Publicación:
Toxicity mechanisms of voacangine isolated from Tabernaemontana cymosa Jacq., on Aedes aegypti L. mosquito larvae

dc.contributor.advisorDíaz Castillo., Fredyc
dc.contributor.advisorOlivero Verbel., Jesús
dc.contributor.authorOliveros Díaz, Andrés Felipe
dc.date.accessioned2023-06-20T17:43:45Z
dc.date.available2023-06-20T17:43:45Z
dc.date.issued2022
dc.description.abstractThe Aedes aegypti L. mosquito is considered the most important vector of arboviruses in the world. The phenomenon of resistance to insecticides is a difficult barrier to overcome for government health entities around the planet. This problem increases the concentrations of insecticides in the environment, causing environmental contamination and threats to human health. Plants have been used to combat pests for centuries and are an ecological source for searching for molecules with larvicidal activity. In this work, 65 ethanol-soluble extracts of 56 plants from the Colombian Caribbean region were evaluated as potential larvicides against the Aedes aegypti mosquito, as well as for their toxic effects on nontarget organisms. High larvicidal activity was found for 16 ethanol plant extracts; however, the most potent activity against larvae was obtained for five plant extracts, Annona squamosa, Annona cherimolia, Annona muricata, Tabernaemontana cymosa and Mammea americana, with LC50 (LCL – UCL) values of 58 (24 –142), 65 (33 – 127), 85 (42 – 170), 25 (23 – 27) and 39 (34 – 43) µg/mL, respectively. The T. cymosa seed extract was selected for bioguided fractionation due to its great larvicidal activity. Five indole alkaloids were isolated and characterized from the active fraction of T. cymosa using Liquid Chromatography and Nuclear Magnetic Resonance (NMR), respectively. Voacangine showed an LC50 of 5.1 µg/mL, indicating high larvicidal potency and low risk for non target organisms due to its selectivity (>40) against the model Caenorhabditis elegans. We also report the characterization of a new indole alkaloid from T. cymosa. Alkaloids are a group of secondary metabolites that have been extensively studied for the discovery of new drugs due to their properties on the central nervous system and their anti-inflammatory, antioxidant and anticancer activities. In the larvicidal fraction, 10 indole alkaloids were identified, and computational tools were used to evaluate their potential biological activities in humans. Consequently, molecular docking was performed using 951 human targets involved in different diseases. The results were analyzed through tools included in the KEGG and STRING databases, and relevant physiological functions associated with the alkaloids were found. Most of the alkaloids showed affinity for the same type of proteins, forming stable complexes with affinity energies of less than −8.0 kcal/mol. However, the 5-oxocoronaridine molecule proved to be the most active molecule binding human proteins (mean binding energy affinity = −9.2 kcal/mol). Gene ontology analysis of the interactions between the affected proteins pointed to the PI3K/Akt signaling pathway. /mTOR as the main target. On the other hand, all alkaloids showed good affinity for AChE from A. aegypti, but only voacangine had larvicidal potential. Moreover, the alkaloid voacangine caused a significant increase in lipid peroxidation in the larvae when compared to the control when tested at its diagnostic concentration. Our study demonstrated the potential of the Colombian Caribbean flora as a host for bioactive plants against the A. aegypti mosquito, with potential use in controlled environments. The data showed that the mechanism of action of voacangine involves oxidative stress and likely other biochemical processes linked to the central nervous system of the larva, causing the death of the insect without major adverse effects on human targets. Finally, 5-oxocoronaridine, voacangine-7- hydroxyndolenine and voacrisitine are potential ligands for key human proteins involved in cellular proliferation, making them promising leads for the development of new treatments against cancer pathologies.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor(a) en Toxicología Ambientalspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://hdl.handle.net/11227/16526
