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Introduction

Daily, we can observe how pressure and temperature have a profound effect on mat-

ter. For instance, at ambient pressure water transforms into vapor when heated to

100 °C, and becomes ice when cooled to temperatures below 0 °C. Nonetheless, these

transformations can also be achieved starting from the liquid state by reducing or in-

creasing pressure to reach the vapor o solid state, respectively. We can study the phase

transitions by minimizing the Gibbs free energy:

G = U − ST + pV (0.1)

Where U holds for the internal energy, S for the entropy, and V for the volume of

the piece of matter under study. According to this expression, solid phases are favored

at low temperatures and/or at high pressures, while at opposite conditions gas phases

are favored. Liquids are favored at intermediate regimes.

Oxygen is a highly reactive nonmetal and an oxidizing agent that easily forms mix-

tures with most elements and several other compounds. By mass-fraction, oxygen is the

third-most abundant element in the universe, after hydrogen and helium. At ambient

conditions, oxygen is a colorless and odorless gas with the molecular formula O2, where

two oxygen atoms are chemically bound to each other with a covalent double bond.

At atmospheric pressure and low temperature (below 54.36 K), solid oxygen is formed.

Solid oxygen is particularly interesting because it is the only simple diatomic molecule

to carry a magnetic moment, and it is considered a “spin-controlled” crystal that dis-

plays antiferromagnetic order in the low-temperature phases. At high pressure, solid

oxygen transforms from an insulating to a metallic state; and at very low temperatures,

it even changes into a superconducting state.

Referred to as the “king of the elements”, carbon is a nonmetallic and tetravalent

element, that is also the fourth most abundant element in the universe by mass. Because

of the four electrons available to form covalent bonds, the atoms of carbon can bond
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together in diverse ways, resulting in various allotropes of this element, being the best-

known graphite and diamond. This element has attracted attention because of the

system of carbon allotropes spans a range of extremes, i.e., graphite is one of the

softest materials known, it is opaque and a good conductor of electricity, while diamond

is the hardest naturally occurring substance, it is highly transparent and is an excellent

electrical insulator.

At elevated temperatures, carbon reacts with oxygen to form oxocarbons or carbon

oxides. The simplest and most common oxocarbons are carbon monoxide (CO) and

carbon dioxide (CO2). Carbon dioxide consists of a carbon atom covalently double

bonded to two oxygen atoms. CO2 is characterized by strong double bonds (C=O

distance of 1.16 Å) and rather weak intermolecular interactions, which has made it

a very stable system that exhibits several molecular phases before its polymerization.

Also at high pressures, another form of solid carbon dioxide is observed: an amorphous

glass-like solid named carbonia, that can be produced by supercooling heated CO2 at

pressures above 40 GPa. Although this discovery confirmed that carbon dioxide could

exist in a glass state similar to other members of its elemental family, like silicon (silica

glass) and germanium dioxide, carbonia glass is not stable at normal pressures and

reverts to gas when pressure is released.

Given their importance for life as we know it, carbon and oxygen have been ex-

tensively studied at pressures and temperatures found on the surface of the Earth.

Nevertheless, despite their simplicity, they exhibit remarkable properties. Their abun-

dance in the universe justifies the attention of the scientific community and explains

the constant study of these two elements under extreme conditions. In order to study

materials at extreme conditions, i.e., those similar at the interior of planets, experimen-

talists have designed apparatuses that apply force to a small area where the sample is

confined. The diamond anvil cell (DAC) is the most commonly used device and state

of the art DACs are able to reach pressures up to 600 GPa, but experiments at these

extreme pressures are very challenging. Laser shock-wave experiments are able to reach

the terapascal regime for a limited short time. However, along with very high pressures,

temperatures of several thousand Kelvin are also achieved, altering the sample’s state

and making challenging the study of solids at extreme conditions, from the experimen-

tal point of view. The technical difficulty and high economical cost of high pressure

experiments make theoretical approaches specially necessary. Fortunately, theoretical
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approaches allow us to study materials under extreme conditions, since pressure can be

monitored by employing the stress tensor of the system using the Hellmann-Feynman

theorem from the ground-state energy calculation, or by calculating the total energy of

the system at different volumes and then fitting to an equation of state.

In the present thesis report, we present a first-principles analysis of the electronic

and vibrational properties of carbon, oxygen and carbon dioxide under high pressure,

based on density functional theory. This document consists of two major parts: Part I

summarizes the framework used for performing the calculations, and Part II is devoted

to the study of carbon, oxygen and carbon dioxide at planetary conditions.
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Chapter 1 Density Functional Theory

1 Density Functional Theory

Condensed phases of matter, such as solids, liquids, or amorphous, can be described,

in a oversimplified way, as an arrangement of atoms that interact with each other. In

principle, for non-relativistic systems, it only takes to solve the Schrödinger equation

to obtain the properties of a microscopic system. Given the nature of the problem,

it is mandatory to use quantum mechanics for an accurate description of the system.

Moreover, even if the system is conformed by a few particles, the interaction between

these particles creates quantum correlations that make the wave function of the system

a complicated object. This is known as the many-body problem. As a result, the expec-

tation of an exact solution of the Schrödinger equation becomes an impractical, or even

impossible, task to accomplish. To address these challenges, several approximations at

different levels of theory have been proposed for solving this problem.

1.1 The Adiabatic Born-Oppenheimer Approxima-

tion

In principle, all the properties of a quantum mechanical system consisting of N electrons

and P nuclei of charge and mass ZI and MI , respectively, that interact among them-

selves under the influence of electrostatic forces and in absence of external potentials,

can be derived by solving the time-independent Schrödinger equation:

Ĥ|ΨA〉 = EA|ΨA〉, (1.1)

where ΨA is an eigenstate or wave function with quantum number A and EA is an

eigenvalue corresponding to the energy of the system. Its eigenfunction is given by:

〈r|ΨA〉 = ΨA (r1, . . . , rN ,R1, . . . ,RP ) = ΨA (r,R) , (1.2)
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Chapter 1 Density Functional Theory

where r ≡ r1 . . . rN and R ≡ R1 . . . rP correspond to the set of the N electronic

and the P nuclear coordinates, respectively. The Hamiltonian for this non-relativistic

system is1:

Ĥ = −
P∑
I=1

~2

2MI

∇2
I −

N∑
i=1

~2

2me

∇2
i +

e2

2

P∑
I=1

P∑
J 6=I

ZIZJ
|RI −RJ |

+
e2

2

N∑
i=1

N∑
j 6=i

1

|ri − rj|

− e2
P∑
I=1

N∑
i=1

ZI
|RI − ri|

= T̂I + T̂e + V̂I,I + V̂e,e + V̂I,e,

(1.3)

where the first and second terms of the equation are the nuclear and electronic

kinetic energy, T̂I and T̂e, and the last three terms, V̂I,I , V̂e,e, and V̂I,e, account for the

nuclei-nuclei, electron-electron, and nuclei-electron Coulomb interactions, respectively.

Thus, it can be noticed that we have to deal with a 3 (N + P ) degrees of free-

dom problem. Moreover, the Coulomb interaction is the result of pair-wise terms that

make impossible to separate the many-body Hamiltonian of equation 1.3 into single-

particle ones. In this manner, an analytic solution for macroscopic systems is impossible

(N,M ∼ 1023), therefore the use of approximations is mandatory to tackle this prob-

lem. Given the difference between the electron and nuclei masses (MI ∼ 103me), it is

possible to assume, within the classical scheme, electrons will move much faster than

the nuclei, hence every time the nuclei moves, the electrons will adjust their position

with respect to the nuclei almost instantaneously. This allows us to treat electrons

and nuclei as separate quantum mechanical systems and is the core idea behind the

Born-Oppenheimer Approximation [1]. Thus, we can assume that the equation 1.1 can

be solved with a factorized wave function that separates the electronic and the nuclear

components as follows:

ψ (R, r, t) =
∑
α

Θα (R, t) Φα (R, r) . (1.4)

The evolution of the nuclear motion is described by the Θα (R, t) wave functions, and

1From now on, we will use atomic units: ~ = e = me = 1. Thus, equation 1.3 becomes: Ĥ = 1
2

∑P
I

p2
I

MI
+

1
2

∑N
i p2

i +
1
2

∑P
I 6=J

ZIZJ
|RI−RJ |

+ 1
2

∑N
i6=j

1
|ri−rj |

−
∑P
I

∑N
i

ZI
|RI−ri|
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Chapter 1 Density Functional Theory

the electronic eigenstates are Φα (R, r), which depend on the nuclear position only para-

metrically. Consequently, the total Hamiltonian is separable into nuclear and electronic

parts:

Ĥ = ĤI + Ĥe

=
(
T̂I + V̂I,I

)
+
(
T̂e + Ûe,e + V̂I,e

)
,

(1.5)

thus, the electronic problem for a set of electronic positions r that depend on a

particular nuclear configuration R can be solved by means of the time-independent

Schrödinger equation:

ĤeΦα (R, r) = Eα (R) Φα (R, r) . (1.6)

The solution of equation 1.6 is a remarkable approximation for understanding and

predicting properties of matter by analyzing their electronic structure and lattice vi-

brations, such as structural stability, heat capacity and sound velocity. It is important

to emphasize that most of the time the analysis are focused on the ground electronic

states, given the fact that these states are less complex to deal with than the electronic

excited states. In what follows we will not emphasize the study of excited states, be-

cause our work does not cover phenomena like electronic transport, optical properties,

and photo-dissociation, among others.

1.2 The Hartree and Hartree-Fock Approximations

In the quantum many-body theory finding the ground state of an inhomogeneous system

conformed by N particles, i.e. electrons, is one of the most relevant problems. From the

electronic Hamiltonian defined in equation 1.5, we can obtain the ground state energy

as follows:

Ee = 〈Φ|Ĥe|Φ〉 = 〈Φ|T̂e + Ûe,e + V̂I,e|Φ〉 = 〈Φ|T̂e|Φ〉+ 〈Φ|V̂e,e|Φ〉+ 〈Φ|V̂I,e|Φ〉, (1.7)
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Chapter 1 Density Functional Theory

where |Φ〉 states as the N -electron ground state wave function, T̂e is the electronic

kinetic energy, Ûe,e is the electron-electron interaction, and V̂I,e corresponds to the

electron-nucleus interaction2. These terms can be written as:

Te = 〈Φ|T̂e|Φ〉 =
1

2

N∑
i=1

〈Φ|∇2
i |Φ〉 =

1

2

∫ [
∇2
i ρ1 (r, r′)

]
r=r′

dr; (1.8)

Ue,e = 〈Φ|Ûe,e|Φ〉 =
1

2

N∑
i=1

N∑
j 6=i

〈Φ| 1

|ri − rj|
|Φ〉 =

1

2

∫∫
ρ (r) ρ (r′)

|r− r′|
drdr′; (1.9)

Vext = 〈Φ|V̂ext|Φ〉 =
N∑
i=1

〈Φ|vext (ri) |Φ〉 =

∫
vext (ri) ρ (r) dr. (1.10)

In the electron-electron interaction yields the two-body interaction. A first attempt

to deal with this problem, is to consider this interaction as a classical electrostatic

interaction. This implies that the electrons are now treated as non correlated particles.

Introducing the two-body correlation g (r, r′) as:

ρ2 (r, r′) = ρ (r) ρ (r′) g (r, r′) , (1.11)

thus, for a classical electrostatic interaction the two-body correlation is not taken

into account at all, therefore g (r, r′) = 1. This is known as the Hartree Approximation.

This approximation allows us to rewrite the electron-electron interaction defined in

equation 1.9:

Ue,e =
1

2

∫∫
ρ (r) ρ (r′)

|r− r′|
drdr′ =

1

2

∫∫
ρ2 (r, r′)

|r− r′|
drdr′. (1.12)

This approximation ignores many characteristics of the intrinsic nature of electrons,

for instance, the effect of the repulsion force produced by two electrons or the fact that

electrons are indistinguishable spin-1/2 fermions. Therefore, it is mandatory to build a

more realistic model of the electron-electron interaction.
2From now on, V̂I,e will be written as V̂ext, which is a generalized form of the electron-nucleus interaction.
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Chapter 1 Density Functional Theory

Repulsion force can be easily included by adding a term that incorporates exchange

and correlation effects:

Ue,e =
1

2

∫∫
ρ2 (r, r′)

|r− r′|
drdr′ +

1

2

∫∫
ρ2 (r, r′)

|r− r′|
[g (r, r′)− 1] drdr′. (1.13)

On the other hand, we have to redefine the wave-function in such a way that it is anti-

symmetric in order to obey Pauli’s Exclusion Principle. This can be done by proposing

an anti-symmetrical many-body wave function in the form of a Slater determinant.

This approach is the Hartree-Fock approximation:

ΦHF
α (r) =

1√
N !


ϕα1 (r1) ϕα1 (r2) · · · ϕα1 (rN)

ϕα2 (r1) ϕα2 (r2) · · · ϕα2 (rN)
...

...
. . .

...

ϕαN (r1) ϕαN (r2) · · · ϕαN (rN)

 , (1.14)

where ϕαi (rj) is the jth one-electron wave-function at the αthi state. This is the result

of Hartree’s assumption that the many-electron wave function can be expressed as a

product of one-electron orbitals. Although the determinant in equation 1.14 satisfies

Pauli’s Exclusion Principle, there is still the lack of the correlation term that arises from

the interaction between electrons. However, it is important to highlight that despite the

fact that neglecting the electron-electron interaction is indeed a very crude approach,

solving a single-body problem is much more easier than a many-body one. This is the

reason why several mean field theories have been proposed for dealing the many-body

electron-electron pair-potential into a single-body operator that behaves as an external

potential, like the electron-nuclei interaction.

1.3 The Hohenberg-Kohn Theorems

Two main approaches were developed for understanding the interacting electron gas.

The first one treated the electrons as non-interacting particles that exhibit collective

excitations [2]. The other one, known as the Thomas-Fermi method [3, 4], defines

9



Chapter 1 Density Functional Theory

the atom as an ensemble of an negatively charged cloud, that is made of uniformly

distributed electrons, around a nuclei that is characterized by its spatial coordinates

and momentum, i.e. a six-dimensional phase space, in which the total energy of the

system could be represented as a functional of the electronic density nα (r).

In the early beginnings of Density Functional Theory (DFT), Hohenberg and Kohn

[5] proved that there exits an universal functional of the density F [nα (r)] that allow us

to calculate the ground-state energy Eα=0 [nα=0 (r)] associated with a certain external

potential Vext (r). The core of DFT lies on the two theorems proposed by Hohenberg

and Kohn [5, 6]:

Theorem 1: For any system of interacting particles in an external potential

Vext (r), the potential Vext (r) is determined uniquely, except for

a constant, by the ground state particle density nα=0 (r).

Proof:

Let’s suppose two different external potentials V 1
ext (r) and

V 2
ext (r) which differ by more than a constant. Each potential

leads to a different Hamiltonian, namely Ĥ1 and Ĥ2, which have

different ground state wave functions ψ1
α=0 and ψ2

α=0, which are

hypothesized to have the same ground state density nα=0 (r).

Since ψ2
α=0 is not the ground state of Ĥ1, we have:

E1
α=0 = 〈ψ1

α=0|Ĥ1|ψ1
α=0〉 < 〈ψ2

α=0|Ĥ1|ψ2
α=0〉.

Rewriting 〈ψ2
α=0|Ĥ1|ψ2

α=0〉:

〈ψ2
α=0|Ĥ1|ψ2

α=0〉 = 〈ψ2
α=0|Ĥ2|ψ2

α=0〉+ 〈ψ2
α=0|Ĥ1 − Ĥ2|ψ2

α=0〉

= E2
α=0 +

∫
nα=0 (r)

[
V 1
ext (r)− V 2

ext (r)
]
dr.
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Chapter 1 Density Functional Theory

Replacing into the first expression:

E1
α=0 < E2

α=0 +

∫
nα=0 (r)

[
V 1
ext (r)− V 2

ext (r)
]
dr.

Repeating the same procedure for E2
α=0 we obtain:

E2
α=0 < E1

α=0 +

∫
nα=0 (r)

[
V 2
ext (r)− V 1

ext (r)
]
dr.

Adding the two inequalities we finally get:

E1
α=0 + E2

α=0 < E1
α=0 + E2

α=0.

Since this result does not make any sense, it can be concluded

that is not possible that two different potentials can lead to the

same ground state density. Additionally, since the Hamiltonian

is fully determined, all the many-body wave functions for the

ground and excited states are also determined. Thus, if only the

ground state density nα=0 (r) is given, it is possible to determine

all the properties of the system.
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Theorem 2: An universal functional for the energy Eα [nα (r)] in terms of

the density nα (r) can be defined, valid for any external poten-

tial Vext (r). For any particular Vext (r), the exact ground state

(α = 0) energy of the system is the global minimum value of this

functional and the density nα (r) that minimizes the functional

is the exact ground state nα (r).

Proof:

If nα (r) is specified all the properties of the system can be

uniquely determined, therefore the total energy functional can

be expressed as:

EHK
α [nα (r)] = Te [nα (r)] + Ue,e [nα (r)] +

∫
nα (r)Vext (r) dr

= FHK [nα (r)] +

∫
nα (r)Vext (r) dr.

Let’s consider a system with ground state density n1
α (r), which

corresponds to the potential V1
ext (r). The Hohenberg-Kohn

functional
(
FHK [nα (r)]

)
is equal to the expectation value of the

Hamiltonian in the unique ground state that has wave function

ψ1
α.

E1
α = 〈ψ1

α|Ĥ1|ψ1
α〉.

Now, if we consider a different density n2
α (r), corresponding to

a different wave function ψ2
α, we obtain;

E2
α = 〈ψ2

α|Ĥ1|ψ2
α〉 > 〈ψ1

α|Ĥ1|ψ1
α〉 = E1

α.

Therefore, for any density nα (r) different from the ground state

density nα=0 (r), the energy evaluated by FHK [nα (r)] is greater.

12
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Thus, the universal functional FHK [nα (r)] does not depend explicitly on the external

potential, but on the electronic density of the system. Moreover, this functional is

sufficient to determine the exact solution of the full many-body Schrödinger equation,

and consequently its ground state energy and density.

1.4 The Kohn-Sham Equations

In order to implement DFT, Kohn and Sham [7] proposed a practical approach based

on separating the different energy contributions: the many-body problem is replaced

with an auxiliary system that is easier to solve. This new system, contrary to the

interacting electronic system, is a non-interacting one that would have the exactly

same ground state density. This implies, that the Hamiltonian of the non-interacting

electronic system is now separable:

He (r) =
N∑
i=1

[
− ~2

2m
∇2

ri
+ V KS (ri)

]
=

N∑
i=1

HKS (ri) . (1.15)

Here V KS (ri) is the reference potential in which the ground state density of He (r)

equals nα (r), and the Hohenberg-Kohn’s theorem ensures the equivalence between the

ground state energy and the energy of the non-interacting system. The total Kohn-

Sham state |ψKSα 〉 of the non-interacting electrons is exactly described by an anti-

symmetrized wave function of the Slater determinant type, made of one-electron or-

bitals. The Kohn-Sham one-electron states of the one-electron states |φαi〉 satisfy:

HKS|φαi〉 = εαi |φαi〉. (1.16)

Moreover, the density can be written in terms of the single-particle wave functions:

nα (r) =
N∑
i=1

|φαi (r) |2. (1.17)

From the second theorem of Hohenberg-Kohn, the electronic energy functional can

13
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be written as:

Ee [nα] = Te [nα] + Ee,e [nα] + Eext [nα] , (1.18)

where Eext [nα] corresponds to the electron-nuclei interaction energy:

Eext [nα] =

∫
drnα (r)Vext (r) . (1.19)

However the first two terms of equation 1.18 cannot be expressed in a straightforward

form as the third one. Then, it is necessary to determine the non-interacting kinetic

energy TKSe [nα]:

TKSe [nα] = 〈ψKSα |Te|ψKSα 〉

= −1

2

N∑
i=1

〈φαi |∇2|φαi〉 = −1

2

N∑
i=1

∫
drφ∗αi (r)∇2φαi (r) .

(1.20)

It is important to point out that the density dependence of TKSe [nα] is implicit and

comes from the density dependence of the single-electron wave functions φαi . Never-

theless, the expression derived in equation 1.20 is not the exact kinetic energy of the

interacting system. The error arises due to the lack of the correlation contribution to

the kinetic energy and it comes from the fact that the true many-body wave function

is not a Slater determinant. A similar procedure is followed to determine EKS
e,e [nα]:

EKS
e,e [nα] = 〈ψKSα |Ee,e|ψKSα 〉

= EH [nα] + EX [nα] ,
(1.21)

where:

EH [nα] =
1

2

∫∫
drdr′

nαi (r)nαi (r′)

|r− r′|
, (1.22)

is the Hartree energy and corresponds to the self-interaction of the electronic density,

and:

14
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EX [nα] = −1

2

∑
i,j

∫∫
drdr′

φ∗αi (r)φαi (r′)φ∗αj (r)φαj (r′)

|r− r′|
, (1.23)

is the electronic exchange energy which accounts for the antisymmetric nature of

the wave function. As it happened for TKSe [nα], EKS
e,e [nα] lacks of the correlation

contribution to the electron-electron energy. Taking this correlation terms into account,

we can rewrite the total energy functional from equation 1.18 as:

Ee [nα] = TKSe [nα] + EH [nα] + EX [nα] + Eext [nα] + TC [nα] + Ee,e,C [nα] . (1.24)

Given the nature of the problem, the only way to obtain the exact correlation contri-

bution is by solving the many-body Schrödinger equation, therefore mean field theories

such DFT the correlation terms are approximated to some degree. Additionally, given

the difficulty of evaluate EX [nα] in comparison with TKSe [nα], EH [nα], and Eext [nα],

it is a common approach to approximate the exchange energy as well. Thus, grouping

the terms that are approximate, we obtain the exchange and correlation term Exc [nα],

leading to the final form of the total energy functional:

Ee [nα] = TKSe [nα] + EH [nα] + Eext [nα] + Exc [nα] . (1.25)

If we know the functional Exc [nα], then the exact ground state energy and density

of the many-body problem could be found by solving the Kohn-Sham equations for a

non-interacting system.
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1.5 LDA and GGA Exchange-Correlation Function-

als

Many Exc functional have been proposed in the past years, however the most famous

approximation is the Local Density Approximation (LDA). LDA was first formally

introduced by Kohn and Sham [7], although the idea behind this approximation was

already used by Thomas, Fermi and Dirac in their theory. The approach of LDA

assumes the exchange-correlation energy contribution ELDA
xc [n] as a functional of the

ground state energy. The inhomogeneous electronic system is considered as a locally

homogeneous electron gas in which the exchange-correlation hole can be calculated at

every point r with electronic density [nα] accurately, and its energy can be written in

terms of the average energy of the homogeneous electron gas εHEGxc [n (r)] [8], where the

energy remains constant throughout space3:

ELDA
xc [n] =

∫
drn (r) εHEGxc [n (r)] . (1.26)

In practice, εHEGxc [n (r)] is parametrized as εHEGxc [n (r)] ≡ εLDAxc [n (r)] = εLDAx [n (r)]+

εLDAc [n (r)], where the calculation of the correlation term depends on the nature of the

density of the system, therefore several parametrizations of this term have been carried

out [9, 10, 11, 12, 13, 14, 15]. On the other hand, exchange term is computed as:

εLDAx [n] = −3

4

(
3

π

)
n1/3. (1.27)

Despite its simplicity, LDA has proven to behave better than expected and is still

used today. However, major issues such as its failure for dealing systems which inho-

mogeneities are high or the overestimation of binding energies, and consequently the

underestimation of the bond lengths, have motivated the develop of semilocal approx-

imations that try to take into account the inhomogeneities in the electronic density.

This is done within the Generalized Gradient Approximation (GGA) scheme, where

non-local terms are included in order to introduce a correction with the gradient of the

density:

3For simplicity, we drop the α = 0 indices.
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EGGA
xc [n] =

∫
drn (r) εxc [n (r) , |∇n (r)] . (1.28)

Over the years several gradient expansions have been proposed [16, 17, 18] and they

have marked an improvement over LDA in different aspects such as binding energies,

atomic energies, bond lenghts, and angles. For this work, our calculations were per-

formed using the PBE (PBE) [18] parametrization of the Exc:

EPBE
xc [n] = EPBE

x [n] + EPBE
c [n] . (1.29)

The exchange energy EPBE
x [n] in the PBE functional has the form:

EPBE
x [n] =

∫
dr [n] εLDAx [n (r)]Fx (s) , (1.30)

where εLDAx [n (r)] is the same used in LDA (equation 1.27). Fx (s) introduces the

gradient correction to the density:

Fx (s) = 1 + κ− κ

1 + µs2/κ
, (1.31)

with s = |∇n|
6n3/4 and κ ≤ 0.804. On the other hand, the correlation term EPBE

c [n] has

the form:

EPBE
c [n] =

∫
drn (r)

(
εLDAc [n (r)] +H [n (r) , ζ, t]

)
, (1.32)

where εLDAc [n (r)] is the correlation contribution to the energy from LDA.H [n (r) , ζ, t]

is built as:

H [n (r) , ζ, t] = γφ3ln

[
1 +

β

γ
t2
(

1 + At2

1 + At2 + A2t4

)]
. (1.33)

Here, φ =
[
(1 + ζ)2/3 − (1− ζ)2/3

]
/2 is a spin-scaling factor with magnetization

density ζ. The density gradient parameter is defined as t = |∇n|/2φksn, where ks is

the Thomas-Fermi screening wave number. γ = [1− ln (2)] /π2 and the function A has
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the following form:

A =
β

γ

[
e−ε

LDA
c [n]/(γφ3) − 1

]
. (1.34)

Finally, the parameter µ introduced in the equation 1.31 is related to β via:

µ =
π2

3
β. (1.35)
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2 Electronic Structure

Condensed phases in general are macroscopic objects that are made up of a immense

number of atoms, of the order of Avogadro’s number (∼ 6×1023). In a microscopic scale,

crystalline solids can be effectively treated as infinite by means of a basis constituted

by a few atoms that is replicated periodically uninterruptedly along one, two, or three

directions in space. Bloch’s theorem is used to take advantage of the periodicity of the

system, making the analysis and its implementation, much easier.

The methodological efforts also include different types of representation of the non-

valence electrons, in an attempt to describe the electron wave functions in an accurate,

yet computationally favorable way. This is achieved with pseudopotentials and other

related techniques, such as the projector augmented wave method.

2.1 Bloch’s Theorem and Plane-Wave Basis Sets

In a perfect crystal, the ions are arranged in a regular, periodic array, that is charac-

terized by a Bravais lattice, whose position vectors R are of the form:

R = n1a1 + n2a2 + n3a3, (2.1)

where ni and ai are integers and the primitive lattice vectors (not all in the same

plane), respectively. For a deeper understanding of periodic structures, it is necessary

introduce the reciprocal lattice, which can be constructed from the three primitive

vectors:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, b2 = 2π

a1 × a1

a1 · (a2 × a3)
, b3 = 2π

a1 × a2

a1 · (a2 × a3)
. (2.2)
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The primitive vectors of the reciprocal lattice must satisfy bi · aj = 2πδij, where

δij = 0, i 6= j and δij = 1, i = j. Now, any vector k can be written as a linear

combination of the bi:

G = m1b1 +m2b2 +m3b3. (2.3)

Due to the periodic structure of a crystal lattice the Hamiltonian is periodic, thus

for any R:

He (r) = He (r + R) . (2.4)

Which also holds for any effective single-electron Hamiltonian and potential, and

keeping the same notation are HKS (r) and V KS (r), respectively. Bloch’s theorem [19]

states that the single-electron solutions must be of the following form:

φnk (r) = eik·runk (r)

φnk (r + R) = eik·Rφnk (r) ,
(2.5)

where unk (r) has the periodicity of the lattice, n is a band index, and k is the wave

vector of the electron. Several methods have been proposed to solve the Kohn-Sham

equations in periodic systems, such as pseudopotentials and the projector augmented

wave method (PAW), which will be explained in the following sections.

2.2 Pseudopotentials

We consider valence electrons4 to be those outside of a closed shell configuration. The

s and p electrons are usually considered valence electrons, since they are responsible

for bonding. This is why, in some cases, it is more convenient to treat valence electrons

and core electrons separately, being these core electrons those that are tightly bound

to the nuclei and are not involved in chemical bonding. Therefore, one can neglect the
4Although all electrons are the same, this language abuse is used to indicate single-particle electronic states,

rather than electrons themselves.
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consequences of core electrons in the valence electrons’ wave functions by treating the

first ones as frozen orbitals. The effective core potential, or pseudopotential, represents

the nucleus with its core electrons and it reduces significantly the number of degrees of

freedom of the electron gas, because the number of electrons that are treated explicitly

is smaller, therefore the amount of computational resources that are need decreases as

well.

Once the wave functions inside the core region can be neglected, these can be replaced

with a smooth, nodeless function ψ̌i (r) that outside the cutoff radius Rc, coincides

with the all-electron wave function ψi (r). Thus, the pseudo-wave function ψ̃i (r) is

constructed as follows and it is shown in figure 2.1.

ψ̃i (r) =

ψ̌i (r) , for |r| < Rc

ψi (r) , for |r| ≤ Rc.
(2.6)

Figure 2.1: Schematic illustration of all-electron (blue, dashed lines) and a pseudoelectron (red, solid
lines) potentials and their corresponding wave functions. The radius at which all-electron and pseu-
doelectron values match is the cutoff core radius Rc (black, dotted line).

The pseudopotential approximation has established itself as an accurate method

for studying structural properties in solids, despite the inevitable (sometimes large)

deviations from the experimental values, which are caused by the density functional

method used and not the by use of the pseudopotential approximation [20]. However,
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when core-valence correlation or-overlap effects, among others, become relevant it is

then necessary to reevaluate the use of pseudopotentials. For instance, in the theoretical

study of materials under high-pressure it is mandatory to have certainty that the valence

densities of the neighbouring atoms do not penetrate significantly into the core region

of the atom carrying a pseudopotential. In cases like that, single-point all-electron

calculations at the optimized pseudopotential geometry are advisable.

2.3 Projector Augmented Wave Method

The implementation of the Projector Augmented Wave (PAW) method [21] overcomes

deficiencies of the pseudopotential method for dealing with d and f orbitals. Near the

ion core, the wave function oscillates rapidly (see figure 2.1, blue dotted line) and this

implies that a very fine mesh is required to describe the wave functions accurately- The

PAW approach deals with these oscillatory wave functions by transforming them into

smooth wave functions and providing a way to compute the all-electron properties from

them.

Let’s consider an atom a enclosed within some atom-specific augmentation region

|r−R| < rac , where rac is the cutoff radius of that region. The all-electron wave function5

is related to a pseudo-wave function as:

|ψi〉 = T̂ |ψ̃i〉. (2.7)

It is important to remember that after a certain distance from the core, the true

wave function is already smooth, therefore, T̂ should modify it in the region near the

nuclei:

T̂ = 1 +
∑
a

T̂ a, (2.8)

5The all-electron wave function corresponds to the Kohn-Sham single particle wave function and it should
not be confused with the many-body wave function.
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thus, the effect of T̂ a is limited to the augmentation region.

In the augmentation region, and around each atom a, it is convenient to expand the

pseudo-wave function into pseudo-partial waves:

|φan〉 =
(

1 + T̂ a
)
|φ̃an〉

= |φ̃an〉+ T̂ a|φ̃an〉 =⇒ T̂ a|φ̃an〉 = |φan〉 − |φ̃an〉.
(2.9)

Outside the augmentation region T̂ a should be doing nothing, implying that φan (r) =

φ̃an (r). Inside the augmentation region the partial waves form a complete set, therefore

we can expand the pseudo-wave functions as:

|ψ̃i〉 =
∑
n

cn|φ̃an〉. (2.10)

Given the linear nature of the T̂ a operator, the coefficients cn can then be written

as an inner product with a set of projector functions |p̃an〉:

cn = 〈p̃an|ψ̃i〉. (2.11)

The projector must be localized within its own augmentation region. Additionally,

since the augmentation spheres do not overlap, we expect to one center expansion of

the smooth wave function |ψ̃ai 〉 =
∑

n |φ̃an〉〈p̃an|ψ̃i〉 to reduce to |ψ̃i〉 itself inside the aug-

mentation sphere. Therefore, the smooth projector function must satisfy the following

condition inside the augmentation sphere:∑
n

|φ̃an〉〈p̃an| = 1. (2.12)

This also implies that the projector functions should be orthonormal to the smooth

partial waves inside the augmentation sphere:

〈p̃an1
|φ̃an2
〉 = δn1,n2 , for|r−R| < rac . (2.13)

Using the completeness relation (equation 2.12) and equation 2.9, into T̂ a we have
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that:

T̂ a =
∑
n

T̂ a|φ̃an〉〈p̃an| =
∑
n

(
|φan〉 − |φ̃an〉

)
〈p̃an|. (2.14)

Taking into account that outside the augmentation region T̂ = 1 and φan (r)−φ̃an (r) =

0, we can rewrite equation 2.8 as:

T̂ = 1 +
∑
a

∑
n

(
|φan〉 − |φ̃an〉

)
〈p̃an|. (2.15)

Replacing T̂ into equation 2.7 we can then obtain the complete wave function in the

PAW formalism:

|ψi〉 =

[
1 +

∑
a

∑
n

(
|φan〉 − |φ̃an〉

)
〈p̃an|

]
|ψ̃i〉

= |ψ̃i〉+
∑
a

∑
n

〈p̃an|ψ̃i〉
(
|φan〉 − |φ̃an〉

)
.

(2.16)

2.4 Computational Method

Our electronic structure calculations were carried out using the software suite Quantum

ESPRESSO [22, 23]. The self-consistent calculation for the electronic energy is described

in the following flowchart:

The initial wave function guess is built by the superposition of the individual atom’s

valence electron wavefunctions. This density allows us to construct the V KS potential,

and consequently solve the Kohn-Sham eigenvalue equation (1.16). The new eigenfunc-

tions provide a new electronic density to start over a new cycle. The calculation stops

when a convergence value (defined by the user at the beginning of the calculation) is

reached for the total energy.

In order to obtain the exact Kohn-Sham state an infinite number of plane waves are
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Figure 2.2: Reduced flowchart of the self-consistent sequence for solving the Kohn-Sham equation.
|∆E| is the difference between two consecutive self-consistent cycles and ε is the chosen threshold.

need. As this is, in practical terms, impossible, one must fix an energy cutoff for the

plane waves: Ecutoff ≥ 1/2|k + G|. This value determines the number of G vectors in

the expansion that satisfy the desired accuracy of the electronic energy. Additionally,

the number of k vectors in the first Brillouin zone for an ideal crystal is also infinite.

Instead, a Monkhorst-Pack grid [24] is chosen and optimized. Both, Ecutoff and k points

grid, depends on both the system to analyze and the pseudopotentials used. Finally, for

a better and faster convergence in metallic systems, a smeared function is introduced

for calculating the ground state density. This was done by introducing a low electronic

temperature using the Fermi-Dirac smearing function.
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3 The Nuclear Problem

The adiabatic Born-Oppenheimer approximation makes a distinction between the mo-

tion of the electrons and the nuclei, thus, leaving us with two equations to solve. So

far, we have shown the way of solving the first equation, corresponding to the electronic

part. Although many properties of solids are directly related to the electronic degrees

of freedom, many others, such as superconductivity and thermal conductivity, originate

from the nuclear motion. The nuclear Schrödinger equation (1.5) holds the information

about the ionic motion, and it is solved for the electronic ground state (α = 0).

3.1 The Harmonic Approximation

In a crystal structure, its equilibrium lattice sites correspond to the positions of the

ions at the local minimum of the Born-Oppenheimer energy surface. From now on, the

nuclear positions are not fixed parameters any longer, therefore, we can now define the

position of an ion s that has a displacement u from its equilibrium position as:

Rs = R0
s + us. (3.1)

In order to know about the nuclear motion, and the physical properties related with

it, we can calculate the contribution of atomic vibrations to the free energy of the

system trough the harmonic approximation (HA). The goal in this approximation is

to find the normal modes of a crystal by calculating the energies (or frequencies) of

the non-interacting phonons as a function of their wave vectors q. This approximation

relies on the following two assumptions [25]:

- The displacements of the atoms are small and around their equilibrium positions.

- The interatomic potential U(R) can be expanded in a Taylor series and we keep only

its quadratic term.
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In fact, according to the second condition we have:

U(R) = U(R0) +
∑
msl

∂U

∂ulms

∣∣∣∣
R0

ulms +
1

2

∑
msl

∑
m′s′l′

∂2U

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

ulmsu
l′

m′s′

+
1

6

∑
msl

∑
m′s′l′

∑
m′′s′′l′′

∂3U

∂ulms∂u
l′
m′s′∂u

l′′
m′′s′′

∣∣∣∣
R0

ulmsu
l′

m′s′u
l′′

m′′s′′ + (. . . ),

(3.2)

where m runs up to the the number of q-points6 in the first Brilloiun zone Nq; s up

to the maximum number of atoms per unit cell; and l runs for the Cartesian coordinates

x, y, and z.

In equation 3.2, U(R0) is a constant with no relevance for the dynamical problem.

The partial derivative of the second terms produces a force and, by definition, must be

zero at equilibrium. Finally, if we truncate the expansion up to the quadratic term, the

nuclear Hamiltonian of any atom corresponds to a simple three-dimensional harmonic

oscillator:

HI(R) ≈ U(R0) +
∑
msl

(
P l
ms

)2
2ms

+
1

2

∑
msl

∑
m′s′l′

Φll′

msm′s′u
l
msu

l′

m′s′ , (3.3)

where:

Φll′

msm′s′ ≡
∂2U

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

. (3.4)

And it corresponds to the interatomic force constants. The Fourier transformed force

constants are defined as:

Φll′

ss′ (q,q
′) =

1

Nq

∑
mm′

Φll′

msm′s′e
−i(q·Rms+q′·Rm′s′ )

= Φll′

ss′ (q) = Φll′

ss′ (q,−q) =
∑
m

Φll′

msm′s′e
−i(q·Rms).

(3.5)

Similarly, let’s define the Fourier transforms of the nuclear displacement and mo-

6The number of q-points are not necessarily the same number of k points Nk used for the electronic structure
calculation.
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mentum operators:

uls (q) =
1√
Nq

∑
n

eiq·Tmulms; (3.6)

P l
s (q) =

1√
Nq

∑
n

e−iq·TmP l
ms. (3.7)

By assuming the following transformation to the bosonic ladder operators,

us (q) =
∑
µ

1√
2msωµ (q)

εlsµ (q)
(
bµq + b†µ−q

)
; (3.8)

Ps (q) = −i
∑
µ

√
msωµ (q)

2
εlsµ (q)

(
bµq − b†µ−q

)
, (3.9)

where εsµ (q) and ωµ (q) are the polarization vector (of atom s in the unit cell) and

the vibrational mode µ with momentum q, respectively. Additionally, the following

commutation relation are satisfied:

[
bµq, b

†
µ′q′

]
= δµµ′δqq′ , [bµq, bµ′q′ ] = 0,

[
b†µq, b

†
µ′q′

]
= 0. (3.10)

The nuclear Hamiltonian can be diagonalized and written, in the second quantiza-

tion, as a sum of independent harmonic oscillators [19]:

HI = U0 +
∑
µ

1stBZ∑
q

ωµ (q)

(
b†µqbµq +

1

2

)
, (3.11)

where the eigenvalues are defined as:

Ωµ (q) = U0 + ωµ (q)

(
nµq +

1

2

)
. (3.12)

Here, U0 is the ground state electronic energy of the system at equilibrium and it

already includes the contribution due to the ion-ion interaction. The vibrational modes

ωµ (q) are the phonon frequencies that allow us to determine the phonon spectrum,
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which is the phonon frequency vs. momentum dispersion relation. Finally, the polar-

ization vectors (eigenvectors) and phonon frequencies (eigenvalues) can be obtained by

diagonalizing the dynamical matrix Dll′

ss′ = Φll′

ss′ (q) /
√
msms′ :

ω2
µ (q) εlsµ (q) =

∑
s′

∑
l′

Dll′

ss′ (q) εl
′

s′µ (q) . (3.13)

With the advent of methods for solving the Schrödinger equation based on den-

sity functional theory (DFT), several ab initio methods for studying harmonic phonon

properties of solids have been proposed, such as the frozen phonon approach [26, 27],

supercell small displacement method [28, 29] and density functional perturbation the-

ory (DFPT) [30]. Because of these developments, ab initio calculations of harmonic

phonon dispersion curves and phonon mode Grüneisen parameters have become rou-

tine. Therefore, effects related to the lattice dynamics, such as lattice specific heat,

Debye-Waller factors, thermal diffuse scattering, among others, that are correctly de-

scribed within the harmonic approximation, can be (relatively easily) estimated due to

the optimized computational codes that are available nowadays.

3.2 Linear Response Theory for Phonons

Once the nuclear problem is formulated, it is necessary to solve the derivatives of U that

appear in equation 3.4 for obtaining the dynamical matrices. An ab initio calculation

of these derivatives is a burdensome task. Fortunately, through the Hellmann-Feynman

theorem [31, 32] the first derivative of the energy can be calculated in a much easier

manner:

∂U

∂ulms
= 〈ψe0|

∂He

∂ulms
|ψe0〉 =

∂VI,I
∂ulms

+

∫
dxn (x)

∂Vext (x)

∂ulms
. (3.14)

Similarly, the dynamical matrices can be obtained from equation 3.14 as:
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Φll′

msm′s′ =
∂2U

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

=

∫
dxn (x)

∂n (x)

∂ulms

∣∣∣∣
R0

∂Vext (x)

∂ulms

∣∣∣∣
R0

+

∫
dxn (x)

∂2Vext (x)

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

+
∂2VI,I (x)

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

.

(3.15)

Equation 3.15 shows how the electronic properties can be used for calculating phonons.

However, it requires to know the electronic density n (x) and its derivative with respect

to the nuclear positions ∂n(x)
∂ulms

. The latter can be calculated from linear response theory:

the density response function χ (x,x′) relates the change in the electronic density due

to any external potential7 Vext:

∆n (x) =

∫
dx′χ (x,x′) ∆Vext (x′) . (3.16)

If we assume that the electron-ion potential changes linearly with respect to the

nuclear displacements, we can expand any function f that depends on this parameter

as f (x) = f 0 (x) + ∆f (x), where the first term corresponds to the value of f evaluated

at the equilibrium positions of the ions, and:

∆f (x) =
∑
msl

∂f (x)

∂ulms

∣∣∣∣
R0

ulms, (3.17)

thus, the derivative of the density can be expressed as:

∂n (x)

∂ulms
=

∫
dxχ (x,x′)

∂Vext (x′)

∂ul
′
m′s′

. (3.18)

Now, it is straightforward to rewrite the dynamical matrix in terms of the electronic

density response function:

7For lattice vibrations, the external potential is the change due to the displacements of the ions from their
equilibrium positions that modify the electron-ion interaction.
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∂2U

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

=

∫
dxdx′

∂Vext (x)

∂ulms

∣∣∣∣
R0

χ (x,x′)
∂Vext (x′)

∂ul
′
m′s′

∣∣∣∣
R0

+

∫
dxn (x)

∂2Vext (x)

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

+
∂2VI,I (x)

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

.

(3.19)

The density response is calculated as:

χ (x,x′) = lim
η→0+

∑
α

〈ψe0|n (x) |ψeα〉〈ψeα|n (x′) |ψe0〉
(Ee

0 − Ee
α) + iη

+
〈ψe,0|n (x′) |ψeα〉〈ψeα|n (x) |ψe,0〉

(Ee
0 − Ee

α)− iη
(3.20)

Although this method has proven to be successful when applied to several systems

[33, 34, 35, 36], it has some limitations as well, being very critical the extremely high

demand of computation resources for calculating ab initio the response function for real

systems. This flaw was overcame by means of the perturbation theory.

3.3 Density Functional Perturbation Theory

As the name suggests, this approach takes advantage of the first order perturbation

theory for calculating, from the displacements of the ions from their equilibrium posi-

tions, the variation of the Kohn-Sham orbitals. This allows us to obtain the induced

electron density and finally get the force constant matrix.

We begin by making a first order expansion in the following quantities:

HKS → HKS + ∆HKS;

εnk → εnk + ∆εnk;

|φnk〉 → |φnk〉+ ∆|φnk〉;

n (x)→ n (x) + ∆n (x) .

(3.21)

With them, we obtain an eigenvalue problem at linear level:
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(
HKS − εnk

)
|∆ψnk〉 = HKS|∆ψnk〉+ ∆HKS|∆ψnk〉 − εnk|∆ψnk〉 −∆εnk|∆ψnk〉

+HKS|ψnk〉 −HKS|ψnk〉+ εnk|ψnk〉 − εnk|ψnk〉

+ ∆HKS|ψnk〉 −∆HKS|ψnk〉+ ∆εnk|ψnk〉 −∆εnk|ψnk〉

= HKS|ψnk + ∆ψnk〉+ ∆HKS|ψnk + ∆ψnk〉

−
(
HKS + ∆HKS

)
|ψnk〉 − εnk|ψnk + ∆ψnk〉

−∆εnk|ψnk + ∆ψnk〉+ (εnk + ∆εnk) |ψnk〉

= HKS|ψnk〉+ ∆HKS|ψnk〉 −HKS|ψnk〉 − εnk|ψnk〉

−∆εnk|ψnk〉+ εnk|ψnk〉

=
(
∆HKS −∆εnk

)
|ψnk〉.

(3.22)

This expression is know as the Sternheimer equation [37] and is the perturbed version

of equation 1.16.

The electronic density is calculated by filling the electronic states of energy ε follow-

ing the zero temperature Fermi-Dirac distribution 2 [θ (εF − ε)]:

n (x) =
∑
n

1stBZ∑
k

2θ (εF − εnk) |φnk (x) |2, (3.23)

where εF is the Fermi energy of the system, which indicates the energy of the highest

occupied electronic state, and the factor 2 is included to account for spin-degeneracy.

The change in the electronic density is obtained by a simple derivation of equation 3.23:

∆n (x) = 2Re
∑
n

1stBZ∑
k

2 [θ (εF − εnk)]φ∗nk (x) ∆φnk (x) . (3.24)

Finally, we get the change in the Hamiltonian ∆HKS using the functional derivative

of the electron-electron interaction potential with respect to the density:

∆HKS (x) = ∆Vext (x) +

∫
dxK (X,x′) ∆n (x′) , (3.25)
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where K (X,x′) is the kernel of the integral and is defined as:

K (x,x′) =
δVH (x)

δn (x′)
+
δVxc (x)

δn (x′)
=

1

|x− x′|
+ fxc (x,x′) . (3.26)

Equations 3.22, 3.24, and 3.25, form a set of self-consistent equations for the per-

turbed system and follows a similar procedure as the one described in figure 2.2.

Our dynamical matrices were calculated using the ph.x code of the PHonon package

of Quantum ESPRESSO [22, 23]. Since DFPT calculations require a large amount of

computational resources, the first Brillouin zone in a q-point mesh and the phonons

are calculated only at those points. The force constant matrix is obtained by using

a discrete Fourier transform as implemented in the q2r.x code of the same package.

Finally, we obtain the phonon spectra by performing a Fourier interpolation in the

reciprocal space. This is done by making use of the matdyn.x code that is also available

in the PHonon package.

3.4 The Quasi-Harmonic Approximation

Although widely used, the harmonic approximation (HA) has some severe flaws that

make this model imprecise for the description of several thermal properties. For in-

stance, since the vibrational frequencies do not depend on interatomic distances, the

vibrational contribution to the internal energy does not depend on volume, therefore,

the equilibrium volume of a crystal does not depend on temperature. Apart from

this, the harmonic approximation predicts an infinite thermal conductivity, vibrons or

phonons with an infinite lifetime, and the temperature independence of the vibrational

spectra [38].

As a way to correct some of the biggest errors in the harmonic approximation, the

quasi-harmonic approximation (QHA) was proposed [39, 38]. QHA deals with some of

the most relevant inaccuracies of the HA without requiring any explicit calculation of

anharmonic interaction coefficients, and has been used with density functional theory

(DFT) and density functional perturbation theory (DFPT) in several applications that
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are relevant for planetary sciences. In the QHA, the anharmonicity is considered as a

weak effect, and, by taking into account only the thermal expansion, the atomic force

constants and the phonon frequencies are renormalized [25].

The Helmholtz free energy of the crystal is determined via the regular harmonic

expression, but constraining it to some global parameter upon which vibrational fre-

quencies may depend:

F (X,T ) = U0 (X) + F0 (q|X) + Fthermal (q, T |X) , (3.27)

where X is the global constrain, which is usually the volume8 V . Thus if X = V ,

the lattice vibrations remain harmonic but with volume-dependent frequencies. On the

other hand, U0 (X) is the electronic energy at zero temperature, and F0 (q|X) is the

zero-temperature energy of the crystal as a function of V :

F0 (q|V ) ≡ F0 (q) =
1

2

1

Nq

∑
µ

1stBZ∑
q

ωµ (q) . (3.28)

And the thermal free energy is given by:

Fthermal (q, T |V ) ≡ Fthermal (q, T ) = − 1

Nq

kBT ln (Zthermal)

= − 1

Nq

kBT ln

1stBZ∏
q

∑
n(q)

∑
µ

e−nωµ(q)/kBT


= − 1

Nq

kBT ln

[
1stBZ∏

q

∑
µ

(
1− e−ωµ(q)/kBT

)−1]

=
1

Nq

kBT

1stBZ∑
q

ln
∑
µ

(
1− e−ωµ(q)/kBT

)
.

(3.29)

The equation of state can be obtained when equation (3.29) is differentiated with

8Thus, the free energy of the crystal does not depend any longer on the coordinates of the atoms, but only
on its volume.
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respect to volume:

P = −∂F
∂V

∣∣∣∣
T

= −∂U0

∂V
+

1

V

1stBZ∑
q

ln
∑
µ

ωµ (q) γµ (q)

(
1

2
+

1

eωµ(q)/kBT − 1

)
, (3.30)

where γµ (q) are the Grüneisen mode parameters and are defined as:

γ µ (q) = − V

ωµ (q)

∂ωµ (q)

∂V
. (3.31)

Nevertheless, perhaps due to the simplicity of both harmonic and quasi-harmonic ap-

proximations, that also make them easy to implement in computational codes, these two

approaches fail when they try to explain properties and phenomena that are related to

thermodynamic, kinetic and dynamic properties of strongly anharmonic lattices. One

case in which these situations occur is when the atomic displacements around their

equilibrium positions are much larger than the range in which the harmonic potential

is valid. Similar behavior has been observed when systems are close to a dynamical

instability, light atoms are present, or when the temperature is close to the melting

point of the solid. In these instability scenarios, i.e., materials close to a temperature

or pressure-induced phase transition, it is mandatory the inclusion of anharmonic cor-

rections to the free energy for describing accurately the thermodynamic properties of

the system of study.

3.5 Anharmonic Corrections to the Helmholtz En-

ergy

The definition of harmonic and anharmonic varies from one treatment to another. In

this context, the word harmonic means that the modal are independent of both V

and T ; on the other hand the quasi-harmonic approximation assumes that the modal

frequencies are independent of T but dependent on V , as (∂lnωµ (q) /∂lnT )V is zero.

Therefore, it can be asserted that there is some anharmonicity in the quasi-harmonic
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approximation because the bond oscillations are no longer strictly sinusoidal. Thus,

anharmonicity can be defined as contributions in T terms to the free energy beyond

those arising from the quasi-harmonic thermal energy.

