Mostrar el registro sencillo del ítem

dc.contributor.authorGaya, Josespa
dc.contributor.authorPuentes Corrales, Odalysspa
dc.contributor.authorAlonso Rodríguez, Ilianaspa
dc.contributor.authorLeyva Medrano, Liliamspa
dc.contributor.authorValero Sanchez, Adonisbel Mariospa
dc.contributor.authorDel Pozo Burgos, Yoelvis Cesarspa
dc.date.accessioned2022-07-15 00:00:00
dc.date.available2022-07-15 00:00:00
dc.date.issued2022-07-15
dc.identifier.issn2215-7840
dc.description.abstractIntroducción: en diciembre 2019, se reportó en China la presencia de un nuevo coronavirus que, se clasificó y denominó como Síndrome Respiratorio Agudo Severo-Coronavirus 2 (SARS-CoV-2), causante de la enfermedad pandémica Covid-19. Este virus es capaz de producir daño adicional en el sistema nervioso y provocar síntomas y complicaciones neurológicas. Objetivo: describir los principales mecanismos fisiopatológicos que explican el daño neurológico reportado en la enfermedad Covid-19. Métodos: se realizó una selección de artículos científicos publicados entre 2019 y 2021, utilizando el repositorio electrónico de PubMed/ScienceDirect (y artículos de libre acceso en las Bases/Datos de Scopus, MedLine, Scielo y LILACs) según las recomendaciones del tesauro DeCS (Descriptores en Ciencias de la Salud) para operadores lógicos y descriptores sobre esta temática. Resultados: aunque, se considera una enfermedad típicamente respiratoria, se han descrito una serie de manifestaciones extra-pulmonares como posibles síntomas de presentación y/o complicaciones, en pacientes con Covid-19. El coronavirus SARS-CoV-2, tiene propiedades neuroinvasivas, neurotrópicas y pro-inflamatorias capaces de exacerbar el proceso neurodegenerativo que provoca la enfermedad. Se ha reportado que entre 30-80% de los pacientes con Covid-19 suelen presentar síntomas neurológicos. Conclusión: esta revisión describe los principales fundamentos fisiopatológicos invocados para intentan explicar los mecanismos que determinan la generación de enfermedad y complicaciones neurológicas en la infección por Covid-19. Las manifestaciones neurológicas reportadas en los pacientes infectados pueden deberse a invasión viral directa (propiedades neurotrópicas) o mecanismos indirectos (derivados del estado infeccioso post-inflamatorio, alteraciones metabólicas y desregulaciones de la respuesta inmune).spa
dc.description.abstractIntroduction: On December 2019, it was reported in China a novel human coronavirus that was classified and named as Severe Acute Respiratory Syndrome by Coronavirus 2 (SARS-CoV-2) that caused Coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 is being able to affect the nervous system and cause neurological symptoms and complications. Objective: to oescribe the main pathogenesis mechanisms of neurological manifestations in patients with Covid-19. Methods: a review was conducted of international updated bibliography. The search was carried out in Central PubMed electronic database (and open access papers were consulted in Scopus, MedLine, Scielo and LILACs) from February, 2019 to August, 2021. The search terms which addressed about the clinical neurological manifestations and pathogenesis mechanisms of Covid-19 in compliance with the Health Sciences Descriptors. Results: although SARS-CoV-2 infection is considered a typically respiratory illness have been described a series of extra-pulmonary manifestations as possible symptoms of presentation or complications. During the Covid-19 pandemic have been reported central, peripheral and musculoskeletal neurological manifestations by hematogenous, lymphatic, trans-synaptic retrograde routes and viruses immune-mediated local dissemination or by dysfunction of hematoencephalic barrier. Some research suggests that 30-80% of patients with Covid-19 has neurological symptoms. Conclusions: this review of literature shows the magnitude and breadth of neurological conditions associated with the Covid-19. SARS-CoV-2 attack the nervous system, both directly (neuroinvasive and neurotropic) and indirectly (inflammatory, metabolic and immunological causes) through a wide range of underlying pathophysiological mechanisms providing varied neurological outcomes in infected patients.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Cartagenaspa
dc.relation.ispartofjournalRevista Ciencias Biomédicasspa
dc.rightsJose Gaya, Odalys Puentes Corrales, Iliana Alonso Rodríguez, Liliam Leyva Medrano, Adonisbel Mario Valero Sanchez, Yoelvis Cesar Del Pozo Burgos - 2022spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0spa
dc.sourcehttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3778spa
dc.subjectCovid-19eng
dc.subjectCoronaviruseseng
dc.subjectSARS-CoV-2eng
dc.subjectNeurological Manifestationseng
dc.subjectNeurological Symptomseng
dc.subjectCovid-19spa
dc.subjectCoronavirusspa
dc.subjectSARS-CoV-2spa
dc.subjectManifestaciones Neurológicasspa
dc.subjectSíntomas Neurológicosspa
dc.titleMecanismos fisiopatológicos asociados al daño neurológico por Covid-19spa
dc.typeArtículo de revistaspa
dc.title.translatedPathophysiological mechanisms involved in neurological damage by Covid-19eng
dc.identifier.doi10.32997/rcb-2022-3778
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn2389-7252
dc.identifier.urlhttps://doi.org/10.32997/rcb-2022-3778
dc.relation.bitstreamhttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3778/3262
dc.relation.citationeditionNúm. 3 , Año 2022spa
dc.relation.citationendpage237
dc.relation.citationissue3spa
dc.relation.citationstartpage223
dc.relation.citationvolume11spa
dc.relation.referencesCui J, Li F, Shi Z. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17(2): 181-92. doi: 10.1038/s41579-018-0118-9spa
dc.relation.referencesZhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270–3. doi: 10.1038/s41586-020-2012-7spa
dc.relation.referencesZhong NS, Zheng BJ, Li YM, Poon LLM, ZH, Xie ZH, Chan KH, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China. Lancet. 2003; 362 (8667):1353-8. doi: 10.1016/S0140-6736(03)14630-2spa
dc.relation.referencesZaki AM, Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from man with pneumonia in Saudi Arabia. N Engl J Med. 2012; 367(7): 1814-20. doi: 10.1056/NEJMoa1211721spa
dc.relation.referencesZhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al (China Novel Coronavirus Investigating and Research Team). A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2019; 24(1): 1017-20. doi: 10.1056/NEJMoa2001017spa
dc.relation.referencesSohrabi C, Alsafi Z, O´Neill N, Khan M, Kerwan A, Al-Jabir A, et al. WHO declares global emergency: A review of 2019 novel coronavirus (COVID-19). Int J Surg. 2020; 76(1): 71-6. doi: 10.1016/j.ijsu.2020.02.034spa
dc.relation.referencesConferencia de Prensa del MINSAP: Actualización sobre la situación epidemiológica de la COVID-19 en Cuba (31.01.2020). Disponible en: http://www//CubaPorLaVida; www//COVID19.spa
dc.relation.referencesBerger JR. COVID-19 and the nervous system. J Neurovirol. 2020; 26(2): 143-8. doi: 10.1007/s13365-020-00840-5spa
dc.relation.referencesButala N. Neurological aspects of Coronavirus Infectious Disease 2019 (COVID-19). Innov Clin Neurosci. 2020; 17(4-6): 13-15. Disponible en: PMID: 32802586spa
dc.relation.referencesHuang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with COVID-19 in Wuhan, China. Lancet. 2020; 395 (10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5spa
dc.relation.referencesMao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683-90. doi: 10.1016/j.clineuro.2020.105921spa
dc.relation.referencesMontalvan V, Lee J, Bueso T, De Toledo J, Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: a systematic review. Clin Neurol Neurosurg. 2020; 194: 105921. doi: 10.1016/j.clineuro.2020.105921spa
dc.relation.referencesNiazkar HR, Zibaee B, Nasimi A, Bahri N. The neurological manifestations of COVID-19: a review article. Neurol Sci. 2020; 41(7): 1667-71. doi: 10.1007/s10072-020-04486-3spa
dc.relation.referencesPaterson RW, Brown RL, Benjamin L, Nortley R, Wiethoff S, Bharucha T, et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020; 143(10): 3104-20. doi: 10.1093/brain/awaa240spa
dc.relation.referencesWu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020; 1(2): 357-63. doi: 10.1016/j.bbi.2020.03.031spa
dc.relation.referencesZhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID-19): A clinical update. Front Med. 2020; 127: 10436. doi: 10.1007/s11684-020-0767-8spa
dc.relation.referencesHelms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020; 382(23): 2268-70. doi: 10.1056/NEJMc2008597spa
dc.relation.referencesLiotta EM, Batra A, Clark JR, Shlobin NA, Hoffman SC, Orban ZS, et al. Frequent neurologic manifestations and encephalopathy-associated morbidity in COVID-19 patients. Ann Clin Transl Neurol. 2020; 7(11): 2221-30. doi: 10.1002/acn3.51210spa
dc.relation.referencesChen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020; 92: 418-23. doi.org/10.1002/jmv.25681spa
dc.relation.referencesSchoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019; 16: 69 (1-22). doi: 10.1186/s12985-019-1182-0spa
dc.relation.referencesPaules CI, Marston HD, Fauci AS. Coronavirus infections: more than just the common cold. J Am Med Assoc. 2020; 323(8): 707-8. doi: 10.1001/jama.2020.0757spa
dc.relation.referencesVabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of COVID-19: current state of the science. Immunity. 2020; 52: 910-41. doi: 10.1016/j.immuni.2020.05.002spa
dc.relation.referencesCascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, Evaluation and Treatment of Coronavirus (COVID-19). StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK554776spa
dc.relation.referencesKrett JD, Jewett GA, Elton-Lacasse C, Fonseca K, Hahn C, Au S, et al. Hemorrhagic encephalopathy associated with COVID-19. J Neuroimmunol. 2020; 577326 (1-4). doi: 10.1016/j.jneuroim.2020.577326spa
dc.relation.referencesVerdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020; 20(2): 3151-5. doi: 10.1016/j.ejim.2020.04.037spa
dc.relation.referencesBaig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020; 11(7): 995-8. doi: 10.1021/acschemneuro.0c00122spa
dc.relation.referencesBender del Busto J, León-Castellón R, Mendieta-Pedroso M, Rodríguez-Labrada R, Velázquez-Pérez L. Infección por el SARS-CoV-2: de los mecanismos neuroinvasivos a las manifestaciones neurológicas. Anales ACC. 2020; 10(2): e855. Disponible en: http://www.revistaccuba.cu/index.php/revacc/article/view/855spa
dc.relation.referencesMachado C. Cómo el SARS-CoV-2 ataca al Sistema Nervioso?. Trabajo para optar por el Premio Anual de la Academia de Ciencias de Cuba. La Habana, 2020.spa
dc.relation.referencesMachado C, DeFina P. Covid-19: Anosmia and Ageusia might be initial or unique symptoms. SF J Clin Neurol Brain. 2020; 1(1): 1002 (1-7). Disponible en: https://doi.org/10.20944/preprints202004.0272.v1spa
dc.relation.referencesWeir EM, Reed DR, Pepino MY, Veldhuizen MG, Hayes JE. Massively collaborative crowdsourced research on COVID19 and the chemical senses: insights and outcomes. Food Quality & Preference. 2022; 97: 104483 (1-8). doi: 10.1016/j.foodqual.2021.104483spa
dc.relation.referencesZahra SA, Iddawela S, Pillai K, Choudhury RY, Harky A. Can symptoms of anosmia and dysgeusia be diagnostic for COVID‐19?. Brain Behav. 2020; 10(11): e011839. doi.org/10.1002/BRB3.1839spa
dc.relation.referencesVan Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020; 27(2): 1564-7. doi: 10.1056/NEJMc2004973spa
dc.relation.referencesTang A, Tong ZD, Wang HL, Dai YX, Li KF, Liu JN, et al. Detection of novel coronavirus by RT-PCR in stool specimen, China. Emerg Infect Dis. 2020; 26(6): 110-8. doi: 10.3201/eid2606.200301spa
dc.relation.referencesConnors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020; 135(23): 2033-40. doi: 10.1182/blood.2020006000spa
dc.relation.referencesMachado C. Silent or 'Happy' Hypoxemia: An urgent dilemma for COVID-19 patient care. MEDICC Rev. 2020; 22:85-86. doi: 10.37757/MR2020.V22.N4.9spa
dc.relation.referencesMachado C. Severe COVID-19 cases: Is respiratory distress partially explained by CNS involvement?. MEDICC Rev. 2020; 22(2): 38-9. doi: 10.37757/MR2020.V22.N2.10spa
dc.relation.referencesOrsini A, Corsi M, Santangelo A, Riva A, Peroni D, Foiadelli T, et al. Challenges and management of neurological and psychiatric manifestations in SARS-Cov-2 (COVID-19) patients. Neurol Sci. 2020; 41(9): 2353-40. doi: 10.1007/s10072-020-04544-wspa
dc.relation.referencesZou L, Dai L, Zhang Y, Fu W, Gao Y, Zhang Z, et al. Clinical characteristics and risk factors for disease severity and death in patients with COVID-19 in Wuhan, China. Front Med. 2020; 7(1): 532-41. doi: 10.3389/fmed.2020.00532spa
dc.relation.referencesMichalicova A, Bhide K, Bhide M, Kovac A. How viruses infiltrate the central nervous system. Acta Virol. 2017; 61: 393-400. doi: 10.4149/av_2017_401spa
dc.relation.referencesHe Q, Liu H, Huang C, Wang R, Luo M, Lu W. Herpes simplex virus 1-induced Blood-Brain Barrier damage involves apoptosis associated with GM130-mediated Golgi stress. Front Mol Neurosci. 2020; 13: 2 (1-16). doi: 10.3389/fnmol.2020.00002spa
dc.relation.referencesTian J, Shi R, Liu T, She R, Wu Q, An J, et al. Brain infection by Hepatitis E virus probably via damage of the blood-brain barrier due to alteration of tight junction proteins. Front Cell Infect Microbiol. 2020; 9: 52. doi: 10.3389/fcimb.2019.00052spa
dc.relation.referencesPadrón AA, González C, Dorta A. Empleo del Reibergrama en manifestaciones neurológicas del dengue. Rev Hab Cienc Med. 2017; 16(5): 711-9. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2017000500005spa
dc.relation.referencesRodríguez JA, Pérez V, Mirabal A, Padrón AA, Castillo W, Gonzalez, et al. Epstein-Barr virus and Multiple Sclerosis. FASEB J. 2018; 32(1): 617-20. Disponible en: http://www.revibiomedica.sld.cu/index.php/ibi/article/view/868/892spa
dc.relation.referencesEsposito G, Pesce M, Seguella L, Sanseverino W, Lu J, Sarnelli G. Can the enteric nervous system be an alternative entrance door in SARS-CoV-2 neuroinvasion?. Brain Behav Immum. 2020; 87(2): 93-4. doi: 10.1016/j.bbi.2020.04.060spa
dc.relation.referencesSkinner D, Marro BS, Lane TE. Chemokine CXCL10 and coronavirus induced neurologic disease. Viral Inmunol. 2019; 32(1): 25-37. doi: 10.1089/vim.2018.0073spa
dc.relation.referencesZhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020; 19(5): 383-4. doi: 10.1016/S1474-4422(20)30109-5spa
dc.relation.referencesCéspedes HR, Rodríguez DJ, Céspedes HA, Céspedes RA. Mecanismos neuroinvasivos y daño neurológico en infecciones por coronavirus. Rev Cub Ped. 2020; 92 (Suppl.): e1203. Disponible en: http://www.revpediatria.sld.cu/index.php/ped/article/view/1203spa
dc.relation.referencesEllul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, et al. Neurological associations of COVID-19. Lancet Neurol. 2020; 19(9): 767-83. doi: 10.1016/S1474-4422(20)30221-0spa
dc.relation.referencesCilia R, Bonvegna S, Straccia G, Andreasi NG, Elia AE, Romito LM, et al. Effects of COVID-19 on Parkinson's disease clinical features: a community-based case-control study. Mov Disord. 2020; 35(8): 1287-92. doi: 10.1002/mds.28170spa
dc.relation.referencesBrown EG, Chahine LM, Goldman SM, Korell M, Mann E, Kinel DR, et al. The effect of the COVID-19 pandemic on people with Parkinson's disease. J Parkinson's Dis. 2020; 10(4): 1365-77. doi: 10.3233/JPD-202249spa
dc.relation.referencesBerger JR, Brandstadter R, Bar-Or A. COVID-19 and MS disease-modifying therapies. Neurol Neuroimmunol Neuroinflamm. 2020; 7(4): e761 (1-8). doi: 10.1212/NXI.0000000000000761spa
dc.relation.referencesCOViMS Registry. The COViMS database public data update. Disponible en: https://www.COViMS.orgspa
dc.relation.referencesPadrón AA, Dorta A. Patogenia de las manifestaciones neurológicas asociadas al SARS-CoV-2. Rev Cub Inv Biomedicas. 2020; 39(3): e868. Disponible en: http://www.revibiomedica.sld.cu/index.php/ibi/article/view/868spa
dc.relation.referencesAschman T, Schneider J, Greuel S, Meinhardt J, Streit S, Goebel HH, et al. Association between SARS-CoV-2 infection and immune-mediated myopathy in patients who have died. JAMA Neurol. 2021;78(8): 948-60. doi: 10.1001/jamaneurol.2021.2004spa
dc.relation.referencesMachado C, Brock B, Schift A. Reader Response: Skeletal Muscle and Peripheral Nerve Histopathology in COVID-19. Neurology. 2021; 97(18): 881-2. doi: 10.1212/WNL.0000000000012790spa
dc.relation.referencesMughal MS, Kaur IP, Alhashemi R, Rehman R, Du D. Acute viral myositis complicated by rhabdomyolysis: a sole manifestation of COVID-19 infection. J Community Hosp Intern Med Perspect. 2021; 11(2): 289-91. doi: 10.1080/20009666.2021.1878601spa
dc.relation.referencesPaliwal VK, Garg RK, Gupta A, Tejan N. Neuromuscular presentations in patients with COVID-19. Neurol Sci. 2020; 41(11): 3039-56. doi: 10.1007/s10072-020-04708-8spa
dc.relation.referencesSuh J, Mukerji SS, Collens SI, Padera RF, Pinkus GS, Amato AA, et al. Skeletal muscle and peripheral nerve histopathology in COVID-19. Neurology. 2021; 97(8): e849-e858. doi: 10.1212/WNL.0000000000012344spa
dc.relation.referencesCarod-Artal FJ. Complicaciones neurológicas por coronavirus y COVID-19. Rev Neurol. 2020; 70(3): 311-22. doi: 10.33588/rn.7009.2020179spa
dc.relation.referencesCortés ME. Enfermedad por coronavirus 2019 (COVID-19): importancia de sus potenciales efectos neurológicos. Rev Ecuatoriana Neurol. 2020; 29(1): 16-7. Disponible en: http://revecuatneurol.com/wp-content/uploads/2020/05/2631-2581-rneuro-29-01-00016.pdfspa
dc.relation.referencesMachado C, DeFina PA, Chinchilla M, Machado Y, Machado Y. Brainstem dysfunction in SARS-COV-2 infection can be a potential cause of respiratory distress. Neurol India. 2020; 68(5): 989-93. doi: 10.4103/0028-3886.299165spa
dc.relation.referencesCasez O, Willaume G, Grand S, Nemoz B, Lupo J, Kahane P, et al. Teaching NeuroImages: SARS-CoV-2−Related Encephalitis: MRI pattern of olfactory tract involvement. Neurology. 2021; 96: e645-e646. doi: 10.1212/WNL.0000000000011150spa
dc.relation.referencesQin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020; 71(15): 762-8. doi: 10.1093/cid/ciaa248spa
dc.relation.referencesHelms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in severe SARS-Cov-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020; 46(6): 1089-98. doi: 10.1007/s00134-020-06062-xspa
dc.relation.referencesGarcía-Azorín D, Martínez-Pías E, Trigo J, Hernandez-Perez I, Valle-Peñacoba G, Talavera B, et al. Neurological comorbidity is a predictor of death in COVID-19 disease: a cohort study on 576 patients. Front Neurol. 2020; 11 (3): 781 (1-8). doi.org/10.3389/fneur.2020.00781spa
dc.relation.referencesRomagnolo A, Balestrino R, Imbalzano G, Ciccone G, Riccardini F, Artusi CA, et al. Neurological comorbidity and severity of COVID-19. J Neurol. 2021; 268(3): 762-9. doi: 10.1007/s00415-020-10123-yspa
dc.relation.referencesWorld Health Organization. Tracking SARS-CoV-2 variants. World Health Organization, 2021. Disponible en: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/spa
dc.relation.referencesPapanikolaou V, Chrysovergis A, Ragos V, Tsiambas E, Katsinis S, Manoli A, et al. From delta to Omicron: S1- RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants. Gene. 2022; 814: 146134 (1-5). doi: 10.1016/j.gene.2021.146134spa
dc.relation.referencesKarim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021; 398: 2126-8. doi: 10.1016/S0140-6736(21)02758-6spa
dc.relation.referencesAbdullah F, Myers J, Basu D, Tintinger G, Ueckermann V, Mathebula M, et al. Decreased severity of disease during the first global omicron variant covid-19 outbreak in a large hospital in Tshwane, South Africa. Int J Infect Dis. 2021; 116(1): 38-42. doi: 10.1016/j.ijid.2021.12.357spa
dc.relation.referencesTureček P, Kleisner K. Symptomic mimicry between SARS-CoV-2 and the Common Cold Complex. Biosemiotics. 2022; 10(1): 1-6. doi: 10.1007/s12304-021-09472-6spa
dc.relation.referencesZhang L, Li Q, Liang Z, Li T, Liu S, Qiangian C, et al. The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerg Microbes Infect. 2022; 11(1): 1-5. doi: 10.1080/22221751.2021.2017757spa
dc.relation.referencesBorrelli M, Corcione A, Castellano F, Fiori Nastro F, Santamaria F. Coronavirus disease 2019 in children. Front Pediatr. 2021; 28(9): 668484. doi: 10.3389/fped.2021.668484spa
dc.relation.referencesCastillo-Martínez M, Castillo M, Ferrer M, González-Peris S. Depresión infanto-juvenil y otros aspectos de salud mental durante el confinamiento y la pandemia por SARS-CoV-2/COVID-19: encuesta en contexto escolar. An Pediatr (Barc). 2022; 96(1): 61-4. doi: 10.1016/j.anpedi.2020.09.013spa
dc.relation.referencesGolberstein E, Wen H, Miller BF. Coronavirus Disease 2019 (COVID19) and mental health for children and adolescents. JAMA Pediatr. 2020; 174(9): 819-20. doi: 10.1001/jamapediatrics.2020.1456spa
dc.relation.referencesLee PI, Hu YL, Chen PY, Huang YC, Hsueh PR. Are children less susceptible to COVID-19? J Microbiol Immunol Infect. 2020; 53(3): 371-2. doi: 10.1016/j.jmii.2020.02.011spa
dc.relation.referencesCarsetti R, Quintarelli C, Quinti I, Mortari E, Zumla A, Ippolito G, et al. The immune system of children: the key to understanding SARS-CoV-2 susceptibility? Lancet Child Adolesc Health. 2020; 4(6): 414-6. doi: 10.1016/S2352-4642(20)30135-8spa
dc.relation.referencesGonzález P, Pérez-Moneo Agapito B, Albi MS, Aizpurúa P, Rodrigo MA, Fernández MM, et al (Grupo de Trabajo de Pediatría Basada en la Evidencia de la AEP y AEPap). COVID-19 en Pediatría: valoración crítica de la evidencia. An Pediatr (Barc). 2021; 95(3): e1-e13. doi:10.1016/j.anpedi.2021.05.019spa
dc.relation.referencesCallard F, Perego E. How and Why patients made Long-Covid? Soc Sci Med. 2021; 268: 113426 (1-5). doi: 10.1016/j.socscimed.2020.113426spa
dc.relation.referencesIqbal FM, Lam K, Sounderajah V, Clarke JM, Ashrafian H, Darzi A. Characteristics and predictors of acute and chronic post-Covid syndrome: a systematic review and meta-analysis. EClinical Medicine. 2021; 36: 100899 (1-13). doi: 10.1016/j.eclinm.2021.100899spa
dc.relation.referencesLiu YH, Chen Y, Wang QH, Wang LR, Jiang L, Yang Y, et al. One-Year trajectory of cognitive changes in older survivors of COVID-19 in Wuhan, China: A longitudinal cohort study. JAMA Neurol. 2022; e220461 (e1-e10). doi: 10.1001/jamaneurol.2022.0461spa
dc.relation.referencesDouaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, McCarthy P, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022; s41586. doi: 10.1038/s41586-022-04569-5spa
dc.relation.referencesTaquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236.379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021; 8(5): 416-27. doi: https://doi.org/10.1101/2021.01.16.21249950spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa


Ficheros en el ítem

FicherosTamañoFormatoVer
Rev Cienc Biomed-3778.pdf628.7Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Jose Gaya, Odalys  Puentes Corrales, Iliana  Alonso Rodríguez, Liliam  Leyva Medrano, Adonisbel Mario  Valero Sanchez, Yoelvis Cesar  Del Pozo Burgos - 2022
Excepto si se señala otra cosa, la licencia del ítem se describe como Jose Gaya, Odalys Puentes Corrales, Iliana Alonso Rodríguez, Liliam Leyva Medrano, Adonisbel Mario Valero Sanchez, Yoelvis Cesar Del Pozo Burgos - 2022