dc.identifier.urihttp://dx.doi.org/10.57799/11227/11860
dc.language.isoengspa
dc.publisherUniversidad de Cartagenaspa
dc.publisher.facultyFacultad de Ciencias Farmacéuticasspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.programDoctorado en Toxicología Ambientalspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcInsecticidas
dc.subject.armarcToxicología vegetal
dc.subject.armarcPlantas - Efecto de los insecticidas
dc.titleToxicity mechanisms of voacangine isolated from Tabernaemontana cymosa Jacq., on Aedes aegypti L. mosquito larvaeeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.referencesAbe, F. R., Machado, A. A., Coleone, A. C., da Cruz, C., & Machado-Neto, J. G. (2019). Toxicity of diflubenzuron and temephos on freshwater fishes: ecotoxicological assays with Oreochromis niloticus and Hyphessobrycon eques. Water, Air, & Soil Pollution, 230(3), 1-10.spa
dcterms.referencesAbubakar, I. B., & Loh, H. S. (2016). A review on ethnobotany, pharmacology and phytochemistry of Tabernaemontana corymbosa. Journal of Pharmacy and Pharmacology, 68(4), 423-432.spa
dcterms.references. Adedayo, B. C., Oyeleye, S. I., Okeke, B. M., & Oboh, G. (2021). Anti‐ cholinesterase and antioxidant properties of alkaloid and phenolic‐rich extracts from pawpaw (Carica papaya) leaf: A comparative study. Flavour and Fragrance Journal, 36(1), 47-54spa
dcterms.referencesAiub, C. A. F., Coelho, E. C. A., Sodré, E., Pinto, L. F. R., & Felzenszwalb, I. (2002). Genotoxic evaluation of the organophosphorus pesticide temephos. Genetics and Molecular Research, 1(2), 159-166.spa
dcterms.referencesArias, H. R., Targowska-Duda, K. M., Feuerbach, D., & Jozwiak, K. (2015). Coronaridine congeners inhibit human α3β4 nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites. The International Journal of Biochemistry & Cell Biology, 65, 81-90.spa
dcterms.referencesAutran, E. S., Neves, I. A., Da Silva, C. S. B., Santos, G. K. N., Da Câmara, C. A. G., & Navarro, D. M. A. F. (2009). Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresource Technology, 100(7), 2284-2288.spa
dcterms.referencesBalalian, A. A., Liu, X., Herbstman, J. B., Daniel, S., Whyatt, R., Rauh, V., ... & Factor-Litvak, P. (2021). Prenatal exposure to organophosphate and pyrethroid insecticides and the herbicide 2, 4-dichlorophenoxyacetic acid and size at birth in urban pregnant women. Environmental Research, 201, 111539.spa
dcterms.referencesBao, M. F., Yan, J. M., Cheng, G. G., Li, X. Y., Liu, Y. P., Li, Y., ... & Luo, X. D. (2013). Cytotoxic indole alkaloids from Tabernaemontana divaricata. Journal of natural products, 76(8), 1406-1412.spa
dcterms.referencesBardach, A. E., García‐Perdomo, H. A., Alcaraz, A., Tapia Lopez, E., Gándara, R. A. R., Ruvinsky, S., & Ciapponi, A. (2019). Interventions for the control of Aedes aegypti in Latin America and the Caribbean: systematic review and meta‐analysis. Tropical Medicine & International Health, 24(5), 530-552.spa
dcterms.referencesBeltrán Villanueva, C. E., Díaz Castillo, F., & Gómez Estrada, H. (2013). Tamizaje fitoquímico preliminar de especies de plantas promisorias de la costa atlántica colombiana. Revista Cubana de Plantas Medicinales, 18(4), 619-631.spa
dcterms.referencesAbdel Haleem, D.R., El Tablawy, N.H., Ahmed Alkeridis, L., Sayed, S., Saad, A.M., El-Saadony, M.T., Farag, S.M., 2022. Screening and evaluation of different algal extracts and prospects for controlling the disease vector mosquito Culex pipiens L. Saudi J Biol Sci 29, 933–940. https://doi.org/10.1016/j.sjbs.2021.10.009spa
dcterms.referencesAbubakar, I.B., Loh, H.-S., 2016. A review on ethnobotany, pharmacology and phytochemistry of Tabernaemontana corymbosa. J Pharm Pharmacol 68, 423–432. https://doi.org/10.1111/jphp.12523spa
dcterms.referencesAchenbach, H., Benirschke, M., Torrenegra, R., 1997. Alkaloids and other compounds from seeds of Tabernaemontana cymosa. Phytochemistry 45, 325–335. https://doi.org/10.1016/S0031-9422(96)00645-0spa
dcterms.referencesAdeoye-Isijola, M.O., Jonathan, S.G., Coopoosamy, R.M., Olajuyigbe, O.O., 2021. Molecular characterization, gas chromatography mass spectrometry analysis, phytochemical screening and insecticidal activities of ethanol extract of Lentinus squarrosulus against Aedes aegypti (Linnaeus). Mol Biol Rep 48, 41–55. https://doi.org/10.1007/s11033-020-06119-6spa
dcterms.referencesAlsarar, A., Hussein, H., Abobakr, Y., Al-Zabib, A., Bazeyad, A., 2021. Mosquitocidal and repellent activities of essential oils against Culex pipiens L. Entomological Research 50, 182–188.spa
dcterms.referencesAnogwih, J.A., Makanjuola, W.A., Chukwu, L.O., 2015. Potential for integrated control of Culex quinquefasciatus (Diptera: Culicidae) using larvicides and guppies. Biological Control 81, 31–36. https://doi.org/10.1016/j.biocontrol.2014.11.001spa
dcterms.referencesAnoopkumar, A.N., E M, A., Sudhikumar, A., 2020. Exploring the mode of action of isolated bioactive compounds by induced reactive oxygen species generation in Aedes aegypti: a microbes based double-edged weapon to fight against Arboviral diseases. International Journal of Tropical Insect Science 40. https://doi.org/10.1007/s42690-020- 00104-zspa
dcterms.referencesAnoopkumar, A.N., Aneesh, E.M., 2022. A critical assessment of mosquito control and the influence of climate change on mosquito-borne disease epidemics. Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development 24, 8900–8929.spa
dcterms.referencesArivoli, S., Tennyson, S., Raveen, R., Jayakumar, M., Senthilkumar, B., Govindarajan, M., Babujanarthanam, R., Vijayanand, S., 2016. Larvicidal activity of fractions of Sphaeranthus indicus Linnaeus (Asteraceae) ethyl acetate whole plant extract against Aedes aegypti Linnaeus 1762, Anopheles stephensi Liston 1901 and Culex quinquefasciatus Say 1823 (Diptera: Culicidae). Int. J. Mosq. Res. 3, 18–30.spa
dcterms.references. Ayuda-Durán, B., González-Manzano, S., González-Paramás, A.M., SantosBuelga, C., 2020. Caenorhabditis elegans as a Model Organism to Evaluate the Antioxidant Effects of Phytochemicals. Molecules 25, 3194. https://doi.org/10.3390/molecules25143194spa
dcterms.referencesHamzah, S. N., Avicor, S. W., Alias, Z., Razak, S. A., Bakhori, S. K. M., Hsieh, T. C., ... & Farouk, S. A. (2022). In Vivo Glutathione S-Transferases Superfamily Proteome Analysis: An Insight into Aedes albopictus Mosquitoes upon Acute Xenobiotic Challenges. Insects, 13(11), 1028spa
dcterms.referencesShrinet, J., Bhavesh, N. S., & Sunil, S. (2018). Understanding oxidative stress in Aedes during chikungunya and dengue virus infections using integromics analysis. Viruses, 10(6), 314.spa
dcterms.referencesOliveira, J. H. M., Talyuli, O. A., Goncalves, R. L., Paiva-Silva, G. O., Sorgine, M. H. F., Alvarenga, P. H., & Oliveira, P. L. (2017). Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLoS neglected tropical diseases, 11(4), e0005525spa
dcterms.referencesAkbari, O. S., Antoshechkin, I., Amrhein, H., Williams, B., Diloreto, R., Sandler, J., & Hay, B. A. (2013). The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. G3: Genes, Genomes, Genetics, 3(9), 1493-1509.spa
dcterms.referencesArroyo-Salgado, B., Olivero-Verbel, J., & Guerrero-Castilla, A. (2016). Direct effect of p, p'-DDT on mice liver. Brazilian Journal of Pharmaceutical Sciences, 52(2), 287-298.spa
dcterms.referencesCollins, E. L., Phelan, J. E., Hubner, M., Spadar, A., Campos, M., Ward, D., ... & Campino, S. (2022). A next generation targeted amplicon sequencing method to screen for insecticide resistance mutations in Aedes aegypti populations reveals a rdl mutation in mosquitoes from Cabo Verde. PLOS Neglected Tropical Diseases, 16(12), e0010935.spa
dcterms.referencesConde, M., Orjuela, L. I., Castellanos, C. A., Herrera-Varela, M., Licastro, S., & Quiñones, M. L. (2015). Evaluación de la sensibilidad a insecticidas en poblaciones de Aedes aegypti (Diptera: Culicidae) del departamento de Caldas, Colombia, en 2007 y 2011. Biomédica, 35(1).spa
dcterms.referencesCosta, M. B. S., Simões, R. D. C., Silva, M. D. J. A. D., Oliveira, A. C. D., Acho, L. D. R., Lima, E. S., ... & Oliveira, C. M. D. (2022). Oxidative stress induction by crude extract of Xylaria sp. triggers lethality in the larvae of Aedes aegypti (Diptera: Culicidae). Revista da Sociedade Brasileira de Medicina Tropical, 55.spa
dcterms.referencesGómez-Calderón, C., Mesa-Castro, C., Robledo, S., Gómez, S., Bolivar-Avila, S., Diaz-Castillo, F., & Martínez-Gutierrez, M. (2017). Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. BMC complementary and alternative medicine, 17(1), 57.spa
dcterms.referencesGómez-Estrada, H., Díaz-Castillo, F., Franco-Ospina, L., MercadoCamargo, J., Guzmán-Ledezma, J., Medina, J. D., & Gaitán-Ibarra, R. (2011). Folk medicine in the northern coast of Colombia: an overview. Journal of ethnobiology and ethnomedicine, 7(1), 27.spa
dcterms.referencesAchenbach, H., Benirschke, M., & Torrenegra, R. (1997). Alkaloids and other compounds from seeds of Tabernaemontana cymosa. Phytochemistry, 45(2), 325-335. https://doi.org/10.1016/S0031- 9422(96)00645-0spa
dcterms.referencesAmbrose, P. G. (2017). Antibacterial drug development program successes and failures: A pharmacometric explanation. Current Opinion in Pharmacology, 36, 1-7. PubMed. https://doi.org/10.1016/j.coph.2017.06.002spa
dcterms.referencesAnand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites, 9(11), 258.spa
dcterms.referencesArambewela, L. S. R., & Ranatunge, T. (1991). Indole alkaloids from Tabernaemontana divaricata. Phytochemistry, 30(5), 1740-1741. https://doi.org/10.1016/0031-9422(91)84254-Pspa
dcterms.referencesBaldridge, D., Wangler, M. F., Bowman, A. N., Yamamoto, S., Schedl, T., Pak, S. C., ... & Westerfield, M. (2021). Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: current state and a future vision. Orphanet Journal of Rare Diseases, 16(1), 1-17.spa
dcterms.referencesBernal, R., Gradstein, S., & Celis, M. (2016). Catálogo de plantas y líquenes de Colombia.spa
dcterms.referencesCaballero, K., Pino-Benitez, N., Pajaro, N., Stashenko, E., & Olivero-Verbel, J. (2014). Plants cultivated in Choco, Colombia, as source of repellents against Tribolium castaneum (Herbst). Journal of Asia-Pacific Entomology, 17, 753-759. https://doi.org/10.1016/j.aspen.2014.06.011spa
dcterms.referencesCabarcas-Montalvo, M., Maldonado-Rojas, W., Montes-Grajales, D., Bertel-Sevilla, A., Wagner-Döbler, I., Sztajer, H., Reck, M., Flechas-Alarcon, M., Ocazionez, R., & Olivero-Verbel, J. (2016). Discovery of antiviral molecules for dengue: In silico search and biological evaluation. European Journal of Medicinal Chemistry, 110, 87-97. https://doi.org/10.1016/j.ejmech.2015.12.030spa
dcterms.referencesCava, M. P., Tjoa, S. S., Ahmed, Q. A., & Da Rocha, A. I. (1968). The alkaloids of Tabernaemontana riedelii and T. rigida. The Journal of Organic Chemistry, 33(3), 1055-1059. https://doi.org/10.1021/jo01267a023spa
dcterms.referencesChakraborty, P. (2018). Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochimie Open, 6. https://doi.org/10.1016/j.biopen.2017.12.003spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
2023_TESIS DE GRADO ANDRES FELIPE OLIVEROS DIAZ.pdf
Tamaño:
4.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
FORMATO CESION DE DERECHOS DE AUTOR_GRADO AFOD (1).pdf
Tamaño:
51.45 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Datos de Contacto

Imagen Escudo Universidad de Cartagena

 

 

 

Línea de Atención

Línea Anticorrupción

Síguenos en: