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Chapter 1 
 
T H E O R E T I C A L  F O U N D A T I O N  

 

CRYSTAL STRUCTURE PREDICTION PROBLEM 

 

The crystal structure prediction (CSP) is a problem that has attracted the scientific community’s 

attention since the establishment of the first set of Pauling's Rules in 1929. This problem can be 

resumed as follows: given only the chemical composition of any material there exist an infinite 

amount of atomic arrangements that can be obtained, each one of them with a certain total 

energy inside the configurational energy landscape. Therefore, the crystal structure prediction 

problem consists in finding, for some external conditions, e.g. a given applied pressure and/or 

temperature, the most stable structure i.e. the one with the lowest free energy, starting only from 

the knowledge of the chemical composition of the system [1]. 

 

Almost sixty years later, in 1988, there were very few advances for the solution of this problem; 

the famous editorial by John Maddox [2] resumes the situation at that time: 

 

 

“One of the continuing scandals in the physical sciences is that it remains in general 

impossible to predict the structure of even the simplest crystalline solids from a 

knowledge of their chemical composition” 

 

 

Then, it is natural to ask ourselves why it is so important to determine the crystal structure of a 

crystalline system. The answer is quite simple: the crystal structure is perhaps the most important 

source of information of a material, something like its DNA, because with it we can determine 

directly or indirectly almost all the physical properties of that material, and this is true even if 
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that material has not yet been synthesized! Some useful microscopic properties of crystalline 

materials are displayed in table 1.1. 

 

Table 1.1. Microscopic properties of crystal materials. Taken from [3]. 

 

 
 

The calculation of crystal structures of solids from first principles, is a problem yet to be solved. 

Even if sometimes it is possible to have access to experimental data to determine the structure of 

a certain material, there are some major issues that need to be taken into account [4]: 

 

- Theoretical predictions constitute a very helpful aid to experiments when the studied samples 

are very small or when a clear understanding of the microscopic mechanisms is desired, e. g. 

Diamond Anvil Cell (DAC) experiments. 

- Theoretical calculations are currently the only way to study matter at conditions that are not 

available in laboratories, such as ultra-high pressures. 

- A reliable crystal structure prediction method can deeply transform the chemical industry, in 

areas such as pharmaceuticals development and catalysis, and also can lower some costs 

associated with the research of new chemical compounds. 

 

Now, the task of finding the structure with the lowest energy, and therefore the most stable, is an 

overwhelming quest [4] [5]: 

 

The search space in these systems is multidimensional and depends on the amount of atoms per 

unit cell, according to: 

 

𝑑 = 6 + 3(𝑁 − 1)     (1) 
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In detail, it contains the information of the six lattice parameters of the crystal cell and the three 

spatial coordinates for each of the N atoms contained in the unit cell, assuming that one of them 

is fixed at the origin of coordinates (hence the “N – 1 ” correction). 

 

The number of possible locally stable structures also depends on the number of atoms per unit 

cell. In principle, that number is infinite, but as an approximation we could start defining a cubic 

cell with volume V and a discretization parameter 𝜹, so that the N atoms can only be placed in 

well-defined positions, then an estimation of possible atomic configurations leads to:  

 

𝐶 =
1

(𝑉
𝛿3⁄ )

(𝑉
𝛿3⁄ ) !

[(𝑉
𝛿3⁄ ) − 𝑁] ! 𝑁!

     (2) 

 

For the sake of illustrating the consequences of this, if we had 𝛿=1Å and V=10Å3, the possible 

structures for a system of 10 atoms would be 1011; 1025 for a system of 20 atoms; and 1039 for 

a system of 30 atoms. It is an enormous amount of different possibilities to explore, and it is 

almost impossible to deal with all of them even for small systems. 

 

Finding the global energy minima is a tough process, because it is extremely sensitive to the 

small changes that occur in the atomic distances and angles. As a result, the energy landscape of 

the system is rough with several peaks and valleys that produce the local energy minima and in 

consequence, metastable structures. 

 

Finally, one would like to use total energy calculations with ab-initio accuracy, in order to be 

able to compare different competing structures with some reliability, but this requires an 

enormous amount of computational resources. Continuing with the previous example, the 

estimated CPU time would be 1000 years for a system of 10 atoms; 1017 years for a system of 

20 atoms; and 1031 years for a system of 30 atoms. 

 

It is clear that calculating the energy for every possible structural configuration is an impossible 

task1. So the first step is to develop a strategy in order to overcome the difficulties shown here.  

                                                

1 The age of the Universe is set up in approximately 1.38 x 1010 years. 
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METHODS OF CRYSTAL STRUCTURE PREDICTION 

 

Several approaches have been proposed to attack and solve this problem, and they are 

gathered in figure 1.1. Early in the previous century, the first attempts tried to relate the 

underlying chemistry of the materials with the modern physical theories, such as Quantum 

Mechanics. For example, the amount of experimental results from x-ray diffraction, diffraction 

of electron waves, the interpretation of band spectra, Raman spectra, among others; and the 

model of chemical bonding proposed by Gilbert N. Lewis in 1916 [6], were the inspiration for 

Linus Pauling to propose, in 1929, the first set of rules [7] that described the structure of 

inorganic compounds. 

 

A similar approach was The Bond Valence Model [8] [9], developed mostly by I. David Brown. 

This was an advance in Pauling’s rules. With the inclusion of new rules in this model, many 

properties of the inorganic compounds, such as bond length and coordination number, were 

finally understood.  

 

 
Figure 1.1. Proposed methods for solving the crystal structure prediction problem. 
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Topological approaches are based on a priori chemical knowledge of the system and its 

symmetry. This method was developed at the beginning by Wells [10] [11] [12] [13] and it is 

still used to define networks that correspond to real or hypothetical crystal structures. However, 

selecting the most reasonable crystal structure among all the possible topologies, which depends 

strongly on the interatomic interaction considered and the structure groups taken into account, is 

not easy. Using the concept of topological crystal structure representation, it is possible to consider 

all possible topologies and subsequently reach to those that might correspond to the given 

crystal structure. The analysis starts from a complete representation of the crystal structure, 

where all atoms and all possible interatomic interactions, even the weakest, are considered as 

nodes and edges on a graph, respectively. It is assumed that this representation contains all the 

information on the crystal. For a particular system, a three-step method for simplification is 

proposed to reach the desired partial representation [14]. 

 

Although the above methods have proven their usefulness and are still used, in one way or 

another, their use is conditioned to a previous knowledge of the system symmetry and empirical 

results. In order to obtain more unbiased results in the prediction of crystal structures, the ab-

initio computational approach has been fundamental, essentially because of the following two 

reasons among others [1]:  

 

- The computational approach allows to calculate explicitly the physical quantity desired (e. g. 

the energy) 

- Given the fact that no empirical information is used, the searching techniques can explore the 

whole energy landscape with virtually no bias and eventually provide unexpected results 

such as previously unknown crystal structures. 

 

The computational techniques developed so far consider the crystal structure prediction as an 

optimization problem, in which the aim is to find the energy landscape’s global minimum. To do 

that, these techniques seek deformations inside the energy landscape and follow them, trying to 

find the low energy regions, which are associated with dynamically stable structures. These low 

energy regions are usually close to each other, and they form energy funnels of different sizes 

and shapes, as shown in figure 1.2.  
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Figure 1.2. Energy landscape. It contains kinetics traps and energy barriers. Taken from [15]. 

 

Taking into account that in real chemical systems, there are only a few (sometimes even one) 

energy funnel, the efficiency of the searching can be significantly improved. Some of the 

techniques that use this fact are: Random Sampling, Simulated Annealing, Metadynamics, 

Molecular Dynamics and Evolutionary Algorithms. In the following sections we present and 

overview of these methods one by one. 

 

 

RANDOM SAMPLING 

 

Random sampling is a stochastic method used to explore the energy surface of a system [16]. 

Eventually this technique was refined [17] [18] [19] [20] until it reached a wide accepted 

general procedure: given certain details of the system, e. g. the stoichiometry of a crystal or a 

protein sequence, the algorithm generates randomly the structure of the system, and by 

applying some local optimization algorithms, the total energy of a local minimum is calculated. 

This procedure is carried out until a satisfactory solution is achieved [21], as shown in figure 1.3 
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Figure 1.3. Simplified version of a Random Sampling algorithm. 

 

Chris J. Pickard and Richard Needs have applied widely this technique in several crystal 

molecular systems and semiconductors using DFT, such as: SiH4 [22], CaC6 [23], AlH3 [24], H2O 

[25], hydrogen [26], nitrogen [27], iron [28] and lithium [29]. Some of these systems have up to 

24 atoms per cell, but most of them contain less than 12 atoms per cell. 

 

Some studies have combined this technique with others [30] [31] [32]. Also, Random Sampling 

has been applied for study small organic molecules for comparative effects [33] [34]. 

 

 

SIMULATED ANNEALING 

 

The simulated annealing algorithm is mostly based on Monte Carlo Metropolis algorithm, which 

describes a random path at constant temperature, using an acceptance criterion. When the 

temperature is no longer constant in the algorithm, the simulated annealing method is obtained 

[35] [36]. While the temperature is decreasing, the variation in the random path will be, in 

average, lower due to the constant decrease of energy. At the end of the process, the system is 
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expected to reach the global energy minimum, but this depends on a well set up cooling process 

[37].  

 

A simple way to understand the fundamentals of this algorithm is to imagine a hermetic box that 

contains an irregular surface inside and a sphere that is located at any point on that surface, as 

shown in figure 1.4. 

 

 
Figure 1.4. Schematic representation of simulated annealing. Taken from [38]. 

 

The goal is to move the sphere to the lowest point of the surface inside the box. At the beginning 

of the process the system temperature is high and some perturbations are applied to make the 

sphere get the energy to jump easily the peaks of the surface. While the temperature is 

decreasing, the sphere finds harder to jump those peaks, so it is expected that at the end of the 

process the sphere will be located at the lowest point of the surface, or in a worse-case scenario 

in a region near to the lowest point [38]. 

 

 

MOLECULAR DYNAMICS 

 

Molecular dynamics is a technique that aims to calculate the equilibrium dynamical properties of 

an N body physical system at a given set of temperatures. Although the behavior of all the 

particles could be described by Quantum Mechanics, Molecular Dynamics assumes, in principle, 

that atomic nuclei obey the Classical Mechanics laws, In fact, it doesn’t take into account 
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relativity or Quantum Mechanics for the nuclei [39] and this approximation has worked properly 

for several materials [40]. However, when it’s necessary, semi-classical corrections can be 

applied to the desired system [41]. 

 

 
Figure 1.5. Particle trajectory in Molecular Dynamics simulation. Taken from [42]. 

 

Molecular Dynamics is based on determining the movement of the particles of the system 

resolving Newton’s laws of motion. To achieve this, numerical integration is used on every 

particle, step by step, during certain period of time. The description of the particle trajectory, as 

shown in figure 1.5, has been described using several algorithms [43], which are detailed in 

table 1.2. 

 

Table 1.2. Several algorithms used in Molecular Dynamics. 
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Ab-initio Molecular Dynamics has been widely developed by Michele Parrinello and Roberto 

Car, who made possible an efficient unification of this technique with Density Functional Theory, 

creating the Car – Parrinello algorithm [44] [45]. 

 

 

METADYNAMICS 

 

Metadynamics is an improvement on Molecular Dynamics which aims to reconstruct the free 

energy of complex systems using   artificial dynamics. Taking into account that the free energy 

surface has many local minima separated by high barriers, the spontaneous transition from one 

local minimum to another is not easy to achieve. The algorithm first defines the dynamic 

variables (also called degrees of freedom) of the system inside a vector: 

 

𝒉̃ = (ℎ11,  ℎ22, ℎ33, ℎ44, ℎ55, ℎ66)𝑇     (3) 

 

Following the generic metadynamic algorithm [46][26], the discrete dynamic of the system is 

defined: 

 

𝒉̃𝑡+1 = 𝒉̃𝑡 + 𝛿ℎ
𝝓𝑡

|𝝓𝑡|
      𝑤ℎ𝑒𝑟𝑒: 𝝓𝑡 = −

𝜕𝐺𝑡

𝜕𝒉̃
     (4) 

𝐺𝑡(𝒉̃) =  𝐺(𝒉̃) + ∑ 𝑊𝑒
−

|𝒉̃−𝒉̃𝑡′
|
2

2𝛿ℎ2

𝑡′<𝑡

     (5) 

 

The Gibbs potential, 𝐺𝑡(𝒉̃)  includes a Gaussian term that is added to each new point 𝒉̃𝑡′ in 

order to mark the points inside the free energy surface that have been already visited and 

avoid them in future iterations, by doing this the system is forced to leave one energy minimum 

while the simulation is going forward, due to the Gaussian contributions to the energy that are 

progressively filling the low potential regions allowing the system to go to other local minima 

and eventually covering the entire free energy surface. This process is shown in figure 1.6. 
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Figure 1.6. Schematic representation of the progressive filling of the underlying potential (thick line) by means 

of the Gaussian contributions deposited along the trajectory. The sum of the underlying potential and of the 

metadynamics bias is shown at different times (thin lines). Taken from [47].  

 

 

EVOLUTIONARY ALGORITHMS 

 

This type of algorithm uses mechanisms inspired on biological evolution, such as reproduction, 

mutation, recombination and selection [48]. The possible solutions of the optimization problem 

are treated as individuals inside a population that evolves under the terms mentioned earlier 

and the quantity of individuals that will survive is determined by a fitness solution. 

 

The algorithm itself can be implemented as follows [4] [5]: first of all, an accurate representation 

of the problem must be chosen. The quality of this representation has a direct impact in the 

effectiveness of the algorithm. Once the representation is set up, the first generation is created 

and the quality of life of each individual is determined by the fitness function. The best 

individuals of this generation are selected as parents of the next generation. The offspring will 

be ruled by the same fitness function, and the best individuals will create the third generation. 

These steps will be repeated until the convergence criteria is achieved. 
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THE ELECTRONIC PROBLEM 

 

Matter can be described (in very simplistic terms) as a set of atoms that interact with each other, 

sometimes under the influence of an external field. This arrangement of particles may be in the 

gas or in a condensed phase, which in turn can be a solid, liquid or amorphous phase. Despite 

the multiple ensembles that can be formed, all these systems can be described as a set of atomic 

nuclei and electrons that interact among themselves under the influence of electrostatic forces. 

Therefore the Hamiltonian of such system can be expressed as: 

 

ℋ̂ = − ∑
ℏ2

2𝑀𝐼

∇𝐼
2

𝑃

𝐼=1

− ∑
ℏ2

2𝑚
∇𝑖

2

𝑁

𝑖=1

+
𝑒2

2
∑ ∑

𝑍𝐼𝑍𝐽

|𝑹𝐼 − 𝑹𝐽|

𝑃

𝐽≠𝐼

𝑃

𝐼=1

+
𝑒2

2
∑ ∑

1

|𝒓𝑖 − 𝒓𝑗|

𝑁

𝑗≠𝑖

𝑁

𝑖=1

− 𝑒2 ∑ ∑
𝑍𝐼

|𝑹𝐼 − 𝒓𝑖|

𝑁

𝑖=1

𝑃

𝐼=1

     (6) 

 

Where 𝑹 = {𝑹𝐼,   𝐼 = 1 … 𝑃} and 𝒓 = {𝒓𝑖,   𝑖 = 1 … 𝑁} are a set of P nuclear coordinates and 

N electronic coordinates. ZI and MI are the nuclear charges and masses respectively. The first 

and second term represent the kinetic energy of the P nuclei and the N electrons of the system. 

