of NP and NP-9 in C. elegans. 2. To determine the gene expression profile for different toxicity mechanisms in C. elegans. 3. To determine the intergenerational effects caused by exposure to NP-9 in C. elegans. 4. To identify possible intergenerational neurotoxic effects from exposure to NP-9 in C. elegans. Wild-type L4 larvae were exposed to different concentrations of the surfactants to measure functional endpoints like; lethality, length, width, locomotion and lifespan. Transgenic green fluorescent protein (GFP) strains were employed to estimate changes in relative gene expression and promote the activation of toxicity signaling pathways related to mtl-2, gst-1, gpx-4, gpx-6, sod-4, hsp-70 and hsp-4. Additionally, stress response was also assessed using a daf-16::GFP transgenic strain. RT-qPCR was utilized to measure mRNA expression for neurotoxicity-related genes (unc-30, unc-25, dop-3, dat-1, mgl-1, and eat-4). In the results of the first aim, lethality was concentration dependent, with 24-h LC50 of 122 μM and 3215 μM for NP and NP-9, respectively. Both compounds inhibited nematode growth, although NP was more potent; and at non-lethal concentrations, nematode locomotion was reduced. The increase in the expression of tested genes was significant at 10 μM for NP-9 and 0.001 μM for NP, implying a likely role for the activation of oxidative and cellular stress, as well as metabolism pathways. Except for glutathione peroxidase, which has a bimodal concentration-response curve for NP, typical of endocrine disruption, the other curves for this xenobiotic in the strains evaluated were almost flat for most concentrations, until reaching 50–100 μM, where the effect peaked. NP and NP-9 induced the and nuclear translocation of DAF-16, suggesting that transcription of stress-response genes may be mediated by the insulin/IGF-1 signaling pathway. In contrast, NP-9 induced a concentrationdependent response for the sod-4 hsp-4 mutants, with higher fluorescence induction than NP at similar levels. For the second aim, data were obtained from parent worms (P0) and the first generation (F1). Lethality of the nematode was concentration-dependent, with 48 h-LC50 values of 3215 and 1983 μM in P0 and F1, respectively. Non-lethal concentrations of NP-9 reduced locomotion. Lifespan was also decreased by the xenobiotic, but the negative effect was greater in P0 than in F1. Non-monotonic concentrationresponse curves were observed for body length and width in both generations. The gene expression profile in P0 was different from that registered in F1, although the expression of sod-4, hsp-70, gpx-6 and mtl-2 increased with the surfactant concentration in both generations. None of the tested genes followed a classical concentration-neurotoxicity relationship. In P0, dopamine presented an Inverted-U curve, while GABA and glutamate displayed a bimodal type. However, in F1, inverted U-shaped curves were revealed for these genes. In short, NP and NP-9 affect the physiology of C. elegans and modulate gene expression related to reactive oxygen species (ROS) production, cellular stress and metabolism of xenobiotics. Additionally, the NP-9 isomer induced intergenerational responses in nematode through mechanisms involving ROS, and alterations of the GABA, glutamate, and dopamine pathways.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor(a) en Toxicología Ambientalspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://hdl.handle.net/11227/16525
dc.identifier.urihttp://dx.doi.org/10.57799/11227/11859
dc.language.isoengspa
dc.publisherUniversidad de Cartagenaspa
dc.publisher.facultyFacultad de Ciencias Farmacéuticas
dc.publisher.placeCartagena de Indiasspa
dc.publisher.programDoctorado en Toxicología Ambientalspa
dc.rightsDerechos Reservados - Universidad de Cartagena, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcToxicología ambiental
dc.subject.armarcContaminantes – Toxicología
dc.subject.armarcToxicology
dc.subject.armarcQuímica toxicológica
dc.titleToxic effects induced by nonylphenol (NP) and ethoxylated nonylphenol (NP-9) in Caenorhabditis eleganseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.referencesAcevedo, R., Sabater, C., Olivero-Verbel, J. (2018). Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research 25(14), 13697-13708. https://doi.org/10.1007/s11356- 018-1565-6spa
dcterms.referencesAcosta-Coley, I., Duran-Izquierdo, M., Rodriguez-Cavallo, E., Mercado-Camargo, J., Mendez-Cuadro, D., Olivero-Verbel, J. (2019). Quantification of microplastics along the Caribbean Coastline of Colombia: Pollution profile and biological effects on Caenorhabditis elegans. Marine Pollution Bulletin 146, 574-583. https://doi.org/10.1016/j.marpolbul.2019.06.084.spa
dcterms.referencesAdemollo, N., Ferrara, F., Delise, M., Fabietti, F., Funari, E. (2008). Nonylphenol and octylphenol in human breast milk. Environment Internactional 34 (7), 984–987. https://doi.org/10.1016/j.envint.2008.03.001spa
dcterms.referencesAmrit, F.R.G., Ratnappan, R., Keith, S.A., Ghazi, A. (2014). The C. elegans lifespan assay toolkit. Methods 68 (3), 465-475. https://doi.org/10.1016/j.ymeth.2014.04.002spa
dcterms.referencesAnbalagan, C., Lafayette, I., Antoniou-Kourounioti, M., Gutierrez, C., Martin, J.R., Chowdhuri, D.K., De Pomerai, D.I. (2013) Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils. Ecotoxicology 22, 72–85. https://doi.org/10.1007/s10646-012-1004-2spa
dcterms.referencesAnderson, G.L., Boyd, W.A., Williams, P. (2001). Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environmental Toxicology and Chemistry 20(4), 833-838. https://doi.org/10.1002/etc.5620200419spa
dcterms.referencesAnderson, G.L., Cole, R.D., Williams, P.L. (2004). Assessing behavioral toxicity with Caenorhabditis elegans. Environmental Toxicology and Chemistry: An International Journal, 23(5), 1235-1240spa
dcterms.referencesAndrade, A.L., Pacheco, A., Da cunha, C.L., Mendes, A.S. (2006). Disruptores endocrinos: potencial problema para la salud pública y medio ambiente. Biomédica 17(2), 146-150.spa
dcterms.referencesAli, S., Sharda Rajini, P. (2012). Elicitation of dopaminergic features of Parkinson's disease in C. elegans by monocrotophos, an organophosphorous insecticide. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 11(8), 993- 1000.spa
dcterms.referencesAly, H.A., Domènech, Ò., Banjar, Z.M. (2012). Effect of nonylphenol on male reproduction: analysis of rat epididymal biochemical markers and antioxidant defense enzymes. Toxicology and applied pharmacology, 261(2), 134-141.spa
dcterms.referencesAraujo, F.G., Bauerfeldt, G.F., Cid, Y.P. (2018). Nonylphenol: Properties, legislation, toxicity and determination. Anais da Academia Brasileira de Ciências (AHEAD), 0-0. ISSN 1678-2690. http://dx.doi.org/10.1590/0001- 3765201720170023spa
dcterms.referencesAronzon, C.M. (2013). Evaluación de la toxicidad de los contaminantes Cobre, Nonilfenol y Diazinón sobre embriones y larvas de Rhinella (Bufo) arenarum. Doctoral disertación, Universidad de Buenos Aires. Argentina. Pág. 1-250.spa
dcterms.referencesArditsoglou, A., Voutsa, D. (2008). Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices. Environmental science and pollution research 15(3, 228-236. https://doi.org/10.1065/espr2007.12.45spa
dcterms.referencesArnold, M.C., Badireddy, A.R., Wiesner, M.R., Di Giulio, R.T., Meyer, J.N. (2013). Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Archives of Environmental Contamination and Toxicology 65(2), 224-233. https://doi.org/10.1007/s00244-013-9905-5spa
dcterms.referencesAtienzar, F.A., Billinghurst, Z., Depledge, M.H. (2002). 4-nNonylphenol and 17-β estradiol may induce common DNA effects in developing barnacle larvae. Environmental pollution, 120(3), 735-738.spa
dcterms.referencesAvila, D.S., Benedetto, A., Au, C., Bornhorst, J., Aschner, M. (2016). Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans. BMC. Pharmacology and Toxicology 17 (1), 54. 10.1186/s40360-016-0097-2spa
dcterms.referencesAyuda-Durán, B., González-Manzano, S., Miranda-Vizuete, A., Dueñas, M., Santos-Buelga, C., González-Paramás, A.M. (2019). Epicatechin modulates stress-resistance in C. elegans via insulin/IGF-1 signaling pathway. PLoS One 14(1), e0199483. Doi: 10.1371/journal.pone.0199483spa
dcterms.referencesBack, P., Braeckman, B.P., Matthijssens, F. (2012). ROS in aging Caenorhabditis elegans: damage or signaling?. Oxidative Medicine and Cellular Longevity 2012. Doi:10.1155/2012/608478spa
dcterms.referencesBakke, D. (2003). Human and ecological risk assessment of nonylphenol polyethoxylate-based (NPE) surfactants in Forest Service herbicide applications. USDA Forest Service Pacific Southwest Region, Vallejo (USA)spa
dcterms.referencesBal, N., Kumar, A., Nugegoda, D. (2017). Assessing multigenerational effects of prednisolone to the freshwater snail, Physa acuta (Gastropoda: Physidae). J. Hazardous Materials 339, 281-291. https://doi.org/10.1016/j.jhazmat.2017.06.024spa
dcterms.referencesBarceló, D. (2003). Trends in Analytical Chemistry, 22, xiv.spa
dcterms.referencesBaraldo, G., Etemad, S., Weiss, A.K., Jansen-Dürr, P., Mack, H.I. (2019). Modulation of serotonin signaling by the putative oxaloacetate decarboxylase FAHD-1 in Caenorhabditis elegans. PloS One 14 (8), 10.1371/journal.pone.0220434spa
dcterms.referencesBaumeister, R., Schaffitzel, E., Hertweck, M. (2006). Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. Journal of Endocrinology 190(2), 191-202. https://doi.org/10.1677/joe.1.06856spa
dcterms.referencesBian, T., Zhu, X., Guo, J., Zhuang, Z., Cai, Z., Zhao, X. (2018). Toxic effect of the novel chiral insecticide IPP and its biodegradation intermediate in nematode Caenorhabditis elegans. Ecotoxicology and Environmental Safety 164, 604-610. https://doi.org/10.1016/j.ecoenv.2018.08.059spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
2020_TESIS DE GRADO_ANA C. DE LA PARRA GUERRA.pdf
Tamaño:
4.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
FORMATO CESION DE DERECHOS DE AUTOR_GRADO _Ana De la Parra Guerra.pdf
Tamaño:
112.4 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: