Mostrar el registro sencillo del ítem

dc.contributor.authorPuello Ávila, Antonio Carlosspa
dc.contributor.authorPeñaranda Ortega, Dianaspa
dc.date.accessioned2021-10-15 00:00:00
dc.date.available2021-10-15 00:00:00
dc.date.issued2021-10-15
dc.identifier.issn2215-7840
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Cartagenaspa
dc.relation.ispartofjournalRevista Ciencias Biomédicasspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0spa
dc.sourcehttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3669spa
dc.subjecttracheal extubationeng
dc.subjectfailureeng
dc.subjectneonateseng
dc.subjectkidseng
dc.subjectartificial respirationeng
dc.subjectrisk factorseng
dc.subjectextubación traquealspa
dc.subjectfallospa
dc.subjectneonatosspa
dc.subjectniñosspa
dc.subjectrespiración artificialspa
dc.subjectfactores de riesgospa
dc.titlePredictores de extubación fallida en el paciente pediátrico y neonatalspa
dc.typeArtículo de revistaspa
dc.title.translatedPredictors of failed extubation in the pediatric and neonatal patienteng
dc.identifier.doi10.32997/rcb-2021-3669
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn2389-7252
dc.identifier.urlhttps://doi.org/10.32997/rcb-2021-3669
dc.relation.bitstreamhttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3669/3031
dc.relation.citationeditionNúm. 4 , Año 2021spa
dc.relation.citationendpage264
dc.relation.citationissue4spa
dc.relation.citationstartpage256
dc.relation.citationvolume10spa
dc.relation.referencesMora Carpio AL, Mora JI. Ventilator Management. In: StatPearls. Treasure Island (FL): StatPearls Publishing; May 7, 2021.spa
dc.relation.referencesShalish W, Keszler M, Davis PG, Sant'Anna GM. Decision to extubate extremely preterm infants: art, science or gamble? [published online ahead of print, 2021 Feb 24]. Arch Dis Child Fetal Neonatal Ed. 2021; fetalneonatal-2020-321282.spa
dc.relation.referencesDemling RH, Read T, Lind LJ, Flanagan HL. Incidence and morbidity of extubation failure in surgical intensive care patients. Crit Care Med. 1988;16(6):573-577.spa
dc.relation.referencesNamen AM, Ely EW, Tatter SB, et al. Predictors of successful extubation in neurosurgical patients. Am J Respir Crit Care Med. 2001;163(3 Pt 1):658-664.spa
dc.relation.referencesEdmunds S, Weiss I, Harrison R. Extubation failure in a large pediatric ICU population. Chest. 2001;119(3):897-900.spa
dc.relation.referencesKollef MH, Levy NT, Ahrens TS, Schaiff R, Prentice D, Sherman G. The use of continuous i.v. sedation is associated with prolongation of mechanical ventilation. Chest. 1998;114(2):541-548.spa
dc.relation.referencesBeigmohammadi MT, Hussain Khan Z, Samadi S, et al. Role of Hematocrit Concentration on Successful Extubation in Critically Ill Patients in the Intensive Care Units. Anesth Pain Med. 2016;6(1): e32904.spa
dc.relation.referencesBaisch SD, Wheeler WB, Kurachek SC, Cornfield DN. Extubation failure in pediatric intensive care incidence and outcomes. Pediatr Crit Care Med. 2005;6(3):312-318.spa
dc.relation.referencesCohn EC, Robertson TS, Scott SA, Finley AM, Huang R, Miles DK. Extubation Failure and Tracheostomy Placement in Children with Acute Neurocritical Illness. Neurocrit Care. 2018;28(1):83-92.spa
dc.relation.referencesKurachek SC, Newth CJ, Quasney MW, et al. Extubation failure in pediatric intensive care: a multiple-center study of risk factors and outcomes [published correction appears in Crit Care Med. Jul;32(7):1632-3. Scanlon Mathew [corrected to Scanlon Matthew]]. Crit Care Med. 2003;31(11):2657-2664.spa
dc.relation.referencesValenzuela J, Araneda P, Cruces P. Weaning from mechanical ventilation in paediatrics. State of the art. Arch Bronconeumol. 2014 Mar;50(3):105-12). and outcomes [published correction appears in Crit Care Med. Jul;32(7):1632-3. Scanlon Mathew [corrected to Scanlon Matthew]]. Crit Care Med. 2003;31(11):2657- 2664.spa
dc.relation.referencesFischer JE, Allen P, Fanconi S. Delay of extubation in neonates and children after cardiac surgery: impact of ventilator-associated pneumonia. Intensive Care Med. 2000;26(7):942-949.spa
dc.relation.referencesNavaratnarajah J, Black AE. Assessment and management of the predicted difficult airway in babies and children. Anaesth Intensive Care Med 2012; 13:226-233.spa
dc.relation.referencesRíos Á, Gómez LM, Aguirre O, Ocampo F. La vía aérea pediátrica: algunos conceptos para tener en cuenta en el manejo anestésico. Rev Colomb Anestesiol 2012; 40:199-202.spa
dc.relation.referencesMarín PCE, Engelhardt T. Algoritmo para el manejo de la vía aérea difícil en pediatría. Rev Colomb Anestesiol. 2014; 42:325-334.spa
dc.relation.referencesShirgoska B, Netkovski J. Predicting difficult airway in apparently normal adult and pediatric patients. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2013;34(1):155-159.spa
dc.relation.referencesRoth D, Pace NL, Lee A, et al. Airway physical examination tests for detection of difficult airway management in apparently normal adult patients. Cochrane Database Syst Rev. 2018;5(5):CD008874.spa
dc.relation.referencesMaddali MM, Ali Al-Zaabi HM, Salim Al-Aamri IS, Arora NR, Panchatcharam SM. Preoperative predictors of poor laryngoscope views in pediatric population undergoing cardiac catheterization. Ann Card Anaesth. 2018;21(4):376-381.spa
dc.relation.referencesD A, Jafra A, Bhardwaj N, Jain D, Luthra A, Malik MA. Evaluation of various anthropometric airway parameters as predictors of difficult airway in neonates: A prospective observational study. Int J Pediatr Otorhinolaryngol. 2020; 138:110387.spa
dc.relation.referencesHeinrich S, Birkholz T, Ihmsen H, Irouschek A, Ackermann A, Schmidt J. Incidence and predictors of difficult laryngoscopy in 11,219 pediatric anesthesia procedures. Paediatr Anaesth. 2012;22(8):729-736spa
dc.relation.referencesMansano AM, Módolo NS, Silva LM, et al. Bedside tests to predict laryngoscopic difficulty in pediatric patients. Int J Pediatr Otorhinolaryngol. 2016; 83:63-68.spa
dc.relation.referencesKiss EE, Olomu P, Johnson RF. Determining the Odds of Difficult Airway Resolution Among Pediatric Patients: A Case Series [published online ahead of print, 2021 Jan 19]. Otolaryngol Head Neck Surg. 2021;194599820986570.spa
dc.relation.referencesBingham RM, Proctor LT. Airway management. Pediatr Clin North Am. 2008;55(4):873-x.spa
dc.relation.referencesFischer M, Grass B, Kemper M, Weiss M, Dave MH. Cuffed pediatric endotracheal tubes-Outer cuff diameters compared to age-related airway dimensions. Paediatr Anaesth. 2020;30(4):424-434.spa
dc.relation.referencesWeiss M, Dullenkopf A, Gysin C, Dillier CM, Gerber AC. Shortcomings of cuffed paediatric tracheal tubes. Br J Anaesth. 2004;92(1):78-88.spa
dc.relation.referencesVeder LL, Joosten KFM, Schlink K, et al. Post-extubation stridor after prolonged intubation in the pediatric intensive care unit (PICU): a prospective observational cohort study. Eur Arch Otorhinolaryngol. 2020;277(6):1725-1731.spa
dc.relation.referencesRafiq M, Wani TM, Moore-Clingenpeel M, Tobias JD. Endotracheal tubes and the cricoid: Is there a good fit? [published correction appears in Int J Pediatr Otorhinolaryngol. 2016 Nov;90:70]. Int J Pediatr Otorhinolaryngol. 2016; 85:8-11.spa
dc.relation.referencesKhemani RG, Sekayan T, Hotz J, et al. Risk Factors for Pediatric Extubation Failure: The Importance of Respiratory Muscle Strength. Crit Care Med. 2017;45(8):e798-e805spa
dc.relation.referencesFuchs H, Nicolai T, Schmid MB, Krüger M. Respiratorentwöhnung--Definition und klinischer Kontext aus Sicht der Pädiatrie [Current concepts of weaning children from invasive ventilation]. Anasthesiol Intensivmed Notfallmed Schmerzther. 2013;48(10):622-625.spa
dc.relation.referencesFarias JA, Alía I, Retta A, et al. An evaluation of extubation failure predictors in mechanically ventilated infants and children. Intensive Care Med. 2002;28(6):752-757.spa
dc.relation.referencesNewth CJ, Venkataraman S, Willson DF, et al. Weaning and extubation readiness in pediatric patients. Pediatr Crit Care Med. 2009;10(1):1-11.spa
dc.relation.referencesNewth CJ, Hotz JC, Khemani RG. Ventilator Liberation in the Pediatric ICU. Respir Care. 2020;65(10):1601-1610.spa
dc.relation.referencesLaham JL, Breheny PJ, Rush A. Do clinical parameters predict first planned extubation outcome in the pediatric intensive care unit?. J Intensive Care Med. 2015;30(2):89-96.spa
dc.relation.referencesFerreira FV, Sugo EK, Aragón DC, Carmona F, Carlotti APCP. Spontaneous Breathing Trial for Prediction of Extubation Success in Pediatric Patients Following Congenital Heart Surgery: A Randomized Controlled Trial. Pediatr Crit Care Med. 2019;20(10):940-946.spa
dc.relation.referencesChavez A, de la Cruz R, Zaritsky A. Spontaneous breathing trial predicts successful extubation in infants and children. Pediatr Crit Care Med. 2006;7(4):324-328.spa
dc.relation.referencesForonda FK, Troster EJ, Farias JA, et al. The impact of daily evaluation and spontaneous breathing test on the duration of pediatric mechanical ventilation: a randomized controlled trial. Crit Care Med. 2011;39(11):2526-2533.spa
dc.relation.referencesPerkins GD, Mistry D, Gates S, et al. Effect of Protocolized Weaning With Early Extubation to Noninvasive Ventilation vs Invasive Weaning on Time to Liberation From Mechanical Ventilation Among Patients With Respiratory Failure: The Breathe Randomized Clinical Trial. JAMA. 2018;320(18):1881-1888.spa
dc.relation.referencesShioji N, Kanazawa T, Iwasaki T, et al. High-flow Nasal Cannula Versus Noninvasive ventilation for Postextubation Acute Respiratory Failure after Pediatric Cardiac Surgery. Acta Med Okayama. 2019;73(1):15-20.spa
dc.relation.referencesShehadeh AMH. Non-invasive respiratory support for preterm infants following extubation from mechanical ventilation. A narrative review and guideline suggestion. Pediatr Neonatol. 2020;61(2):142-147.spa
dc.relation.referencesBarrington KJ, Bull D, Finer NN. Randomized trial of nasal synchronized intermittent mandatory ventilation compared with continuous positive airway pressure after extubation of very low birth weight infants. Pediatrics 2001; 107:638–41.spa
dc.relation.referencesLi Y, Li H, Zhang D. Comparison of T-piece and pressure support ventilation as spontaneous breathing trials in critically ill patients: a systematic review and meta-analysis. Crit Care. 2020;24(1):67.spa
dc.relation.referencesFerguson LP, Walsh BK, Munhall D, Arnold JH. A spontaneous breathing trial with pressure support overestimates readiness for extubation in children. Pediatr Crit Care Med. 2011;12(6): e330-e335).spa
dc.relation.referencesGradidge EA, Grimaldi LM, Cashen K, et al. Near-infrared spectroscopy for prediction of extubation success after neonatal cardiac surgery. Cardiol Young. 2019;29(6):787-792.spa
dc.relation.referencesFoster CB, Spaeder MC, McCarter RJ, Cheng YI, Berger JT. The use of near-infrared spectroscopy during an extubation readiness trial as a predictor of extubation outcome. Pediatr Crit Care Med. 2013;14(6):587-592.spa
dc.relation.referencesThiele RH, Shaw AD, Bartels K, et al. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on the Role of Neuromonitoring in Perioperative Outcomes: Cerebral Near-Infrared Spectroscopy. Anesth Analg. 2020;131(5):1444-1455.spa
dc.relation.referencesMcCaffrey J, Farrell C, Whiting P, Dan A, Bagshaw SM, Delaney AP. Corticosteroids to prevent extubation failure: a systematic review and meta-analysis. Intensive Care Med. 2009;35(6):977-986.spa
dc.relation.referencesKimura S, Ahn JB, Takahashi M, Kwon S, Papatheodorou S. Effectiveness of corticosteroids for post-extubation stridor and extubation failure in pediatric patients: a systematic review and meta-analysis. Ann Intensive Care. 2020;10(1):155.spa
dc.relation.referencesWang J, Walline JH, Yin L, et al. Efficacy of prophylactic methylprednisolone on reducing the risk of post-extubation stridor in patients after an emergency intubation: study protocol for a randomized controlled trial. Trials. 2021;22(1):30.spa
dc.relation.referencesManrique G, Butragueño-Laiseca L, González R, et al. Effectiveness of steroids versus placebo in preventing upper airway obstruction after extubation in critically ill children: rationale and design of a multicentric, double-blind, randomized study. Trials. 2020;21(1):341.spa
dc.relation.referencesHashemian SM, Fallahian F. The use of heliox in critical care. Int J Crit Illn Inj Sci. 2014;4(2):138-142.spa
dc.relation.referencesDani C, Fontanelli G, Lori I, Favelli F, Poggi C. Heliox non-invasive ventilation for preventing extubation failure in preterm infants. J Matern Fetal Neonatal Med. 2013;26(6):603-607.spa
dc.relation.referencesVorwerk C, Coats T. Heliox for croup in children. Cochrane Database Syst Rev. 2010;(2):CD006822.spa
dc.relation.referencesConnolly KM, McGuirt WF Jr. Avoiding intubation in the injured subglottis: the role of heliox therapy. Ann Otol Rhinol Laryngol. 2001;110(8):713-717).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa


Ficheros en el ítem

FicherosTamañoFormatoVer
Rev Cienc Biomed-3669.pdf288.9Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-sa/4.0
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-sa/4.0