The third term represents the interaction between nuclei; this potential can be reduced to an 

additive constant when an approximation is used in order to resolve the electronic problem. The 

last two terms correspond to the interaction between electrons and the interaction between 

nuclei and electrons, respectively. 

 

Before continuing, there are some considerations about the Hamiltonian expressed in equation 

(6) that have to be taken into account: 

 

- The kinetic energy calculated in the first and second terms, and the motion of nuclei and 

electrons, are treated strictly in a non-relativistic way. 

- The definition of each term of the Hamiltonian implies that the nuclei are treated as point 

particles, characterized only by their mass, charge and magnetic moment. 

- The interaction between charged particles, calculated in the last three terms, is given by the 

instantaneous and spin-independent Coulomb interaction. 
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- The equation (6) shows a free-field system Hamiltonian. However, an electromagnetic field 

can be indicated when necessary, and this field can be either static or time-dependent. 

 

In principle, all the properties of this system can be derived by solving the time-independent 

Schrödinger equation: 

 

ℋ̂𝜓𝑛(𝑹, 𝒓) = 𝜀𝑛𝜓𝑛(𝑹, 𝒓)     (7) 

 

Where 𝜀𝑛 are the energy eigenvalues and 𝜓𝑛(𝑹, 𝒓) are the eigenstates, or wave functions. 

Since the electrons are fermions, the wave function must be antisymmetric with respect to the 

exchange of the electronic coordinates r, and symmetric or antisymmetric with respect to the 

exchange of the nuclear coordinates R, having into account that different nuclear species are 

distinguishable but the statistics used for systems made only of one type of atom depends on the 

nuclear spin of it. 

 

However, in general this problem is practically impossible to solve analytically within the full 

quantum mechanics formalism: the system is a many-body system, where each particle position is 

described by three spatial coordinates. In addition, the Coulomb interaction is the result of pair-

wise terms, so the Schrödinger equation cannot be separated. As a result of this limitation, we 

have to deal in principle with a 3(P+N) degrees of freedom problem. Nevertheless, several 

approximations have been proposed and refined in order to reduce the complexity of the 

electronic problem, one such approximation is the Born-Oppenheimer Approximation. 

 

 

BORN – OPPENHEIMER APPROXIMATION 

 

The first step towards the solution of equation (6) is to partially decouple the electronic and the 

nuclear motion. This can be achieved due to the difference between the electrons’ and nuclei’s 

time-scales. 

 

Inside the classical scheme and under typical conditions, the velocity of an electron is much larger 

than the proton’s, because the mass of the proton is approximately 1836 times larger than the 
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electron’s. Taking that into account, Max Born and J. Robert Oppenheimer proposed in 1927 a 

way to separate the nuclear motion from the electronic motion [49]. 

 

Every time the nuclei move, the electrons adjust their positions very fast; therefore their wave 

function is always adjusted to the nuclear wave function almost instantaneously. Then the 

equation (7) can be solved with a factorized wave function that contains a nuclear component 

and an electronic component of the form: 

 

𝜓(𝑹, 𝒓, 𝑡) = ∑ Θ𝑛(𝑹, 𝑡)Φ𝑛(𝑹, 𝒓)

𝑛

     (8) 

 

Where Θ𝑛(𝑹, 𝑡) are the wave functions that describe the evolution of the nuclear movement and 

Φ𝑛(𝑹, 𝒓) are the electronic eigenstates. These terms satisfy the time-independent Schrödinger 

equation: 

 

ℎ̂𝑒Φ𝑛(𝑹, 𝒓) = 𝐸𝑛(𝑹)Φ𝑛(𝑹, 𝒓)     (9) 

 

This equation represents a stationary eigenvalue problem for a given set of parameters R, which 

corresponds to the 3P nuclear coordinates and acts as a parameter of the equation. Therefore, 

the electronic problem has to be solved for a set of electronic positions r that depend on a 

particular nuclear configuration. Finally, the electronic Hamiltonian, according to the equation 

(6), is defined as follows: 

 

ℎ̂𝑒 = ℋ̂ + ∑
ℏ2

2𝑀𝐼

∇𝐼
2

𝑃

𝐼=1

−
𝑒2

2
∑ ∑

𝑍𝐼𝑍𝐽

|𝑹𝐼 − 𝑹𝐽|

𝑃

𝐽≠𝐼

𝑃

𝐼=1

 

ℎ̂𝑒 = ℋ̂ − 𝑇̂𝑛 − 𝑉̂𝑛𝑛 = 𝑇̂ + 𝑈𝑒𝑒 + 𝑉̂𝑒𝑛     (10) 

 

Solving the time-independent Schrödinger equation will provide the key for understanding 

matter. However, in order to study the structure of matter, most of the time we only care about 
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the ground electronic states. This does not imply that excited states are less important2, but the 

complexity of the solution is higher than the one for ground states. 

 

 

HARTREE AND HARTREE – FOCK APPROXIMATIONS 

 

Finding the ground state in an inhomogeneous system composed by N particles such as electrons, 

is one of the most important problems in the quantum many–body theory. Using the Dirac’s 

Notation3 and the electronic Hamiltonian defined in the equation (10), the ground state energy 

is given by: 

 

𝐸 = ⟨Φ|𝑇̂ + 𝑉̂𝑒𝑥𝑡 + 𝑈𝑒𝑒|Φ⟩ = ⟨Φ|𝑇̂|Φ⟩ + ⟨Φ|𝑉̂𝑒𝑥𝑡|Φ⟩ + ⟨Φ|𝑈𝑒𝑒|Φ⟩     (11) 

 

Where |Φ⟩ is the N-electron ground state wave function, 𝑇̂ is the kinetic energy operator, 𝑉̂𝑒𝑥𝑡 is 

a generalized form of the term 𝑉̂𝑒𝑛 (electron–nucleus interaction defined in equation (10)), that 

corresponds to the interaction with fields that are external to the electronic system, and 𝑈𝑒𝑒 is 

the electron-electron interaction. These terms can be written as follows: 

 

𝑇 = ⟨Φ|𝑇̂|Φ⟩ = ⟨Φ| ∑
−ℏ2

2𝑚 ∇𝒊
2𝑁

𝑖=1 |Φ⟩ =
−ℏ2

2𝑚
∑⟨Φ|∇𝒊

2|Φ⟩

𝑁

𝑖=1

 

𝑇 =
−ℏ2

2𝑚
∫[∇𝒊

2𝜌1(𝒓, 𝒓′)]𝒓=𝒓′𝑑𝒓     (12) 

𝑉𝑒𝑥𝑡 = ⟨Φ|𝑉̂𝑒𝑥𝑡|Φ⟩ = ⟨Φ| ∑ 𝑣𝑒𝑥𝑡(𝒓𝑖)
𝑁
𝑖=1 |Φ⟩ = ∑⟨Φ|𝑣𝑒𝑥𝑡(𝒓𝑖)|Φ⟩

𝑁

𝑖=1

= ∫[𝑣𝑒𝑥𝑡(𝒓)𝜌1(𝒓, 𝒓′)]𝒓=𝒓′𝑑𝒓 

𝑉𝑒𝑥𝑡 = ∫ 𝑣𝑒𝑥𝑡(𝒓)𝜌(𝒓)𝑑𝒓     (13) 

                                                

2 Excited electronic states allow the study of phenomena like electronic transport, optical properties and photo-
dissociation. 
3 For more detailed information on Dirac’s Notation and Second Quantization, please remit to Appendix A. 
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𝑈𝑒𝑒 = ⟨Φ|𝑈𝑒𝑒|Φ⟩ = ⟨Φ| ∑ ∑
1
2

1

|𝒓𝑖 − 𝒓𝑗|
𝑁
𝑗≠𝑖

𝑁
𝑖=1 |Φ⟩ =

1

2
∑ ∑ ⟨Φ|

1

|𝒓𝑖 − 𝒓𝑗|
|Φ⟩

𝑁

𝑗≠𝑖

𝑁

𝑖=1

 

𝑈𝑒𝑒 =
1

2
∬

𝜌(𝒓)𝜌(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′     (14) 

 

Introducing the two-body direct correlation, 𝑔(𝒓, 𝒓′), as: 

 

𝜌2(𝒓, 𝒓′) = 𝜌(𝒓)𝜌(𝒓′)𝑔(𝒓, 𝒓′)     (15) 

 

We have that for an uncorrelated system 𝑔(𝒓, 𝒓′) = 1, therefore the electron-electron 

interaction can be re-written as: 

 

𝑈𝑒𝑒 =
1

2
∬

𝜌2(𝒓, 𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′     (16) 

 

In this term the two-body interaction is reduced to a classical electrostatic interaction. This is 

known as the Hartree Approximation. 

 

In order to build a more realistic model, the effect of the repulsion force produced by two 

electrons that are located at positions r and r’, respectively, and are close to each other, has to 

be taken into account. This can be solved adding a term that includes both exchange and 

correlation effects: 

 

𝑈𝑒𝑒 =
1

2
∬

𝜌2(𝒓, 𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′ +

1

2
∬

𝜌2(𝒓, 𝒓′)

|𝒓 − 𝒓′|
 [𝑔(𝒓, 𝒓′) − 1]𝑑𝒓𝑑𝒓′     (17) 

 

In the Hartree approximation the electrons are treated as distinguishable particles. However, 

electrons are indistinguishable spin-1/2 fermions, so, their many-body wave function has to be 

anti-symmetric in order to obey Pauli’s Exclusion Principle, but Hartree’s approximation doesn’t 

take this into account, as a consequence, the model that describes the electronic part of the 

atomic system is incomplete. 
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Pauli’s Exclusion Principle can be easily introduced by proposing an anti-symmetrized many-

body wave function in the form of a Slater determinant. Once we have done this, we are in the 

Hartree-Fock scheme: 

Φ𝐻𝐹(𝒙1, 𝒙2, … , 𝒙𝑁) =
1

√𝑁!
[

𝜑1(1) 𝜑2(1) ⋯ 𝜑𝑁(1)

𝜑1(2) 𝜑2(2) ⋯ 𝜑𝑁(2)
⋮

𝜑1(𝑁)
⋮

𝜑2(𝑁)
⋱ ⋮
⋯ 𝜑𝑁(𝑁)

]     (18) 

 

Where 𝜑𝑖(𝑗) is the i-th one-electron spin orbital, which is composed of spatial and spin 

components that are condensed in a single variable (𝒙𝑗 = (𝒓𝑗, 𝜎𝑗) and is the result of Hartree’s 

assumption that the many-electron wave function can be expressed as a product of one-electron 

orbitals: 

Φ(𝒓) = ∏ 𝜑𝑖(𝒓𝑖)

𝑁

𝑖=1

     (19) 

 

Once we have set the wave function, we are able to determine the Hartree-Fock energy by 

calculating the one-electron contribution: 

 

𝐸(1) = ∫ Φ∗(𝒓) (∑ ℎ̂𝑖(𝑖)

𝑁

𝑖=1

) Φ(𝒓)𝑑𝒓 = ∑ 𝐸𝑖𝑖

𝑁

𝑖=1

     (20) 

𝑤ℎ𝑒𝑟𝑒: ℎ̂𝑖(𝑖) = −
ℏ2

2𝑚
∇𝒓𝑖

2 + 𝑣𝑒𝑥𝑡(𝑹, 𝒓𝑖)     (21) 

 

And the two-electron contribution to the energy: 

 

𝐸(2) = ∫ Φ∗(𝒓) (
1

2
∑ ∑ 𝑣̂2(𝑖, 𝑗)

𝑁

𝑗≠𝑖

𝑁

𝑖=1

) Φ(𝒓)𝑑𝒓 =
1

2
∑ ∑(𝐽𝑖𝑗 − 𝐾𝑖𝑗)

𝑁

𝑗≠𝑖

𝑁

𝑖=1

     (22) 

𝑤ℎ𝑒𝑟𝑒: 𝑣̂2(𝑖, 𝑗) =
1

|𝒓𝑖 − 𝒓𝑗
′|

     (23) 

 

Where the Coulomb and exchange integrals are defined as: 
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𝐽𝑖𝑗 = ∬ 𝜑∗(𝑖)𝜑∗(𝑗)𝑣̂2(𝑖, 𝑗)𝜑(𝑖)𝜑(𝑗)𝑑𝒙𝑖𝑑𝒙𝑗      (24) 

𝐾𝑖𝑗 = ∬ 𝜑∗(𝑖)𝜑∗(𝑗)𝑣̂2(𝑖, 𝑗)𝜑(𝑗)𝜑(𝑖)𝑑𝒙𝑖𝑑𝒙𝑗      (25) 

Finally the Hartree-Fock energy is: 

 

𝐸𝐻𝐹 = 𝐸(1) + 𝐸(2) = ∑ 𝐸𝑖𝑖

𝑁

𝑖=1

+
1

2
∑ ∑(𝐽𝑖𝑗 − 𝐾𝑖𝑗)

𝑁

𝑗≠𝑖

𝑁

𝑖=1

     (26) 

 

The Hartree-Fock approximation, or Self-Consistent Field (SCF), is described in the following 

algorithm: 

 

 
Figure 1.7. Self-Consistent Field (SCF) algorithm. Adapted from [50]. 
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Even when the determinant satisfies Pauli’s Exclusion Principle, the wave function doesn’t contain 

the correlation term that results from the interaction between electrons, or Coulomb interaction, 

but this can be solved by constructing the wave function Φ𝐻𝐹(𝒙1, 𝒙2, … , 𝒙𝑁) with more than one 

determinant in what is known as a Configuration Interaction (CI) scheme. 

 

 

THOMAS – FERMI THEORY 

 

By the same time when Hartree and Fock proposed their approach, L.H. Thomas and Enrico 

Fermi proposed a method for calculating the energy of an electronic system that depended only 

on the electronic density. 

 

Fermi said that in the ground state of a gas of N free electrons, |Φ0⟩, the particle states with 

wave number up to 𝑘𝐹 were occupied and lied within the Fermi sphere, as showed in figure 1.8. 

The zero temperature expectation value of the particle number operator in the momentum space 

is determined as: 

 

𝑛𝒑,𝜎 = ⟨Φ0|𝑎𝒑,𝜎
† 𝑎𝒑,𝜎|Φ0⟩ = {

1, |𝒑| ≤ 𝑘𝐹

0, |𝒑| > 𝑘𝐹
     (27) 

 

 

Figure 1.8. The Fermi sphere with an infinitesimal volume of 𝑑𝒑3 in the real space, or (
2𝜋

𝐿
)

3

 in the K-space. 
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The total particle number can be calculated as: 

 

𝑁 = ∑ 𝑛𝒑,𝜎

𝒑,𝜎

= 2 ∑ 1

𝒑≤𝑘𝐹

= 2 ∫
𝑑𝒑3

(2𝜋 𝐿⁄ )3

𝑘𝐹

0

=
𝐿3

4𝜋3
∫ 𝑑𝒑3

𝑘𝐹

0

=
𝑉

4𝜋3

4𝜋𝑘𝐹
3

3
=

𝑉𝑘𝐹
3

3𝜋2
     (28) 

 

Then, the mean particle density is: 

 

𝜌 =
𝑁

𝑉
=

𝑘𝐹
3

3𝜋2
     (29) 

 

Where 𝑘𝐹 is the Fermi wave vector, the Fermi momentum is defined as  𝑝𝐹 = ℏ𝑘𝐹, and the Fermi 

energy, that is the energy of the top-most filled level in the ground state of the N free-electron 

system, is defined as  𝜖𝐹 =
(ℏ𝑘𝐹)2

2𝑚
. Now, the mean particle density 𝜌 in terms of the Fermi energy 

is: 

 

𝜌 =
1

3𝜋2
(

2𝑚

ℏ
)

3
2⁄

𝜖𝐹
3

2⁄      (30) 

 

Fermi proposed an expression for the total electronic energy for an inhomogeneous system from 

the definition of kinetic, exchange and correlation contributions in the homogeneous gas: 

 

𝐸𝛼[𝜌] = ∫ 𝜌(𝒓)𝜀𝛼[𝜌(𝒓)]𝑑𝒓     (31) 

 

Where 𝜀𝛼 contains the kinetic, exchange and correlation energy density contributions, calculated 

locally at every point in space. This was the first attempt to obtain a Local Density 

Approximation (LDA) to the electronic problem. 

 

As a remark, in the original Thomas-Fermi method, they neglected the exchange and correlation 

between electrons. The local approximation for exchange was introduced later by Dirac. 

Therefore, with the inclusion of that term the theory is now called Thomas-Fermi-Dirac. Then, the 

energy functional for an electron in an external potential 𝑣𝑒𝑥𝑡(𝒓) is defined as: 
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𝐸𝑇𝐹𝐷[𝜌] = 𝐶1 ∫ 𝜌(𝒓)
5

3⁄ 𝑑𝒓 + ∫ 𝜌(𝒓)𝑣𝑒𝑥𝑡(𝒓)𝑑𝒓 +
1

2
∬

𝜌(𝒓)𝜌(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′ + 𝐶2 ∫ 𝜌(𝒓)

4
3⁄ 𝑑𝒓

+ 𝐸𝐶[𝜌]     (32) 

 

The first term is the LDA kinetic energy with  𝐶1 =
3

10
(3𝜋2)

2
3⁄ = 2.871𝑎. 𝑢.; the fourth term is 

the local exchange with  𝐶2 = −
3

4
(

3

𝜋
)

1
3⁄

= 0.739𝑎. 𝑢.; and the last term is the correlation: 

 

𝐸𝐶[𝜌] = −0.056 ∫
𝜌(𝒓)

0.079 + 𝜌(𝒓)
1

3⁄
𝑑𝒓     (33) 

 

It is easy to realize that equation (32) only depends on the electronic density, that’s the reason 

why it is said that this is a functional of the density. Nevertheless, the formal mathematical 

framework for this type of functional was developed by Hohenberg and Kohn more than thirty 

years after Thomas, Fermi and Dirac developed their idea of a density functional. 

 

HOHENBERG – KOHN THEOREMS 

 

The approach of Hohenberg and Kohn was to formulate the density functional theory as an 

exact theory of many-body systems. Their theorems can be applied to any system of interacting 

particles in an external potential  𝑣𝑒𝑥𝑡(𝒓). They also established a set of relations that are 

represented as: 

 

 
Figure 1.9. Schematic representation of Hohenberg-Kohn Theorem. Adapted from [51]. 
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Where the thin arrows represent the usual solution of the Schrödinger equation, where the 

potential 𝑣𝑒𝑥𝑡(𝒓) determines all the states of the system  Φ𝑖({𝒓}), including the ground state 

Φ0(𝒓) and the density ground state  𝜌0(𝒓). The Hohenberg-Kohn theorems complete the cycle. 

The following two theorems [51] are the foundation of the Density Functional Theory: 

 

Theorem I: For any system of interacting particles in an external potential  𝑣𝑒𝑥𝑡(𝒓), the 

potential 𝑣𝑒𝑥𝑡(𝒓) is determined uniquely, except for a constant, by the ground 

state particle density  𝜌0(𝒓). 

 

Proof: 

Suppose that we have two different external potentials 𝑣𝑒𝑥𝑡
1 (𝒓) and  𝑣𝑒𝑥𝑡

2 (𝒓), 

which differ by more than a constant. Each potential leads to a different 

Hamiltonian 𝐻̂1 and  𝐻̂2, which have different ground state wave function Φ1 

and  Φ2, which are hypothesized to have the same ground state density  𝜌0(𝒓). 

Since Φ2 is not the ground state of  𝐻̂1, we have: 

 

𝐸1 = ⟨Φ1|𝐻̂1|Φ1⟩ < ⟨Φ2|𝐻̂1|Φ2⟩ 

 

⟨Φ2|𝐻̂1|Φ2⟩ can be rewritten as: 

 

⟨Φ2|𝐻̂1|Φ2⟩ = ⟨Φ2|𝐻̂2|Φ2⟩ + ⟨Φ2|𝐻̂1 − 𝐻̂2|Φ2⟩

= 𝐸2 + ∫ 𝜌0(𝒓)[𝑣𝑒𝑥𝑡
1 (𝒓) − 𝑣𝑒𝑥𝑡

2 (𝒓)]𝑑𝒓 

 

Replacing: 

 

𝐸1 < 𝐸2 + ∫ 𝜌0(𝒓)[𝑣𝑒𝑥𝑡
1 (𝒓) − 𝑣𝑒𝑥𝑡

2 (𝒓)]𝑑𝒓 

 

Making the same procedure for 𝐸2 we have: 
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𝐸2 < 𝐸1 + ∫ 𝜌0(𝒓)[𝑣𝑒𝑥𝑡
2 (𝒓) − 𝑣𝑒𝑥𝑡

1 (𝒓)]𝑑𝒓

= 𝐸1 − ∫ 𝜌0(𝒓)[𝑣𝑒𝑥𝑡
1 (𝒓) − 𝑣𝑒𝑥𝑡

2 (𝒓)]𝑑𝒓 

 

Adding the two inequalities: 

 

𝐸1 + 𝐸2 < 𝐸1 + 𝐸2 

 

This result is absurd, therefore is not possible that two different potentials can 

lead to the same ground density. 

 

Corollary I: Since the Hamiltonian is thus fully determined, except for a 

constant shift of the energy, it follows that the many-body wave functions for all 

states (ground and excited) are determined. Therefore, all the properties of the 

system are completely determined given only the ground state density  𝜌0(𝒓). 

 

Theorem II: An universal functional for the energy 𝐸[𝜌] in terms of the density 𝜌(𝒓) can be 

defined, valid for any external potential  𝑣𝑒𝑥𝑡(𝒓). For any particular  𝑣𝑒𝑥𝑡(𝒓), 

the exact ground state energy of the system is the global minimum value of this 

functional and the density 𝜌(𝒓) that minimizes the functional is the exact ground 

state  𝜌0(𝒓). 

 

Proof: 

Since all properties of the system are uniquely determined if 𝜌(𝒓) is specified, 

then the total energy functional can be expressed as: 

 

𝐸𝐻𝐾[𝜌] = 𝑇[𝜌] + 𝑈𝑒𝑒[𝜌] + ∫ 𝜌(𝒓)𝑣𝑒𝑥𝑡(𝒓)𝑑𝒓 = 𝐹𝐻𝐾[𝜌] + ∫ 𝜌(𝒓)𝑣𝑒𝑥𝑡(𝒓)𝑑𝒓 

 

Let’s consider a system with ground state density  𝜌0
1(𝒓), which corresponds to the 

potential  𝑣𝑒𝑥𝑡
1 (𝒓). The Hohenberg-Kohn functional (𝐹𝐻𝐾[𝜌]) is equal to the 
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expectation value of the Hamiltonian in the unique ground state which has wave 

function  Φ1. 

 

𝐸1 = ⟨Φ1|𝐻̂1|Φ1⟩ 

 

Now, let’s consider a different density 𝜌0
2(𝒓) which corresponds to a different 

wave function  Φ2. Then: 

 

𝐸2 = ⟨Φ2|𝐻̂1|Φ2⟩ > ⟨Φ1|𝐻̂1|Φ1⟩ = 𝐸1 

 

Therefore the energy evaluated by 𝐹𝐻𝐾[𝜌] is greater for any 𝜌(𝒓) different 

from the ground state density  𝜌0(𝒓). 

Corollary II: The functional 𝐸[𝜌] alone is sufficient to determine the exact 

ground state energy and density. In general, excited states of the electrons must 

be determined by other means. 

 

In conclusion, 𝐹𝐻𝐾[𝜌] is an universal functional which does not depend explicitly on the external 

potential, it depends only on the electronic density, and by knowing it we can know the solution 

of the full many-body Schrödinger equation. 

 

 

KOHN – SHAM METHOD 

 

Nowadays, Density Functional Theory is one of the most used techniques for electronic structure 

calculations. This is because of the practical approach proposed by Kohn and Sham [52]. 

 

One good strategy, in order to solve the electronic problem, is to separate the different energy 

contributions. For instance, as discussed before, the separation of the Hartree term from the 

exchange and correlation contributions. Therefore, the electron-electron interaction is divided 

into three terms: Hartree, exchange, and correlation. The Hartree term is just the classical 

electrostatic energy, which is exact. The exchange term can be calculated exactly inside the 

Hartree-Fock scheme, however, due to computational reasons most of the time it is an 
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approximate term. Finally, the correlation term, the smallest contribution to the energy, contains 

all of the unknowns about the many body problem. 

 

The Kohn-Sham method reuses the idea of separation of elements: they replace the original 

many-body problem with a different auxiliary system that is easier to solve. The key of their 

idea is to assume that the ground state density of the interacting system is equal to the density 

of some chosen non-interacting system. As a consequence, a new set of particle-independent 

equations is defined for the non-interacting system and once they are solved we can find the 

ground state density and energy of the original system, with an error margin reduced to the 

approximation used in the exchange-correlation functional. 

 

At this point, the main problem is with the kinetic energy term  𝑇 = ⟨Φ|𝑇̂|Φ⟩, because its explicit 

expression in terms of the electronic density is unknown. In the Thomas-Fermi scheme, the kinetic 

energy is calculated locally, but this approach introduces an error into the model, given the non-

local nature of this operator. 

 

Kohn and Sham realized that a system of non-interacting electrons is exactly described by an 

anti-symmetrized wave function of the Slater determinant type, made of one-electron orbitals. 

Then, the ground state density matrix 𝜌1(𝒓, 𝒓′) is given by: 

 

𝜌1(𝒓, 𝒓′) = ∑ 𝑓𝑖𝜑𝑖(𝒓)𝜑𝑖
∗(𝒓′)

∞

𝑖=1

     (34) 

 

Where 𝜑𝑖(𝒓) are the one-electron orbitals and 𝑓𝑖 are the occupation numbers corresponding to 

those orbitals. Then, the exact expression of the kinetic energy of non-interacting electrons can 

be set as: 

 

𝑇 = −
ℏ2

2𝑚
∑ 𝑓𝑖⟨𝜑𝑖|∇

2|𝜑𝑖⟩

∞

𝑖=1

     (35) 

 

Nevertheless, this expression is not the exact kinetic energy of the interacting system. The missing 

part is due to fact that the true many-body wave function is not a Slater determinant, therefore 
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there is a correlation contribution to the kinetic energy that is not taken into account and must be 

included in the correlation term. 

 

For now on, the equations defined here are in the equivalent non-interacting scheme. The non-

interacting system made of N electrons and density 𝜌(𝒓) is described by the Hamiltonian: 

 

ℋ̂𝑅 = ∑ [−
ℏ2

2𝑚
∇𝑖

2 + 𝑣𝑅 (𝒓𝑖)]

𝑁

𝑖=1

     (36) 

 

Where 𝑣𝑅 (𝒓) is the reference potential in which the ground state density of ℋ̂𝑅 equals  𝜌(𝒓). If 

that's so, the equivalence between the ground state energy and the energy of the interacting 

system is ensured by Hohenberg-Kohn's Theorem. 

 

Given the nature of the electrons, the occupation number of each orbital is 2, where the total 

number of electrons is 𝑁 = 𝑁↑ + 𝑁↓ and 𝑁𝑆 = 𝑁
2⁄  is the number of orbitals with double 

occupancy. With these considerations, the density reads: 

 

𝜌(𝒓) = ∑ ∑|𝜑𝑖
𝜎(𝒓)|2

𝑁𝑆

𝑖=1𝜎

     (37) 

 

 

The kinetic energy term is: 

 

𝑇𝑅[𝜌] = −
ℏ2

2𝑚
∑ ∑⟨𝜑𝑖

𝜎|∇2|𝜑𝑖
𝜎⟩

𝑁𝑆

𝑖=1𝜎

= −
ℏ2

2𝑚
∑ ∑|∇2𝜑𝑖

𝜎(𝒓)|2

𝑁𝑆

𝑖=1𝜎

     (38) 

 

And the Hartree term can be expressed as: 

 

𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝜌] =
1

2
∬

𝜌(𝒓)𝜌(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′     (39) 
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Now, the universal density functional can be rewritten as: 

 

𝐹[𝜌] = 𝑇𝑅[𝜌] + 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝜌] + 𝐸̃𝑋𝐶[𝜌] 

𝐹[𝜌] = −
ℏ2

2𝑚
∑ ∑|∇2𝜑𝑖

𝜎(𝒓)|2

𝑁𝑆

𝑖=1𝜎

+
1

2
∬

𝜌(𝒓)𝜌(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′ + 𝐸̃𝑋𝐶[𝜌]     (40) 

 

The term 𝐸̃𝑋𝐶[𝜌] does not only contain the exchange and correlation energy defined in equation 

17, but also takes into account the kinetic correlation ignored in  𝑇𝑅[𝜌]. Finally, we get the total 

energy functional: 

 

𝐸𝑣[𝜌] = 𝐸𝐾𝑆[𝜌] = 𝐹[𝜌] + ∫ 𝜌(𝒓)𝑣𝑒𝑥𝑡(𝒓)𝑑𝒓

= 𝑇𝑅[𝜌] + 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝜌] + 𝐸̃𝑋𝐶[𝜌] + ∫ 𝜌(𝒓)𝑣𝑒𝑥𝑡(𝒓)𝑑𝒓     (41) 

 

 

If the universal 𝐸̃𝑋𝐶[𝜌] was known, then the exact ground state energy and density of the many-

body problem could be found by solving the Kohn-Sham equations for a non-interacting system. 

 

 

EXCHANGE AND CORRELATION IN DFT 

 

In order to solve the electronic problem, the strategy used was to separate the total energy into 

a number of different contributions: 

 

𝐸[𝜌] = 𝑇𝑅 + 𝑣𝑒𝑥𝑡 + 𝐸𝐻 + 𝐸𝑋 + 𝐸̃𝐶      (42) 

 

In order of appearance there are: non-interacting kinetic energy, the interaction of the electrons 

with an external field, the classical electron-electron interaction, the exchange energy, and the 

coupling constant averaged correlation term. 
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This correlation energy is the central query. For instance, the exchange energy, as defined in 

equation 25 is very accurate: this calculation demands a lot of computer resources and usually 

several approximations are used in order to estimate its value, even when some error is 

introduced in the calculation. However, there isn’t an expression for the correlation energy with a 

level of accuracy comparable to that of the exchange energy. One way to address this issue is 

to consider the exchange and the correlation energy contributions, not independently, but as a 

sum of both terms  𝐸𝑋 + 𝐸̃𝐶 . 

 

The idea is now to find an approximation for both exchange and correlation, where they can be 

treated in a similar way. As seen before, one of the starting points for these approaches is the 

homogeneous gas and some approximations have been developed so far [53] [54] [55]. 

 

 

Local Density Approximation – LDA  

 

Local Density Approximation (LDA) was first formally introduced by Kohn and Sham [52], 

however the idea was used by Thomas, Fermi and Dirac in their theory. 

 

Basically LDA approach is to consider the inhomogeneous electronic system as a local 

homogeneous electron gas in which the exchange-correlation hole for this system is very 

accurate. The local energy is calculated at every point r with electronic density  𝜌(𝒓). Therefore, 

the exchange-correlation energy can be written in terms of the average energy 

density  𝜖𝑋̃𝐶
𝐿𝐷𝐴[𝜌]: 

 

𝐸̃𝑋𝐶
𝐿𝐷𝐴[𝜌] = ∫ 𝜌(𝒓)𝜖𝑋̃𝐶

𝐿𝐷𝐴[𝜌(𝒓)]𝑑𝒓     (43) 

 

With 

 

𝜖𝑋̃𝐶
𝐿𝐷𝐴[𝜌(𝒓)] =

1

2
∫

𝜌̃𝑋𝐶
𝐿𝐷𝐴(𝒓, 𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′     (44) 

 

Where 𝜌̃𝑋𝐶
𝐿𝐷𝐴(𝒓, 𝒓′) is the exchange-correlation hole and is defined as: 
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𝜌̃𝑋𝐶
𝐿𝐷𝐴(𝒓, 𝒓′) = 𝜌(𝒓){𝑔̃ℎ[|𝒓 − 𝒓′|, 𝜌(𝒓) ] − 1}     (45) 

 

With 𝑔̃ℎ[|𝒓 − 𝒓′|, 𝜌(𝒓) ] as the pair correlation function of the homogeneous gas. In practice the 

exchange-correlation energy is calculated according to equation 43 but using 𝜖𝑋̃𝐶
𝐿𝐷𝐴[𝜌] =

𝜖𝑋
𝐿𝐷𝐴[𝜌] + 𝜖𝐶̃

𝐿𝐷𝐴[𝜌] as illustrated in table 1.3. 

 

Table 1.3. Expressions used to calculate the exchange-correlation energy in LDA. Adapted from [56]. 

[57] [58] [59] 

 
 

As a final remark, the main limitations of LDA are [56]: 

 

- The inhomogeneities in the electronic density are not taken into account. 

- The self-interaction present in the Hartree term is not completely cancelled by the LDA 

exchange-correlation term. 

- LDA does not include non-local exchange and correlation effects. 

- Strong local correlation effects cannot be reproduced. 

 

 

Generalized Gradient Approximation – GGA  

 

The Generalized Gradient Approximations (GGAs) were the way to try to solve LDA’s issues, 

especially regarding the inhomogeneities in the electronic densities. These approximations 
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propose an expansion of the density in terms of the gradient and other higher order derivatives, 

this expansion leads to the following exchange-correlation energy: 

 

𝐸𝑋𝐶[𝜌] = ∫ 𝜌(𝒓)𝜀𝑋𝐶[𝜌(𝒓)]𝐹𝑋𝐶[𝜌(𝒓), ∇𝜌(𝒓), ∇2𝜌(𝒓), … ] 𝑑𝒓     (46) 

 

Where 𝐹𝑋𝐶 is a factor that modifies the LDA expression, according to the variation of the 

density in the vicinity of one specific point. As a consequence, the energy is not calculated 

locally, but semi-locally. However, this approach is deficient when non-local effects have to be 

taken into account. 

 

The second order gradient expansion of the exchange energy correspond to an expression of 

the type: 

 

𝐸𝑋𝐶[𝜌] = ∫ 𝐴𝑋𝐶[𝜌(𝒓)]𝜌(𝒓)
4

3⁄ 𝑑𝒓 + ∫
𝐶𝑋𝐶[𝜌(𝒓)]|∇𝜌(𝒓)|2

𝜌(𝒓)
4

3⁄
𝑑𝒓     (47) 

 

Nevertheless, each term of the gradient expansion must be addressed very carefully, because 

some of them tend to violate at least one of the exact conditions required for the exchange and 

correlation holes, such as the normalization condition, the negativity of the exchange density or 

the self-interaction cancellation [56]. With these limitations in mind, there are two approaches to 

obtain GGAs: 

 

- The first one is to obtain the GGA via theoretical methods, where the coefficients are set up in 

such a way that the exact results of certain known parameters can be reproduced, like sum 

rules and long-range decay. 

- The second method is to fit the parameters in order to reproduce a set of experimental 

results. Typical parameters are formation energies, thermochemical data and structural 

parameters. 

 

Several gradient expansions have been proposed, mostly between the 80’s and mid 90’s. Three 

of the most used are summarized in table 1.4. 
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Table 1.4. Summary of several GGA functionals. Adapted from [56]. 

[60] [61] [62] [63] 

 
 

The development of several GGAs marked an improvement over LDA in different aspects such 

as binding energies, atomic energies, bond lengths and angles. However, there are some other 

features that need to be enhanced [56]: 

 

- LDA describes better semiconductors than GGA. 

- The improvement of GGA over LDA for 4d – 5d transition metals and the gap energy is 

either not clear or not substantial in several cases. 

- GGA does not satisfy some known asymptotic behaviors, e. g. isolated atoms. 

- GGA functionals still do not compensate satisfactorily the self-interaction present in the 

Hartree term. 

 

 

PSEUDOPOTENTIALS AND BASIS SETS 

 

Since the early stages of quantum mechanics, the solution of the many-body quantum problem is 

the main mathematical problem in electronic structure theory. The two main methodologies 
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proposed to address this problem, Hartree-Fock and Kohn-Sham, provide a tractable way to 

deal with this problem, but they are approximates schemes. 

 

The solution either of the Hartree-Fock or Kohn-Sham equations, regardless their approximated 

nature, requires two important choices [56]: 

 

- How to treat the electron-nuclear interaction. 

- Find a mathematical way to represent the single particle orbitals. 

 

Pseudopotentials 

The electron-nuclear interaction is given by the Coulomb potential defined as: 

 

𝑣𝑒𝑥𝑡(𝒓) = −𝑒2 ∑ ∑
𝑍𝐼

|𝑹𝐼 − 𝒓𝑖|

𝑁

𝑖=1

𝑃

𝐼=1

     (48) 

 

However, and as a manner of speak, there’s exist a distinction between three different classes 

of electrons4: 

 

Core electrons: they are tightly bound to the nuclei and are not involved in chemical bonding. 

Also they can be treated as frozen orbitals. 

Valence electrons: they are extended and participate actively in chemical bonding. 

Semi-core electrons: usually, they do not contribute directly to chemical bonding, due to their 

localized nature. However, they are close enough in energy to the valence states to feel the 

presence of the environment, therefore they cannot be treated as frozen orbitals. 

 

Since the core electrons are not fundamental for the description of the chemical bonding, it is 

possible to replace the charge of the atomic nuclei, which is treated point-like, with an effective 

nucleus charge of: 

𝑍𝑣 = 𝑍 − 𝑍𝑐𝑜𝑟𝑒      (49) 

                                                

4 All electrons are the same, but this language abuse is used to indicate single-particle electronic states rather 
than electrons themselves.  
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Where 𝑍𝑐𝑜𝑟𝑒 is the charge associated to the core electrons. This effective core potential, or 

pseudopotential, represents the nucleus with its core electrons and it reduces significantly the 

number of degrees of freedom of the electron gas because the number of electrons treated 

explicitly is smaller, thus the number of required electronic states and the size of the basis set is 

also reduced. 

 

When the valence wave functions inside the core region can be neglected, these can be 

replaced with a smooth, nodeless pseudo-wave function as shown in figure 1.10: 

 

 
Figure 1.10. Schematic illustration of all-electron (solid lines) and pseudoelectron (dashed lines) potentials and 

their corresponding wave functions. The radius at which all-electron and pseudoelectron values match is 

designated rc. Taken from [64]. 

 

The pseudopotentials have to be constructed very carefully in order to reproduce accurately the 

bonding properties of the all-electron potential, but maintaining the nodeless shape inside the 

core radius  𝑟𝑠, and the construction is described in figure 1.11. 
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Figure 1.11. Flow chart describing the construction of an ionic pseudopotential for an atom. Taken from [64].  

 

Finally, the most used pseudopotentials are non-conserving [65] [66] [67] [68] [69] and ultra-

soft [70]. 

 

 

Basis Sets 

 

In order to solve the electronic problem in practice, it is necessary to find a mathematical 

representation for the one-electron orbitals. One possibility is to represent them in real space 

using a three-dimensional grid and then solve the partial differential equations using finite 

differences. 

 

Since the beginning of quantum mechanics, several basis sets have been developed for the 

Hilbert space based on the general characteristics and specific features of the system under 

study. Nowadays, the representation of the Kohn-Sham orbitals can be classified into four 

groups [56]: 
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- Extended basis sets: they are delocalized basis functions, either centered at the nuclear 

position or independent of them. Their most important feature is that they cover the whole 

space, therefore they are mostly used for condensed phases like solids and liquids. 

- Localized basis sets: as the name says, they are localized mainly at the atomic positions, but 

they can be centered in bonds. They are mostly used for molecular systems. 

- Mixed basis sets: they combine features from the extended and localized basis sets. However, 

their weakest point is the amount of technical issues when implemented. 

- Augmented basis sets: they are atomic like wave functions that augment and extended or 

localized basis set in spherical regions around the nuclei. The main feature is their high level of 

accuracy, but, from the technical point of view, they are much more complicated to implement. 

 

In this work we will be dealing mainly with a basis set of the extended type, i.e. plane waves. 
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Chapter 2 
 
S T U D Y  C A S E :  S O L I D  O X Y G E N  A T  H I G H  P R E S S U R E  

 

STATE OF THE ART 
 

Oxygen is a very interesting object of study: for instance, among common diatomic molecules 

(H2, N2, O2, CO, F2, etc.), oxygen is the only element that can carry a magnetic moment [1]. 

Aside from its abundance in our Universe, its importance for many fundamental biological 

functions, or its role in the absorption of solar radiation inside Earth’s atmosphere, oxygen 

exhibits a unique combination of characteristics that make it a physical object of great interest 

for the scientific community.  Nowadays, only molecular phases of solid oxygen are known via 

experimental data, even at the highest pressures currently attainable in hydrostatic compression 

experiments. Nevertheless, inside the atmospheres of giant planets inside and outside our solar 

system, non-molecular oxygen could be much more abundant than the molecular phases. This 

hypothesis has motivated several theoretical and experimental studies aiming to get a better 

understanding of oxygen under extreme conditions, so that we can have a better comprehension 

of the processes that occur in planetary interiors. 

 

Up to this date, six solid phases of oxygen have been established unambiguously: half of them 

(,  and ) exist under equilibrium vapor pressure, and the other three (,  and ) are 

obtained in the high pressure regime. Thanks to the diamond anvil cell technique [2], a new set 

of experimental studies of solid oxygen were performed in a pressure range of up to 130GPa 

[3] and temperatures up to 650K. As a result of those studies, a P-T diagram for solid oxygen 

that gathers most of their results and which is widely accepted is shown in figure 2.1.   
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Figure 2.1. Phase diagram of solid oxygen. Taken from [1]. 

 

Phases of  solid oxygen in equilibrium with vapor  

 

As mentioned, there exist three crystal structures for solid oxygen under equilibrium vapor 

pressure. These phases were confirmed by neutron diffraction [4], X-Ray diffraction [5] and 

Raman spectroscopy [6] in studies developed mostly by the middle of the twentieth century. 

 

The  phase of oxygen forms at 1 atm, it is stable a very low temperature and shows an anti-

ferromagnetic ordering when the temperature is below 24K [7]. This phase has a monoclinic 

base-centered structure of symmetry C2/m with 2 molecules per unit cell and the lattice 

parameters are a=5.403Å, b=3.429Å, c=5.086Å, and =132.53º. When the temperature is 

increased up to 44K a new transformation of the structure of solid oxygen is carried out, 

reaching to the -phase. -oxygen is a non-magnetic element which has a rhombohedral lattice 

of symmetry R3m [8], its lattice parameters are: a=3.307Å and c=11.256Å. 

 

Finally, the -phase emerges when -oxygen transforms at 55K. Oxygen in this phase is 

paramagnetic and it has an eight molecule cubic cell with an orientationally disordered structure 

of the space group Pm3n. This phase is equivalent to the -N2 structure, with a=6.83Å. The 

structures of these three phases are shown in figure 2.2. 
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 a) b-i) b-ii) c) 

Figure 2.2. Structure of solid oxygen at a) -phase; -phase in b-i) rhombohedral axes and b-ii) monoclinic 

axes; c) -phase, where circles represent the orientational disorder of the molecules. Taken from [1]. 

 

High-pressure phases of  solid oxygen 

 

According to figure 2.1, oxygen transformations below 5 or 6 GPa appear mostly as the result 

of a variation in temperature. From this point on, the subsequent phases of this element are 

strongly related to the pressure that it is submitted.  

 

The transformation at low temperature takes place from the -oxygen to the anti-ferromagnetic 

-phase at approximately 6GPa [9] [10] [11]. This phase was discovered by Nicol et al. [12] 

through a high-pressure Raman study, and they found what is called “orange” O2 or -oxygen. 

The orthorhombic structure of this phase was determined by X-ray studies at room temperature 

[9]: -phase belongs to the space group Fmmm, with lattice parameters a=4.2151Å, 

b=2.9567Å, and c=6.6897Å.  

 

 
Figure 2.3. Structure of -oxygen. Taken from [1]. 
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In the same work by Nicol et al. [12] another oxygen phase was described: the -phase. This 

phase appeared at 10GPa and 300K and it exhibited a visual change of the sample color from 

light orange to dark red: this type of change is a particularity of solid oxygen.  

 

Several studies have been carried out in order to define the structure of the -phase: optical 

[13] [14] and X-Ray powder diffraction studies [15] [16] [17] have demonstrated that the -

phase retains a layered structure with parallel alignment of molecules that is typical for all 

known oxygen structures except for -oxygen. A first attempt to establish the -phase structure, 

was proposed by Johnson et al. [18] who suggested a base-centered A2/m monoclinic unit cell 

made of eight molecules with the following lattice parameters: a=3.642Å, b=5.491Å, 

c=7.705Å, and =116.2º. However, they were not able to determine the atomic positional and 

thermal parameters of the crystal structure, but according to experimental data a possible 

arrangement of molecules is shown in figure 4 with the separation between nearest neighbors as 

follows: 

 

𝑙1 =
1

8
√𝑏2 + 4𝑐2 + 4𝑏𝑐 cos 𝛽 ;          𝑙2 =

1

8
√9𝑏2 + 4𝑐2 − 12𝑏𝑐 cos 𝛽 ;          𝑙3 =

𝑏

2
 

 

 

Figure 2.4. A possible arrangement of molecules at the bc face of the A2/m unit cell of -O2. Taken from [1]. 

 

Later on, Gorelli et al. [19] suggested that -oxygen is not an O2 molecule, but a cluster of 

molecules. This assumption was confirmed by X-Ray diffraction [20] [21]: -oxygen is an 

arrangement of four O2 molecules that form a monoclinic C2/m structure. The -phase has been 

widely studied using different DFT functionals and it has been demonstrated that for pressures 
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above 30GPa, DFT methods have a very good agreement with experimental results [22]. For 

instance, Fujihisha et al. [21] proposed a structural model of -O2 as shown in figure 5: 

 

 

 a) b) 

Figure 2.5. Proposed structural model of -O2 at 11.4 GPa viewed along a) the c and b) the b axes. Taken 

from [21]. 

 

The lattice parameters were defined as a=8.1410.002Å, b=5.7470.00Å, c=3.7730.001Å, 

and =117.070.01º, therefore its volume is 157.180.04Å3. The atomic Wyckoff positions 

(O1, O2 and O3) are defined as follows:  

 

- O1: (0.0290.001, 0.2660.001, 0.1770.001) 

- O2: (0.2470.001, 0, 0.1770.001) 

- O3: (0.1900.001, 0, -0.1770.001) 

 

By connecting the nearest intermolecular distance d1=2.34Å (solid orange bars in figure 2.5), a 

cluster made up of 4 molecules emerges. This distance is significantly shorter when it is compared 

with the intercluster distance, d2=2.34Å (dashed lines in figure 2.5), therefore the arrangement 

can be interpreted as an O8 cluster, which is consistent with the results with theoretical and 

optical studies [19] [23] [24] [25]. 

 

A more recent study [26] has proposed a new phase diagram for solid oxygen, where the single 

-phase should be replaced with two phases 1-O2 and 2-O2: the first one is a local singlet spin 
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1 liquid, while the second one is a regular, Peierls band insulator – separated by a first order 

phase transition near 20 GPa.  

 

 

Figure 2.6. Proposed new phase diagram of oxygen. Taken from [26]. 

 

A room temperature X-Ray study revealed that the -phase remains stable up to 96 GPa, when 

it suffers another transformation and becomes metallic in the -phase [15]. This transition, from 

insulator to a metallic phase is unique, but to date remains unexplained. The lack of information 

of the atomic positions inside the unit cell in the  phase has made that the - phase transition is 

still a matter of discussion. But this phase is not only metallic: a theoretical study predicted that 

at 0.6K and 100GPa, the solid oxygen turns into a superconductor [27], and this result was later 

confirmed experimentally [3]. 

 

The scenario for even higher pressures is also intriguing, given the uncertainty regarding the 

question if the pressure applied to solid oxygen will lead to a molecular dissociation or further 

association: theoretical studies now suggest that even in the terapascal (TPa) regime oxygen 

remains molecular [28], while other diatomic molecules have suffered a molecular dissociation at 

much lower pressures [29] [30] [31] [32] [33]. Regarding the experimental findings mentioned 

before, until now, the crystal structure of -oxygen is still undetermined: theoretical studies have 

proposed several candidates such as: 

 

- C2mm [34]  

- I41/acd [35] 

- 63/mmc-4, C2/m-2, C2/m-8 and R3m [28]. The R3m structure also exhibits a superconductor 

behavior at 1.8 TPa and 0.6 – 2.1K.  
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- C2/c and C2/m [27] [36]. This last structure shows a good agreement with the results of X-

Ray diffraction experiments [3] [37]. 

 

This was the starting point for the present study: we extrapolated what might be a suitable 

density for solid oxygen structures in a range of pressure starting from 350 GPa going up to 

3500 GPa.  Then, we performed a structural search looking for post--oxygen phases, in 

particular non-molecular. At the time when we started our work we were unaware of the fact 

that other theoretical studies had already predicted non-molecular phases to appear only 

above 2000 GPa [28], however, our pressures of interest do not overlap entirely with those in 

the mentioned study and they can still shed some light about the nature of the molecular oxygen 

bonding at high pressures. 

 

METHODOLOGY 
 

With the results reported in several theoretical and experimental studies, we first estimated the 

initial densities that our samples should have in order to generate initial pressures that were 

near 350 GPa and higher, up to 3500 GPa. With this information triclinic structures were 

randomly generated, which had up to four atoms per unit cell. We chose a set of cell lengths 

and angles generated randomly and later rescaled them with the estimated volume at the 

target pressure [38], but in order to avoid needle-like or other very distorted shapes, the crystal 

lattice was generated by initially selecting three random numbers between 0.5 and 1.5 as the 

“lengths” of the cell-vectors (at this stage we haven´t assigned units to these lengths1) and three 

random cell angles between 40º and 140º, before scaling the size of this cell-shape to a 

physically meaningful value.  

 

We generated a thousand samples for each pressure, where each sample started with a 

different random configuration and was later relaxed until it reached a local minimum inside the 

free-energy landscape. It has been shown several times that by using this method, the stable 

structures, which are the ones with the lowest enthalpy, can be found and characterized [28] 

[29] [39] [40] [41] [42] [43] [44] [45]. 

                                                

1 The unit of length will be evident as soon as we scale the randomly generated cell, since its final volume will 
coincide with a pre-established target volume in bohr3. 
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For each of the structures generated randomly, we performed density functional electronic 

structure calculations using the pw.x code from the Quantum ESPRESSO package [46]. We 

calculated both energy and forces on the atoms, then the atomic positions and cell parameters 

were slightly displaced following a direction determined by the forces and the stresses acting on 

the system. These displacements occurred several times, until a situation where the forces acting 

on the atoms were very close to zero was reached, meaning that the structure was at 

equilibrium. Finally we compared the structures in order to find the ones with the lowest enthalpy 

and construct an equation of state of oxygen at high pressure, piece by piece, showing only the 

stable structures in their respective regions of stability. 

 

 

TECHNICAL DETAILS 

 

For the calculations we used the Perdew-Burke-Ernzerhof (PBE) generalized gradient (GGA) 

exchange-correlation functional [47], with ultra-soft pseudo-potentials2 and the Brillouin-Zone 

integrations were approximated using the method of Monkhorst and Pack [48]. 

 

Before starting, we performed some energy convergence tests in order to determine the optimal 

k-point grid and the plane-wave kinetic energy cutoff. Considering the highest pressure that we 

reached in this study, both an O2 and an O4 structure at 3500GPa were used as a reference for 

the energy and k-point convergence tests, because these configurations have the smallest 

volumes, which in turn become the biggest in the reciprocal space. Therefore, by sampling 

correctly these structures the same criteria can be extended safely to the structures at lower 

pressure. The convergence plots for both parameters are shown in figures 2.7 and 2.8. Due to 

the accuracy of the methods involved we are interested in differences in energy that are higher 

than 5meV, keeping this in mind we concluded that it was better to use a k-point grid of 8x8x8 

and a plane-wave kinetic energy cutoff of 60Ry. 

 

                                                

2 We used the pseudopotentials O.pbe-rrkjus.UPF from the Quantum ESPRESSO pseudopotential data base: 
http://www.quantum-espresso.org/pseudopotentials 

http://www.quantum-espresso.org/pseudopotentials
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a) 

 

b) 

Figure 2.7. Energy convergence for an O2 structure at 3500GPa. Varying a) k-points grid and b) plane wave 

kinetic cutoff. 
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a) 

 

b) 

Figure 2.8. Energy convergence for an O4 structure at 3500GPa. Varying a) k-points grid and b) plane wave 

kinetic cutoff. 
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We performed a calculation for each system generating a thousand of samples at each 

pressure included in this study. Now, given the stochastic approach of the structural search 

method being used, we first run a loose calculation in order to obtain a relaxed cell closer to the 

final one. Once we found this intermediate structure, we performed a second more accurate 

relaxation according to the results of the energy convergence test shown before. Thus, we 

generated two input files with the following parameters: 

 

Table 2.1. Parameters used in the Quantum ESPRESSO input files for oxygen structural search. 
 

Parameter First calculation Second calculation 

ecutwfc 25 60 

conv_thr 5D-7 1D-10 

mixing_beta 0.48D0 0.6D0 

trust_radius_ini 2D-1 5D-2 

trust_radius_max 6D-1 5D-1 

trust_radius_min 1D-8 1D-10 

cell_factor 3.2 1.8 

press_conv_thr 0.5 1.0 

k_points 4 4 4 8 8 8 

 

RESULTS 
 

Molecular Solid Oxygen 

 

Every set of a thousand samples converged into a reduced number of local minima, and 

according to the high number of repetitions observed we can say with confidence that there are 

no other energy minima available in each energy landscape studied. However, it can be seen 

that the reported minima are always slightly less than one thousand due to the fact that some 

starting configurations did not performed well during the relaxation and the DFT code crashed. 

Since we are performing a structural search for pressures that are higher than zero, our 

comparison between structures is not done with the total energy of the systems, but with their 

enthalpy. The behavior of the enthalpy at different pressures for the O2 and O4 molecules is 

shown in figures 2.9 and 2.10, and the amount of structures that converged into a local minima 

are in table 2.2 and 2.3. 
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Table 2.2. O2 structures that converged into a local minima. 

 

Pressure 
[TPa] 

Lowest 
Enthalpy 

Other 
local 

minima 
 

Pressure 
[TPa] 

Lowest 
Enthalpy 

Other 
local 

minima 
 

Pressure 
[TPa] 

Lowest 
Enthalpy 

Other 
local 

minima 

0.35 220 630  0.40 478 465  0.45 451 469 

0.50 465 469  0.55 121 786  0.60 143 744 

0.65 219 685  0.70 388 487  0.80 156 565 

0.90 186 620  1.00 145 669  1.10 162 575 

1.20 164 642  1.40 184 539  1.60 141 554 

1.80 130 551  2.00 160 520  2.20 158 610 

2.40 138 560  2.60 82 627  2.80 109 602 

3.00 139 545  3.20 141 582  3.50 142 558 

 

 

Figure 2.9. Enthalpy variation for O2 at pressures from 0.35 to 3.5 TPa. For each pressure, the circle size is 

proportional to the number of initial structures that converged to the enthalpy at the center of the circle. 
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Table 2.3. O4 structures that converged into a local minima. 

 

Pressure 
[TPa] 

Lowest 
Enthalpy 

Other 
local 

minima 
 

Pressure 
[TPa] 

Lowest 
Enthalpy 

Other 
local 

minima 
 

Pressure 
[TPa] 

Lowest 
Enthalpy 

Other 
local 

minima 

0.50 153 739  0.70 122 793  0.90 117 757 

1.10 32 862  1.30 28 846  1.50 104 741 

1.70 88 793  1.90 121 720  2.10 107 690 

2.30 153 592  2.50 37 726  2.70 35 638 

2.90 181 493  3.10 138 538  3.30 166 534 

3.50 137 552         

 

 

 

Figure 2.10. Enthalpy variation for O4 at pressures from 0.5 to 3.5 TPa. For each pressure, the circle size is 

proportional to the number of initial structures that converged to the enthalpy at the center of the circle. 
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Once the global enthalpy was determined, we selected the best crystal structure, i.e. the one 

with the lowest enthalpy among all, at each pressure studied. However, the final primitive cells 

were difficult to identify; therefore, we used the package FINDSYM [49] from the ISOTROPY 

Software Suite in order to find conventional cell equivalents, with higher symmetries that made 

further analysis easier. We found three different symmetry groups for O2: triclinic (P-1), 

monoclinic (C2/m) and orthorhombic (Cmcm); for O4 we found orthorhombic (Cmma, Pnma and 

Cmcm) and monoclinic (C2/m and P2/c). Cell parameters for both systems are detailed in table 

2.4 and 2.5, for O2 and O4. The equivalent structures for O2 and O4, are shown in figure 2.11 

and 2.12, respectively. Refer to the end of this chapter for the conclusions on these findings. 

 

Table 2.4. Cell parameters for the best structures found for O2 at pressures from 0.35 to 3.5 TPa. 

 

Pressure 
[TPa] 

Space 
Group 

Lattice Parameters 
[a.u.; ª] 

Atomic Coordinates 
(Fractional) 

0.35 P-1 
a=3.6555 b=3.6681 c=5.5635 

=108.875 =90.889 =118.922 

O1 -0.0725 -0.1403 -0.2132 
Wyckoff letter: i 

0.40 P-1 
a=3.6042 b=3.6168 c=5.4961 

=108.774 =91.007 =118.839 

O1 0.0732 0.1409 0.2146 
Wyckoff letter: i 

0.45 C2/m 
a=7.1722 b=3.6901 c=4.1597 

==90.000 =95.534 

O1 0.1061 0.0000 0.2163 
Wyckoff letter: i 

0.50 C2/m 
a=7.0833 b=3.6413 c=4.1262 

==90.000 =95.326 

O1 -0.1060 0.0000 0.2183 
Wyckoff letter: i 

0.55 Cmcm 
a=6.3708 b=4.2501 c=3.7139 

===90.000 

O1 0.0000 -0.1849 0.0000 
Wyckoff letter: c 

0.60 Cmcm 
a=6.3088 b=4.1897 c=3.7007 

===90.000 

O1 0.0000 -0.1860 0.0000 
Wyckoff letter: c 

0.65 Cmcm 
a=6.2522 b=4.1333 c=3.6890 

===90.000 

O1 0.0000 -0.1871 0.0000 
Wyckoff letter: c 

0.70 Cmcm 
a=6.1999 b=4.0817 c=3.6774 

===90.000 

O1 0.0000 -0.1881 0.0000 
Wyckoff letter: c 

0.80 Cmcm 
a=6.1058 b=3.9935 c=3.6548 

===90.000 

O1 0.0000 -0.1897 0.0000 
Wyckoff letter: c 

0.90 Cmcm 
a=6.0222 b=3.9148 c=3.6337 

===90.000 

O1 0.0000 -0.1914 0.0000 
Wyckoff letter: c 

1.00 Cmcm 
a=5.9465 b=3.8463 c=3.6118 

===90.000 

O1 0.0000 0.1929 0.0000 
Wyckoff letter: c 

1.10 Cmcm 
a=5.8789 b=3.7903 c=3.5908 

===90.000 

O1 0.0000 -0.1941 0.0000 
Wyckoff letter: c 
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Table 2.4. Cell parameters for the best structures found for O2 at pressures from 0.35 to 3.5 TPa. (Cont.) 

 

Pressure 
[TPa] 

Space 
Group 

Lattice Parameters 
[a.u.; ª] 

Atomic Coordinates 
(Fractional) 

1.20 Cmcm 
a=5.8162 b=3.7376 c=3.5697 

===90.000 

O1 0.0000 0.1954 0.0000 
Wyckoff letter: c 

1.40 Cmcm 
a=5.7061 b=3.6507 c=3.5301 

===90.000 

O1 0.0000 0.1975 0.0000 
Wyckoff letter: c 

1.60 Cmcm 
a=5.6108 b=3.5767 c=3.4944 

===90.000 

O1 0.0000 -0.1995 0.0000 
Wyckoff letter: c 

1.80 Cmcm 
a=5.5271 b=3.5147 c=3.4603 

===90.000 

O1 0.0000 -0.2013 0.0000 
Wyckoff letter: c 

2.00 Cmcm 
a=5.4526 b=3.4608 c=3.4287 

===90.000 

O1 0.0000 -0.2030 0.0000 
Wyckoff letter: c 

2.20 Cmcm 
a=5.3851 b=3.4140 c=3.3986 

===90.000 

O1 0.0000 -0.2046 0.0000 
Wyckoff letter: c 

2.40 Cmcm 
a=5.3239 b=3.3719 c=3.3705 

===90.000 

O1 0.0000 -0.2060 0.0000 
Wyckoff letter: c 

2.60 Cmcm 
a=5.2674 b=3.3339 c=3.3442 

===90.000 

O1 0.0000 -0.2073 0.0000 
Wyckoff letter: c 

2.80 Cmcm 
a=5.2155 b=3.2994 c=3.3139 

===90.000 

O1 0.0000 -0.2087 0.0000 
Wyckoff letter: c 

3.00 Cmcm 
a=5.1673 b=3.275 c=3.2958 

===90.000 

O1 0.0000 -0.2099 0.0000 
Wyckoff letter: c 

3.20 Cmcm 
a=5.1224 b=3.2382 c=3.2736 

===90.000 

O1 0.0000 -0.2110 0.0000 
Wyckoff letter: c 

3.50 Cmcm 
a=5.0602 b=3.1981 c=3.2423 

===90.000 

O1 0.0000 0.2127 0.0000 
Wyckoff letter: c 

 

Table 2.5. Cell parameters for the best structures found for O4 at pressures from 0.5 to 3.5 TPa. 

 

Pressure 
[TPa] 

Space 
Group 

Lattice Parameters 
[a.u.; ª] 

Atomic Coordinates 
(Fractional) 

0.50 Cmma 
a=3.9766 b=9.9741 c=5.3771 

===90.000 

O1 0.0000 -0.3584 -0.2435 
Wyckoff letter: m 

0.70 Cmma 
a=3.7942 b=9.6729 c=5.2284 

===90.000 

O1 0.0000 -0.3600 -0.2470 
Wyckoff letter: m 

0.90 Cmma 
a=9.4446 b=3.6895 c=5.0773 

===90.000 

O1 0.3888 0.0000 0.2464 
Wyckoff letter: n 

1.10 Cmma 
a=3.5950 b=9.2593 c=4.9696 

===90.000 

O1 0.0000 -0.3621 0.2475 
Wyckoff letter: m 
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Table 2.5. Cell parameters for the best structures found for O4 at pressures from 0.5 to 3.5 TPa. (Cont.) 

 

Pressure 
[TPa] 

Space 
Group 

Lattice Parameters 
[a.u.; ª] 

Atomic Coordinates 
(Fractional) 

1.30 Cmma 
a=3.5205 b=9.1041 c=4.8735 

===90.000 

O1 0.0000 -0.1371 -0.2485 
Wyckoff letter: m 

1.50 Cmcm 
a=5.6570 b=3.6146 c=3.5119 

===90.000 

O1 0.0000 -0.1983 0.0000 
Wyckoff letter: c 

1.70 Cmcm 
a=5.5678 b=3.5466 c=3.4772 

===90.000 

O1 0.0000 -0.2001 0.0000 
Wyckoff letter: c 

1.90 Cmcm 
a=5.4894 b=3.4879 c=3.4447 

===90.000 

O1 0.0000 -0.2021 0.0000 
Wyckoff letter: c 

2.10 Cmcm 
a=5.4186 b=3.4376 c=3.4138 

===90.000 

O1 0.0000 0.2037 0.0000 
Wyckoff letter: c 

2.30 Cmcm 
a=5.3545 b=3.3930 c=3.3849 

===90.000 

O1 0.0000 0.2052 0.0000 
Wyckoff letter: c 

2.50 Cmcm 
a=5.2959 b=3.3530 c=3.3576 

===90.000 

O1 0.0000 0.2067 0.0000 
Wyckoff letter: c 

2.70 Cmcm 
a=5.2419 b=3.3168 c=3.3320 

===90.000 

O1 0.0000 0.2080 0.0000 
Wyckoff letter: c 

2.90 Cmcm 
a=5.1919 b=3.2837 c=3.3078 

===90.000 

O1 0.0000 0.2093 0.0000 
Wyckoff letter: c 

3.10 Cmcm 
a=5.1454 b=3.2531 c=3.2849 

===90.000 

O1 0.0000 0.2105 0.0000 
Wyckoff letter: c 

3.30 Cmcm 
a=5.1020 b=3.2249 c=3.2633 

===90.000 

O1 0.0000 -0.2116 0.0000 
Wyckoff letter: c 

3.50 Cmcm 
a=5.0622 b=3.1977 c=3.2423 

===90.000 

O1 0.0000 0.2128 0.0000 
Wyckoff letter: c 

 

 
0.35 TPa 

 
0.40 TPa 

 
0.45 TPa 

Figure 2.11. Best structures for O2 at pressures from 0.35 to 3.5 TPa. 
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0.50 TPa 

 
0.55 TPa 

 
0.60 TPa 

 
0.65 TPa 

 
0.70 TPa 

 
0.80 TPa 

 
0.90 TPa 

 
1.00 TPa 

 
1.10 TPa 

Figure 2.11. Best structures for O2 at pressures from 0.35 to 3.5 TPa. (Cont.) 
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1.20 TPa 

 
1.40 TPa 

 
1.60 TPa 

 
1.80 TPa 

 
2.00 TPa 

 
2.20 TPa 

 
2.40 TPa 

 
2.60 TPa 

 
2.80 TPa 

Figure 2.11. Best structures for O2 at pressures from 0.35 to 3.5 TPa. (Cont.) 
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3.00 TPa 

 
3.20 TPa 

 
3.50 TPa 

Figure 2.11. Best structures for O2 at pressures from 0.35 to 3.5 TPa. (Cont.) 

 

 
0.50 TPa 

 
0.70 TPa 

 
0.90 TPa 

 
0.50 TPa 

 
0.70 TPa 

 
0.90 TPa 

Figure 2.12. Best structures for O4 at pressures from 0.5 to 3.5 TPa. 
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1.10 TPa 
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1.50 TPa 

 
1.70 TPa 

 
1.90 TPa 

 
2.10 TPa 

 
2.30 TPa 

 
2.50 TPa 

 
2.70 TPa 

Figure 2.12. Best structures for O4 at pressures from 0.5 to 3.5 TPa. (Cont.) 
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2.90 TPa 

 
3.10 TPa 

 
3.30 TPa 

 

 
3.50 TPa 

 

Figure 2.12. Best structures for O4 at pressures from 0.5 to 3.5 TPa. (Cont.) 

 

With the results obtained we found that as the pressure applied on the system increases, the 

unit-cell volume decreases but each time the reduction of the volume becomes more difficult, as 

expected. This evolution is shown in figure 2.13. 
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a) 

 
b) 

Figure 2.13. Volume evolution while pressure increases. a) O2 system. b) O4 system. 

 

As a consequence of the constant fall off of the volume, we observed that distances between 

first and second neighbors also decrease with pressure, as shown in figure 2.14. 
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a) 

 

b) 

Figure 2.14. Evolution of the first (blue), second (orange) and third (green) closest oxygen distances, while 

pressure increases. a) O2 system structures: P-1 (triangles), C2/m (squares) and Cmcm (circles). b) O4 system 

structures: Cmma (rhombus) and Cmcm (circles). 
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Monoatomic Oxygen (Special Case) 

 

While other diatomic molecules dissociate at pressures below the terapascal regime, we have 

shown that solid oxygen remains molecular. In fact, a layered monoatomic crystalline phase for 

oxygen has been predicted to occur only above 9 TPa [28], while other chalcogen elements 

(elements in group 16 of the periodic table) all take a monoatomic rhombohedral -Po structure 

after being compressed: Polonium forms its  structure at zero pressure [50], Tellurium at 11GPa 

[51], Selenium at 60GPa [52] and Sulfur at 153 GPa [53]. When further compression is applied 

on Se and Te, a bcc structure is formed after their -Po-type structure [52] [54] [55]. Given that 

oxygen exhibits several different structures [28], such as chain-like I41/acd at 2 TPa, a Cmcm 

zigzag structure at 3 TPa, and finally a monoatomic Fmmm structure at 9.3TPa, we intended to 

complete the picture of oxygen as a chalcogen by making an structural search for monoatomic 

oxygen up to 8TPa, and then adding a comparison between those structures that we found and 

the -Po, bcc and fcc.  

 

For this study we used a slightly different approach in order to make our findings comparable 

with the results reported in ref. [28]. We used Perdew-Burke-Ernzerhof (PBE) generalized 

gradient (GGA) exchange-correlation functional, a k-point grid of 20x20x20 due to the very 

small cells involved and a plane wave kinetic cutoff energy of 60Ry, also, for the most stable 

structures from the random search, we performed very well converged calculations using hard 

Norm-Conserving pseudopotentials3 [56] [57] and nonlinear core corrected PAW, with the same 

exchange-correlation functional. 

 

The enthalpy values of the monoatomic structures analyzed from 1TPa to 8TPa, are detailed in 

table 2.6. The enthalpy differences of -Po, bcc, fcc and the most stable structures from the 

random search, respect to the Fmmm structure is shown in figure 2.15. We provide some 

interpretation of these results in the next section. 

 

 

 

                                                

3 We used the pseudopotentials O.pbe-mt.UPF and O.pbe-hgh.UPF from the Quantum ESPRESSO 
pseudopotential data base: http://www.quantum-espresso.org/pseudopotential  

http://www.quantum-espresso.org/pseudopotential
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Table 2.6. Enthalpy values for several monoatomic oxygen structures from 1TPa to 8TPa. 

 

P [TPa] 
Random Search 
Enthalpy [Ry] 

BCC 
Enthalpy [Ry] 

FCC 
Enthalpy [Ry] 

 - Po 
Enthalpy [Ry] 

Fmmm 
Enthalpy [Ry] 

1 -39.4635 -39.4263 -39.3892 -39.4193 -39.4635 

2 -38.2329 -38.1736 -38.1231 -38.1449 -38.2329 

3 -37.2158 -37.1407 -37.0745 -37.0925 -37.2158 

4 -36.3216 -36.2352 -36.1526 -36.1710 -36.3215 

5 -35.5109 -35.4176 -35.3180 -35.3398 -35.5122 

6 -34.7655 -34.6644 -34.5477 -34.5725 -34.7654 

7 -34.0669 -33.9602 -33.8282 -33.8550 -34.0669 

8 -33.4074 -33.2954 -33.1498 -33.1787 -33.4072 

 

 

 

Figure 2.15. Enthalpy difference for several monoatomic oxygen structures from 1TPa to 8 TPa. Fmmm 

structure is the reference. 
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DISCUSSION AND CONCLUSIONS 
 

Due to technical limitations, hydrostatic compression experiments can reach pressures up to 

300GPa, value that is close to the pressure in the Earth’s inner core. At that pressure regime, 

oxygen would keep its molecular form. Thanks to computational approaches, we can study any 

chemical systems at pressures that today are impossible to obtain in a laboratory; this limitless 

scenario was one of the motivations of this work and hence, we were able to probe the solid 

oxygen system under conditions that are more extreme than those reached so far in the lab. 

 

We were able to establish, with a good level of certainty, the crystal structures that an oxygen 

system should take for pressures up to 3.50 TPa. From our simulations we found that for 

pressures above 0.55 TPa for O2 and 1.5 TPa for O4, the most stable structure was the Cmcm 

which is kept up to 3.50 TPa. This dense Cmcm phase is made up of zigzag chains for both types 

of unit-cell, as shown in figure 2.16. 

 

  

  a)  b) 

Figure 2.16. Zigzag chains for a) O2 and b) O4. 

 

The zizgzag formation for the O2 unit-cell was first observed at 0.50 TPa, but at that pressure 

the bonds are not yet completely symmetric to one another, this behavior is consistent with the 

first and second nearest neighbors distances found for the O2 system, as shown in figure 2.14.a: 

at 0.50 TPa the first neighbor increased significantly, while the second decreased. We found 

that when pressure was increased to 0.55 TPa, the two shortest interatomic distances became 

symmetrical and the oxygen coordination went from one to two, therefore, the first neighbor 

and the second neighbor distances (blue and orange lines in Fig. 2.14.a respectively) converge 

at 0.55 TPa. A similar transition was found at 1.30 TPa for the O4 unit-cell, in both cases much 
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earlier than predicted by other studies [28]. The dramatic changes found for pressures below to 

1.50 TPa were also observed by Sun et al. [28], therefore more detailed studies around this 

pressure are necessary for a better understanding of the structural and physical changes that 

occur under those conditions.  

 

For both unit-cell sizes the stable structure at higher pressures is Cmcm, however for the O4 unit-

cell this symmetry group shows up at higher pressures than for the O2 unit-cell. Due to the 

smaller amount of degrees of freedom available to the O2 system, the only arrangement that it 

can achieve is the Cmcm at 0.55 TPa. The O4 unit cell instead, having more atoms available to 

explore possible configurations, remains with the Cmma structure, which seems to be more 

favorable energetically, until it reaches to 1.50 TPa. By analyzing the enthalpy per atom from 

0.354 to 1.50 TPa, the enthalpy for the O4 system is lower than for the O2 unit-cell, but from 

1TPa the enthalpy per atom of the O2 is better by a few hundredth electron-volts, as shown in 

figure 2.17. 

 

 

Figure 2.17. Enthalpy per atom of the most stables structures of O2 and O4 systems from 0.35 to 1.50 TPa. 

The symmetry groups are labeled as: Cmma (squares), P-1 (rhombus), C2-m (triangles), and Cmcm (circles). 

 

                                                

4 We performed some additional calculations for the O4 unit-cell, in order to establish the enthalpy of the 
systems for 0.35, 0.40 and 0.45 TPa. 
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According to the nearest neighbor distances, it is expected that for much higher pressures the 

coordination number of oxygen will increase, due to the observed fact that the difference in 

distances between first and second neighbors tend to decrease while pressure increases.  

Nevertheless, we found a quasi-layered structure for O2 at 1.20 TPa and at 1.50 TPa for O4, 

we say that it is quasi-layered in the sense that the oxygen atoms are connected with four 

neighbors forming layers but strictly speaking there are two bonds that are shorter than the 

other two and given the lack of symmetry for the four bonds the coordination number for 

oxygen remains as two like in the zig-zag chains. However, we expect that the symmetrization 

of the four bonds is achieved at pressures above the limit of our studies, i.e. above 3.5 TPa, and 

the resulting structure perhaps converges to the Fmmm structure reported above 9 TPa by Ref. 

[28].  

 

  

  a)  b) 

Figure 2.18. Layered structure for a) O2 and b) O4. 

 

Going forward we think that it is necessary to make more accurate calculations, i.e., with a hard 

norm-conserving pseudopotential or using PAW, in order to make new studies that can be used 

to establish similarities and possible differences with previous results in the TPa regime. 

 

We found for monoatomic oxygen that for pressures above 1TPa, the most stable structure is 

Fmmm. In fact, it is evident that for higher pressures the enthalpy difference increases for all the 

other structures analyzed. On the other hand, while for Te and Se the bcc structure was 

observed as a post--Po phase [52] [54] [55], in the case of oxygen the change still occurs for 

those same two phase although they are metastable, as shown in figure 2.15. We made some 

additional calculations in order to establish the pressure at which the transition from -Po to bcc 

takes place, and we found that it is slightly above of 0.9 TPa. Even when this pressure is much 
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higher than the ones determined for Te and Se, it is clear that oxygen follows that same trend 

and therefore at some level it has something in common with other chalcogen elements. 
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Chapter 3 
 
S T U D Y  C A S E :  C O P P E R  C L U S T E R S  I N  V A C U U M  

 

OVERVIEW ON CLUSTERS 
 

After atoms, clusters represent the most elemental building blocks in nature. Generally, clusters 

are aggregates of atoms and molecules which display intermediate properties between isolated 

atoms or molecules, and the bulk matter. They are characterized by their size and they can be 

classified in small, medium, and large clusters, as shown in table 3.1. 

 

Table 3.1 Classification of clusters according to size. N is the number of atoms, D is the diameter (for a cluster 

of sodium atoms) and FS is the fraction of surface atoms. Taken from [1]. 

 

 Small Medium Large 

N 102 102 – 104 104 

D/nm 1.9 1.9 – 8.6 8.6 

FS 0.86 0.86 – 0.19 0.19 

 

 

The quantity of atoms on the surface of a cluster is highly related to its properties; therefore, the 

surface chemistry is extremely important in a cluster. As the cluster’s size gets smaller, both the 

valence and the conduction bands change from a continuous density of states into a discretized 

set of energy levels. As a consequence, the properties of the cluster vary dramatically when its 

shape and size are modified.  

 

Due to their own intrinsic characteristics, clusters have become an interesting topic of research, 

not only for the wide range of particle sizes (from molecular to microcrystalline), but also for the 
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evolution of the geometric and electronic structures and how the physical and chemical 

properties are related to them. Of course, how large should a cluster be before its properties 

resemble those of the bulk element will depend on the property of interest being studied and 

the nature of the component atoms. Now, clusters can be made of identical particles, leading to 

homo-atomic or homo-molecular clusters, Aa, or be composed by two or more different species, 

obtaining hetero-atomic or hetero-molecular clusters, AaBb. The atomic species that can form 

clusters are most of the elements of the periodic table, and they can be subdivided as metal 

clusters, semiconductor clusters, ionic clusters, rare gas clusters, molecular clusters and cluster 

molecules [1]. Since we are dealing with copper clusters, we are going to focus in metallic 

clusters. 

 

 

TRANSITION METAL CLUSTERS 

 

Shell effects and magic numbers  

 

Copper is a transition metal with electronic configuration [Ar]3d10s1. Given that the d shell is 

filled with 10 electrons and the valence shell contains a single s electron, is normal to expect 

some similarities between copper clusters (or noble metal clusters, Cun, Agn and Aun, in general) 

and alkali metal clusters. For instance, Knight et al. [2] reported that for sodium clusters Nan (n = 

4 – 100), they found a spectra that shows well defined peaks at n = 8, 20, 34, 40, 58 and 92. 

On the other hand, Katakuse et al. [3] found the same behavior for positive copper clusters at n 

= 3, 9, 19, 21, 35, 41, 59, 92 and 139, and for negative copper clusters: n = 7, 17, 19, 33, 

39, 57, 91 and 137. Then, the shell-closing numbers (ns) for positive clusters (np = ns + 1) were 

ns = 2, 8, 18, 20, 34, 40, 58, 91 and 138, and for negative (nn = ns – 1) clusters were: ns = 8, 

18, 20, 34, 40, 58, 92 and 138. Going beyond the similarity between the transition and alkali 

metals, those numbers mean that clusters with these amounts of atoms are relatively more stable 

than the others, and they are known as magic numbers. In one of those special cases, one could 

reason that according to the Jellium model [1] eight free electrons completely fill the 1s and 1p 

energy states, thus forming a complete valence shell, therefore making Cu8 cluster very stable. 
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Clusters Band-Gap 

 

A consequence of still being in the quantum-size region is that metal clusters stay in a mesoscopic 

state between the atomic (non-metallic) and bulk (metallic) regimes. Also, metal clusters display 

a sizable HOMO1-LUMO2 band gap that is similar to that for semiconductors. This behavior is 

very significant for possible applications, i.e. doping semiconductors, as shown in figure 3.1. 

 

 

Figure 3.1. Schematic comparison between band gaps of different sizes of copper clusters (blue tones) and 

several semiconductors (orange bars). [4] 

 

                                                

1 Highest occupied molecular orbital 
2 Lowest unoccupied molecular orbital  
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In figure 3.1, for copper the Fermi level was calculated as 𝜀𝐹 =
−50.1𝑒𝑉

(𝑟𝑠 𝑎0⁄ )2
 [5], with rs = 1.41Å and 

a0 = 52.9Å, leading to 𝜀𝐹=-7.0519 eV. The band gap was calculated using the spherical 

Jellium model: 𝐸𝐺 = 𝜀𝐹 𝑁1 3⁄⁄  [1]. According to this expression, the HOMO-LUMO gap is 

proportional to 𝑁−1 3⁄ , so the gap gets smaller while the cluster size increases and eventually 

this separation will transform into the gap between the valence (called before HOMO) and the 

conduction (called before LUMO) bands. However, this trend is not monotonous due to electronic 

shell effects, for instance the gap difference between n=2 and n=8 is 2.07eV, while for n=8 

and n=16 (with a size twice larger) is only 0.73eV. 

 

Since we are dealing with clusters of size n20, the calculations made with a simple Jellium 

model have a good agreement with DFT, thus there is no need to use a correction due to 

anharmonicities observed in larger clusters [4].  

 

 

STATE OF THE ART 

 

Metallic clusters, especially clusters of coinage metals Cu, Ag and Au, play a central role in 

nanotechnology [6] [7] [8] and catalysis [9] [10] [11] [12], where catalyst must be very selective 

for certain chemical reactions. Noble metal clusters have shown this high selectivity, therefore, in 

order to improve the known catalysts and design new ones, it is important to know and 

understand their structural and electronic properties, which have been studied widely.  

 

As already mentioned, noble metal clusters are expected to exhibit certain similarities with 

alkali metal clusters, due to their closed d shell and the single s valence electron:  

 

- Cu: [Ar] 3d10 4s1 

- Ag: [Kr] 4d10 5s1 

- Au: [Xe] 5d10 6s1 

 

However, experimental studies [13] [14] [15] [16] have shown that the localized d electrons of 

the noble metals have also a major role in their geometrical and electronic structures. 
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Copper clusters are quite different from the others coinage metal clusters, because Cu’s Fermi 

level is very different from silver and gold, and can be expected that its catalytic behavior will 

be also different [17]. Neutral, anionic and cationic copper clusters, have been studied 

experimentally using several techniques such as Electron Spin Resonance [18], Photoelectron 

Spectra [19] [20] and Collision-Induced Dissociation [21] [22]. Theoretically, several studies 

have reported possible structures for copper clusters using a wide range of techniques, for 

instance Massobrio et al. [23] used the Car Parinello method within the Local Density 

Approximation of Density Functional Theory for Cun (n = 2, 3, 4, 6, 8, 10). Kabir et al. studied 

small clusters for n  9 using Full-Potential Muffin-Tin Orbitals [24] and Tight-Binding Molecular 

Dynamics [25]. Configuration Interaction was used by Akeby et al. [26] for Cu clusters anions of 

up to 10 atoms. Li et al. [27] examined neutral and anion clusters of copper, Cun (n = 3 – 11), 

using Real Space Pseudopotentials constructed within the Local Density Approximation. Finally, 

Böyükata and Belchior [28] performed Molecular Dynamics simulations via an empirical 

potential, to investigate geometries, growing patterns, structural stabilities, energetics and magic 

sizes of copper clusters, Cun (n = 2 – 45). 

 

Isomers 

 

Given the difference between clusters and bulk material, it is necessary to emphasize one last 

scenario. Let’s take a molecule and compare it with a cluster: a molecule has a definite 

composition and structure, while a cluster differ in both, due to this they can be composed of any 

number of atoms (or molecules). As a consequence, the most stable geometrical structure will 

depend on the number of atoms into it. Nevertheless, it is possible that for a given cluster, 

several stable local structures appear with a different spatial arrangement of atoms and 

bonding, that not necessarily share similar properties among them [29]. These structures are 

called isomers, and the number of them tends to increase with the cluster size. Therefore, 

properties beyond structure like: binding energy, relative stability, or bonding, also depend 

strongly on the number of atoms (or molecules) that constitute the cluster. 

 

For the amount of atoms that we studied in this work, the isomers and their characteristics are 

gathered in the following tables. 
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Table 3.2. Symmetry group of Cun clusters (n = 3 – 7) 

 

Cun Ref. [23] Ref. [25] Ref. [27] Ref. [28] 

n = 3 C2v 

 
C2v 

 
D3h 

 

Dh 

  

n = 4 D2h 

 
D2h 

 
D4h 

 
Td 

 

 

n = 5 Not reported 

C2v 

 
D3h 
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Table 3.2. Symmetry group of Cun clusters (n = 3 – 7). (Cont.) 

 

Cun Ref. [23] Ref. [25] Ref. [27] Ref. [28] 

n = 6 

 

C5v 

 

C2v 

 

D3h 

 

C5v 

 

C2v 

 

Oh 

 

 

n = 7 Not reported 

D5h 

C3v(I) 

C3v(II) 

 
 

 

 



Chapter 3 Study Case: Copper Clusters in Vacuum  

Page 81 

Table 3.3. Binding energy in [eV/atom] of Cun clusters (n = 3 – 7).  
 

Cun Ref. [23] Ref. [25] 
Ref. 

[27] 

Ref. 

[28] 

Ref. 

[21] 

Ref. 

[22] 

n = 3 
1.63 

C2v 
  

1.43 

C2v 

1.32 

D3h 

1.13 

Dh 
1.40 0.58 0.86 1.07 

n = 4 
2.09 

D2h 
  

2.00 

D2h 

1.73 

D4h 

1.46 

Td 
1.81 0.87 0.99 1.48 

n = 5 Not reported 
2.24 

C2v 

2.03 

D3h 
 1.96 1.06 1.11 1.56 

n = 6 
2.49 

C5v 

2.49 

C2v 

2.49 

D3h 

2.54 

C5v 

2.40 

C2v 

1.98 

Oh 
2.17 1.26 1.23 1.73 

n = 7 Not reported 
2.63 

D5h 

2.50 

C3v(I) 

2.30 

C3v(II) 
2.35 1.38 1.20 1.86 

METHODOLOGY 

 

To generate a cluster we first estimate the volume of a cubic box to enclose the cluster and then 

we insert copper atoms at positions generated randomly, fixing one atom at the center of the 

box and the rest around it. Then, that cubic box is placed inside a much larger unit-cell where 

periodic boundary conditions are imposed. This unit-cell must be large enough to consider the 

cluster as isolated, even when the software enforces periodic boundary conditions and replicates 

the unit-cell in all directions as a solid.  

 

We generated a thousand samples for each number of atoms N that composed the cluster and 

each sample started with a different configuration; atomic positions were later relaxed until the 

arrangement reached a local energy minima inside the free-energy landscape. We used the 

pw.x code from the Quantum ESPRESSO package [30] to perform density functional electronic 

structure calculations and ionic relaxations for each cluster generated randomly. The atomic 

positions were then displaced in the direction of the forces that acted on the system, until the 

structure was in equilibrium, which means that the forces were reduced to a value very close to 

zero.  

 

Lastly, we looked for the structure with the lowest energy among all in order to determine the 

most stable arrangement for each cluster. Nevertheless, given the possibility of finding several 

isomers of the same cluster, we compared all the structures in order to find abrupt energy 

changes that might indicate the presence of a new isomer. 
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TECHNICAL DETAILS 
 

For the calculations we used the Perdew-Burke-Ernzerhof (PBE) generalized gradient (GGA) 

exchange-correlation functional [31], with ultra-soft pseudo-potentials3 and the Brillouin-Zone 

integrations were approximated using the method of Monkhorst and Pack [32]. Given that we 

performed the calculation assuming the system as isolated, since we were dealing with clusters, 

we used the Makov-Payne correction to the total energy [33]. 

 

For this study case, at the beginning we performed three energy convergence tests in order to 

determine the following parameters: 

 

- K-point grid 

- Plane wave kinetic cutoff 

- Volume of the unit cell 

 

We used a three-atom cluster to make those calculations, because the volume occupied by it 

would be the smallest in the real space and therefore, in the reciprocal space it becomes the 

largest. It must be well sampled in order to obtain accurate data so that we can extend these 

parameters to the larger systems. The results of the three tests are plotted in figure 3.2. 

 

 

 

                                                

3 We used the pseudopotentials  Cu.pbe-n-van_ak.UPF from the Quantum ESPRESSO pseudopotential data 
base: http://www.quantum-espresso.org/pseudopotentials 

http://www.quantum-espresso.org/pseudopotentials
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a) 

 

b) 

 

c) 

Figure 3.2. Total energy convergence for a Cu3 cluster. Varying a) isotropic k-points grid, b) plane wave 

kinetic cutoff and c) cubic unit-cell edge length. 
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We are interested in finding isomers for different cluster configurations, so, we performed two 

calculations: the first one relaxes the starting random arrangement just enough to get close to 

the final atomic arrangement, and with this result we ran a second relaxation calculation which is 

more accurate. Therefore, guided by the results obtained with the convergence tests, we used a 

final calculation k-point grid of 4x4x4, a plane wave kinetic cutoff of 60Ry, and a cubic unit-cell 

of edge 30 a.u. The main parameters used for both calculations are detailed in table 3.4. 

 

Table 3.4. Input parameters used in Quantum ESPRESSO for the copper clusters’ structural search. 

 

Parameter First calculation Second calculation 

ecutwfc 25 60 

ecutrho 200 240 

conv_thr 5D-7 1D-10 

mixing_beta 0.48D0 0.55D0 

diago_david_ndim 8 16 

trust_radius_ini 2D-1 2D-2 

trust_radius_max 6D-1 2D-1 

trust_radius_min 1D-8 1D-10 

k_points 2 2 2 4 4 4 

 

 

RESULTS 
 

Each group of thousand samples converged into a few local energy minima, which correspond to 

isomers of the cluster. The total energy varies dramatically when an isomer is found, as shown in 

figure 3.3. 
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a) 

 

b) 

Figure 3.3. Energy evolution of: a) Cu3 (red line), b) Cu4 (blue line). For each size, the first region is the ground 

state structure and energies from region II onwards are associated to new isomers.  

 



Chapter 3 Study Case: Copper Clusters in Vacuum  

Page 86 

 

c) 

 

d) 

Figure 3.3. Energy evolution of: c) Cu5 (orange line), d) Cu6 (green line) and e) Cu7 (yellow line). For each size, 

the first region is the ground state structure and energies from region II onwards are associated to new isomers. 

(Cont.) 
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e) 

Figure 3.3. Energy evolution of: e) Cu7 (yellow line). For each size, the first region is the ground state structure 

and energies from region II onwards are associated to new isomers. (Cont.) 

 

 

As mentioned in the methodology section, a thousand samples were generated randomly for 

each cluster size. However, due to the type of system we are dealing with, several isomers can 

be formed and we needed to be sure that any given structure found was a real isomer. For 

each type of structure, that are the regions labeled as I, II, III, etc. on figure 3.3, the energy 

difference inside the regions is close to zero, producing almost flat lines and the lengths of these 

lines tell us the proportion of the total samples that were generated randomly and that 

converged into a particular type of structure. For cluster-sizes where more than one stable 

structure was found, we obtained a figure that looks like a staircase function, in which we are 

able to see the energy differences between the different isomers. For each energy region we 

selected the best cluster’s structure, which was the one with the lowest energy among all the 

samples inside that particular region. We found one isomer for Cu3 and Cu4 and three for Cu6. 

Those structures are shown in figure 3.4. 
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Cu3 – Ground State 

 
Cu3 –  1st Isomer 

 
Cu4 – Ground State 

 
Cu4 –  1st Isomer 

 
Cu5 – Ground State 

 
Cu6 – Ground State Cu6 – 1st Isomer 

 
Cu6 – 2nd Isomer 

 
Cu6 – 3rd Isomer 

 
Cu7 – Ground State 

Figure 3.4. Structures found for Cu3, Cu4, Cu5, Cu6 and Cu7. 

 

Finally, the binding energy per atom (BE) and the difference in binding energy per atoms (E) of 

the ground state structures and different isomers of copper clusters are calculated as follows: 

 

𝐵𝐸(𝑛) =
𝑛𝐸1 − 𝐸𝑛

𝑛
 

 

∆𝐸 = 𝐵𝐸(𝑛) − 𝐵𝐸̃(𝑛) 
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Where 𝐸1 is the energy of one copper atom, which value was -121.121669 Ry, 𝐸𝑛 is the total 

energy of the Cun cluster, and finally 𝐵𝐸(𝑛) and 𝐵𝐸̃(𝑛) are the binding energy of the ground 

state and subsequent isomers of the system, respectively. The calculated values are detailed in 

table 3.5. 

 

Table3.5. Binding energy (BE) and difference in binding energy (E) of ground state an isomers of Cun (n=3-7) 

 

 BE [eV/atom] E [eV/atom] 

Cu3 1.436 0.000 

 1.404 0.032 

Cu4 1.851 0.000 

 1.756 0.095 

Cu5 1.964 0.000 

Cu6 2.178 0.000 

 2.153 0.024 

 2.136 0.042 

 2.128 0.050 

Cu7 2.246 0.000 

 

DISCUSSION AND CONCLUSIONS 
 

Geometry of  ground state and isomers structures  

 

For the Cu3 cluster we found two structures: the most stable was a planar triangle as reported 

by all the references studied. Also we found and isomer which is not consistent with Kabir et al. 

[25] findings: they found a structure where two copper atoms are bonded to a central atom 

forming a straight line, while we found a similar structure, but the angle formed by those atoms 

is not 180º, but 124.116º. 
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In the case of Cu4 cluster, our calculations predicted a planar rhombus as the most stable 

structure for this configuration. Also, we found one isomer with the shape of an isosceles triangle 

with an atom connected to the vertex of the two equal edges. This result is consistent with the 

findings of references [23], [25] and [27]. The larger angle of the rhombus for our study was 

122.949ª, which is in good agreement with the 120º degrees reported by Kabir et al. [25] and 

the predicted by Calaminici et al. which was 123º [34]. 

 

For the Cu5 cluster, we found only the ground state structure, which is also the most stable 

structure reported by Kabir et al. [25] and Li et al. [27]. In our calculations, we found that the 

trigonal bi-pyramid reported as a ground state structure by Böyükata and Belchior and as an 

isomer by reference [25], was unstable and relaxed into the C2v structure. This behavior was 

also observed for the tetrahedron reported in references [25] and [28] for the Cu4, which 

relaxed into the planar rhombus in our study. 

 

In the case of Cu6 cluster, we found four different structures: the ground state structure and the 

first isomer were reported in the same sequence by Li et al. [27], but they did not report more 

isomers for this configuration. Massobrio et al. [23]  and Kabir et al. [25] agreed by proposing 

the capped trigonal pentagon as the most stable structure, while our calculations show that it is 

the second best structure. Furthermore, Massobrio et al. proposed and intermediate structure 

before the flat structure that is our ground state configuration, while Kabir et al. and Böyükata 

and Belchior [28] didn’t report any planar structure for this cluster. 

 

Finally, for the Cu7 cluster we found one structure which agrees again with the structure reported 

by Li et al. Our result differs with the ground state and isomers reported by references [25] and 

[28]. 

 

Binding energies 

 

Among all the structures found in our calculations, we now consider only the structures with the 

highest binding energy, which correspond to the ground state structure. As the cluster size 

increases, it was observed that the binding energy per atom also increases. In figure 3.5 we 

compared our results with several reports: theoretical works used Density Functional Theory with 
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Local Density Approximation [23], Tight Binding [25], Real Space Pseudopotentials constructed 

within Local Density Approximation [27] and Molecular Dynamics [28]. Experimentally, the 

binding energies of clusters were derived from Collision-Induced Dissociation [21] [22]. 

 

 

Figure 3.5. Comparison of binding energy per atom as a function of cluster size, among: our results using DF-

GGA (red), DF-LDA [23] (blue), TB [25] (green), Real Space Pseudopotential [27] (yellow), MD [28] (orange) 

and two CID experiments [21] [22] (dashed lines grey and violet). 

 

The experimental data obtained by Ingólfsson et al. [21] and Spasov et al. [22] was lower that 

our findings, as expected, given the tendency of the approximation used here to overestimate 

the binding energies. We found that our binding energies are very similar to the reported by Li 

et al. [27]. The same growing tendency was observed by Kabir et al. [25] but they also 

recognized that their energies are overestimated.  Binding energies reported by Böyükata and 

Belchior [28] are 1 eV below to the reported by us, this was expected due to instability of the 

structures that they reported as ground states and their tendency to relax into other structures 

when we performed relaxation calculations to those structures, as was mentioned before.  
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HOMO-LUMO Gap 

 

A way to determine the stability of the cluster is the highest occupied – lowest occupied 

molecular level (HOMO – LUMO) gap energy. The calculated HOMO – LUMO gap energies 

are plotted in figure 3.6.  

 

 

Figure 3.6. Evolution of the highest occupied – lowest occupied (HOMO – LUMO) gap energy as the cluster 

size increases. 

 

An odd – even alternation was observed and this is result of the electron pairing effect: odd 

(even) sized clusters have HOMO which is singly (doubly) occupied. Therefore even numbered 

Cun clusters show relatively higher energy. In our study we did not find particularly large HOMO 

– LUMO gap given the cluster sizes analyzed, but this behavior is expected for Cu2 and Cu8 due 

to electronic shell closing. DFT is not particularly accurate for determining energy band gaps. A 

more accurate approach will be required in the future in order to find more reliable values for 

the band gaps and discuss their possible alignments with a wide variety of semiconductors, which 

would make it possible to think about using Cu clusters in order to avoid fast recombination of e-

h pairs in semiconductors. 
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Closing Remarks 
 
 

 

We have shown with this work, that using ab-initio DFT methods with a random search algorithm 

is a very accessible, yet powerful way to address the crystal structure prediction problem. We 

used this conjunction of methods in two cases of different areas of physics: a molecular system 

submitted to a very high pressure, and a copper cluster system in vacuum. 

 

The random sampling approach required us to relax a large number of initial samples on both 

cases. One thousand samples were generated each time taking into account several constraints 

that depended on the specifics features of the studied system. Having that in mind, we were 

able to make random structures in a systematic way which included some restrictions in order to 

avoid generating non-physical structures. For instance, in the case of solid oxygen we avoided 

needle-like cell structures, by restricting the cell angles, and for copper clusters we placed the 

initial atomic positions in a pre-defined volume in order to concentrate the atoms at the center of 

the unit-cell, thus keeping the system isolated. We also took care of avoiding the random 

generation of overlapping atoms, which can cause the DFT calculation to crash. 

 

The large populations sizes (N=1000) that are required in order to have a proper sampling of 

the configurations space and the fact that the forces were calculated using DFT, imply that in 

principle these calculations tend to take a very long time for large systems; this is the reason 

why we are only advising the use of this tool in cases with a few degrees of freedom, where it is 

very effective. However, by dividing the relaxation procedure into two, we made a trade 

between computing time and accuracy: the first one is a loose calculation, where we wanted to 

reach quickly into a structure which is closer to the final one, while the second calculation is much 

more accurate, meaning that the computing time might increase, but by starting from a structure 

that is already relaxed, the computing resources are optimized. Thus, we obtained accurate 

final structures in a very reasonable time. 
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For systems in which it is very important to find the relative positions of atoms, this approach is 

ideal and it has two major advantages: the first one, is due to its simplicity, we showed that this 

methodology can be easily applied to different types of physical systems dealing with very 

diverse problems, therefore is expected that this method can and will make an impact in various 

branches of science, because it allows us to explore and characterize physical systems and 

compare directly with experimental results, as well as study those that are beyond of our 

experimental limits. The second advantage is that the available computer resources can be used 

in an efficient while still keeping a final good accuracy in our findings. From here we could 

proceed in two ways: we can work on much larger systems generating enormous databases that 

can be further analyzed by using data mining techniques, or we can keep dealing with small 

systems running the DFT calculations in our laptops, relatively fast, thanks to the methodology 

implemented here. 
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Appendix A 
 
D I R A C ’ S  N O T A T I O N  A N D  S E C O N D  Q U A N T I Z A T I O N  

 

In the Dirac’s bra-ket notation, a given many-body state function is represented by a state 

vector |Φ⟩, which real-state form can be obtained by projecting it onto the vector ⟨𝒓|, for 

instance: ⟨𝒓|Φ⟩ = Φ(𝒓). Therefore, the expectation value of an operator 𝐴̂ in a state |Φ⟩ is given 

by: 

 

⟨Φ|𝐴̂|Φ⟩ = ∫ Φ∗(𝒓)𝐴̂Φ(𝒓)𝑑𝒓  (𝐴. 1) 

 

Where the integral is a 3N-dimensional one in the electronic variables r. 

 

So far, we only have experimental evidence that in nature there are just two types of particles: 

bosons and fermions, which states are completely symmetric and anti-symmetric, respectively. Their 

symmetries are closely related to their spins: bosons’ spins have integer values, while fermions 

have half-integer spin value, such as electrons that are spin 1/2 particles. 

 

Inside the quantum many-body theory, we will consider a non-relativistic system made of a very 

large number of indistinguishable fermions, and in order to represent this system, the formalism 

known as Second Quantization was developed. This formalism is constructed within the Fock Space 

and in this scheme the creation and annihilation operators1 are introduced: 

 

𝑎𝑖
† = |… , 𝑛𝑖, … ⟩ = (1 − 𝑛𝑖)(−1)∑ 𝑛𝑗𝑗<𝑖 |… , 𝑛𝑖 + 1, … ⟩  (𝐴. 2. 𝑎) 

                                                

1 The operators defined are for fermions. The creation and annihilation operators for bosons are slightly 
different. 
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𝑎𝑖 = |… , 𝑛𝑖, … ⟩ = 𝑛𝑖(−1)∑ 𝑛𝑗𝑗<𝑖 |… , 𝑛𝑖 − 1, … ⟩              (𝐴. 2. 𝑏) 

 

These operators increase or decrease the occupation number of the state |𝑖⟩ by one. Also, in the 

case of fermions, the definition of the operator has to take into account the Pauli Exclusion Principle, 

which establishes that two identical fermions must not occupy the same state. 

 

Once we have set the creation and annihilation operators for fermions, we can define the one- 

and two-body density matrices, which are related with the creation and annihilation of one or two 

electrons at different positions of the space, and are defined as follows: 

 

𝜌1(𝒓, 𝒓′) = ∑⟨Φ|𝜓̂𝜎
†(𝒓)𝜓̂𝜎(𝒓′)|Φ⟩

𝜎

                                (𝐴. 3. 𝑎) 

𝜌2(𝒓, 𝒓′) =
1

2
∑⟨Φ|𝜓̂𝜎

†(𝒓)𝜓̂𝜎′
† (𝒓′)𝜓̂𝜎′(𝒓′)𝜓̂𝜎(𝒓)|Φ⟩

𝜎,𝜎′

  (𝐴. 3. 𝑏) 

 

Where the field operators 𝜓̂𝜎
†(𝒓) and  𝜓̂𝜎(𝒓′), creates and annihilates an electron of spin 𝜎 in 

the position eigenstate |𝒓⟩. They are defined by: 

 

𝜓̂𝜎
†(𝒓) = ∑ 𝜑𝑖,𝜎

∗ (𝒓)𝑎𝑖
†

𝑖

  (𝐴. 4. 𝑎) 

𝜓̂𝜎(𝒓) = ∑ 𝜑𝑖,𝜎(𝒓)𝑎𝑖

𝑖

   (𝐴. 4. 𝑏) 

 

These operators obey the following commutation relations:  

 

[𝜓̂𝜎(𝒓), 𝜓̂𝜎′(𝒓′)]
±

= 0                                (𝐴. 5. 𝑎) 

[𝜓̂𝜎
†(𝒓), 𝜓̂

𝜎′
† (𝒓′)]

±
= 0                                (𝐴. 5. 𝑏) 

[𝜓̂𝜎(𝒓), 𝜓̂
𝜎′
† (𝒓′)]

±
= 𝛿𝜎𝜎′𝛿(3)(𝒓 − 𝒓′)   (𝐴. 5. 𝑐) 

 

The upper sign apply for fermions, and the lower one, not used here, is for bosons. 
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Finally, we can define the two-body direct correlation function 𝑔(𝒓, 𝒓′) as follows: 

 

𝜌2(𝒓, 𝒓′) =
1

2
𝜌1(𝒓, 𝒓)𝜌1(𝒓′, 𝒓′)𝑔(𝒓, 𝒓′) 

𝜌2(𝒓, 𝒓′) =
1

2
𝜌(𝒓)𝜌(𝒓′)𝑔(𝒓, 𝒓′)   (𝐴. 6) 

 

Where 𝜌(𝒓) and 𝜌(𝒓′) are the diagonal elements of 𝜌1(𝒓, 𝒓) and  𝜌1(𝒓′, 𝒓′), respectively and 

represent the electronic density. 
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