Several attempts have been proposed to include anharmonicities, being ab initio

molecular dynamics (AIMD) [40] one of the most commonly used. However, since AIMD

is based on Newtonian mechanics, quantum nuclear effects are not well characterized.

Therefore, AIMD is limited to temperatures above the Debye temperature. A way to

overcome this limitation is to use quantum baths [41, 42], but this solution has the

disadvantage that it is only valid for harmonic potentials [43, 44]. Nevertheless, this

problem can be overcome by using path-integral molecular dynamics (PIMD) [45], but

it requires massive computational resources, making its implementation very restricted.

Recently, a new method [46] has been developed to deal with anharmonic effects be-

yond perturbation theory: the stochastic self-consistent harmonic approximation (SS-

CHA). In this method, the free energy is minimized with respect to a trial density

matrix described by an arbitrary harmonic Hamiltonian. The minimization is done

with respect to all the free parameters in the trial harmonic Hamiltonian, like phonon

frequencies and eigenvectors, and by following a stochastic procedure, the gradient of

the free energy is calculated. This approach is valid to treat anharmonicities at any

temperature in the nonperturbative regime and can be used to calculate thermody-

namic and dynamical properties, among others, being less computationally expensive

than PIMD.

3.5.1 The Stochastic Self-Consistent Harmonic Approxima-

tion

Given the nuclear Hamiltonian H = TI + U , its partition function is ZH = tr
[
e−βH

]
and the Helmholtz free energy is:

FH = − 1

β
ln (ZH) = tr (ρHH) +

1

β
tr [ρH ln (ρH)] , (3.32)
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where ρH = e−βH/tr
(
e−βH

)
corresponds to the density matrix and 1/β = kBT . The

trial Hamiltonian is defined as H = TI + U and we can build a trial density matrix ρH

from it. Analogously, we can write its corresponding free energy as:

FH = tr (ρHH) +
1

β
tr [ρHln (ρH)] . (3.33)

By computing the free energy with the actual anharmonic Hamiltonian H, but using

the trial density matrix ρH we obtain:

FH (H) = tr (ρHH) +
1

β
tr [ρHln (ρH)] , (3.34)

which satisfies the Gibbs-Bogoliubov inequality:

FH ≤ FH (H) . (3.35)

Adding and subtracting tr (ρHH) in equation 3.34:

FH (H) = tr (ρHH) +
1

β
tr [ρHln (ρH)] + tr (ρHH)− tr (ρHH)

= tr (ρHH) +
1

β
tr [ρHln (ρH)] + tr (ρHH − ρHH)

= FH (H) + tr [ρH (H −H)]

= FH (H) + tr [ρH (U − U)] .

(3.36)

This is the function that has to be minimized with respect to the trial Hamiltonian

H The trial potential U is restricted to a harmonic one, so H takes the form:

H =
∑
ms

∑
l

(
P l
ms

)2
2mms

+
1

2

∑
mm′

∑
ss′

∑
ll′

ũlmsΦ̃
ll′

mm′ss′ũ
l′

m′s′ , (3.37)

where Φ̃ll′

mm′ss′ is the trial force constant matrix and the atomic displacements ũm′s′

are referred to the average nuclear positions R̃0.
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FH (H) has to be minimized with respect to Φ and this implies the implicit mini-

mization with respect to phonon frequencies ωµH and polarization vectors εmsµH from the

diagonalization of the force constant matrices. Furthermore, it also has to be minimized

with respect to R̃0, which are not necessarily the R0 positions of the minimum of the

energy landscape.

The expression for FH (H) and its gradients are the following

FH (H) = FH +

∫
dR [U (R)− U (R)] ρH (R) ; (3.38)

∇R̃0FH (H) = −
∫

dR [f (R)− fH (R)] ρH (R) ; (3.39)

∇Φ̃FH (H) = −
∑

mm′ss′ll′µ

√
ms′

ms

[
εlmsµH∇Φ̃ln (aµH) +∇Φ̃ε

lm
sµH
]
εl
′m′

s′µH

×
∫

dR
[
f lms (R)− f lmsH (R)

] (
Rl′m′

s′ −Rl′m′0
s′

)
ρH (R) ,

(3.40)

with:

aµH =
√

coth (βωµH/2) (2ωµH), (3.41)

which is known as the normal length of the mode µ, and R ≡ {RI . . . RM} corre-

sponds to the nuclear configuration. ρH (R) holds for the probability to find the system

described by H in that configuration R. Finally f (R) is the vector formed by all the

atomic forces for the nuclear configuration R and fH (R) are the forces defined by H.

The only non-analytic terms in equations 3.38, 3.39, and 3.40, are the integrals and, of

course, the actual forces f (R).

Since integrals are non-analytic terms, evaluating them becomes a challenging, time-

consuming task. Within SSCHA, these integrals are evaluated stochastically by con-

verting them in a finite sum using the relationship:
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∫
dRO (R) ρ (R) ' 1

Nc

Nc∑
I=1

O (RI) ≡ 〈O〉. (3.42)

The set of RI configurations is created according to the distribution ρ (R). Oh is

any operator and Nc is the number of configurations we have created. In the limit

Nc →∞, we can recover the exact value of the integral.

The Conjugated-Gradient (CG) method is used for the minimization and it is carried

out in a subspace of the parameters that preserve crystal symmetries: a symmetrized

Figure 3.1: Flowchart of the SSCHA procedure. The step marked in red corresponds to the ab initio
calculation of the total energies and forces on the supercells, representing (almost) all the computer
time of the SSCHA implementation. Taken from Ref. [46].
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vector basis is used to define Φ̃ and R̃0, and this allows us to obtain a different num-

ber of independent coefficients Np to minimize, that will depend on the system. The

minimization process is described in figure 3.1.

The initial trial Hamiltonian H0 is usually the harmonic Hamiltonian obtained in

the phonon calculation using DFPT9. With this Hamiltonian, along with the ρH0 (R),

the Nc configurations are created. For each configuration the energy and the forces

are calculated using supercells. These quantities allow us to evaluate the integrals in

3.38, 3.39, and 3.40, and perform a conjugates-gradient step, that will update R̃0 and

Φ̃ leading us to a new Hj. Since each CG step is computationally demanding, create

a new configuration from every new ρHj would make the SSCHA minimization process

very inefficient. As a mechanism for improve the method, a re-weighting importance

sampling technique is used that allows rewriting equation 3.42 as:

∫
dRO (R) ρ (R) ' 1

Nc

Nc∑
I=1

O (RI)
ρHj
ρHj0

. (3.43)

Here, j0 is the latest iteration at which configurations were created. The configu-

rations created with Hj0 can be reused as long as the deviation of 〈 ρHj
ρHj0
〉 from unity

is not larger than a fixed parameter η, and, in case this happens, new configurations

will be created with Hj. The minimization process ends when the chosen convergence

criterion is achieved.

9It is important to address that the harmonic Hamiltonian cannot be used if the system is unstable in the
harmonic approximation.
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4 Electronic Structure Calculations at

Extreme Pressure

Density functional theory is one of the most popular electronic structure methods and

it has an inherent advantage since the convergence to the exact solution is systematic.

Electronic structure calculations aim to numerically solve the Schrödinger equation for

a system with only the basic description provided. However, it is well known that

because of its nature it is impossible to solve such an equation unless one makes few

approximations. To obtain the approximate eigenstates, approximations are made on

various levels. The treatment of electron-electron interactions is the principle source

of difficulty: the physical and chemical properties of a system depend principally on

the interaction of the electrons with each other and with the atomic cores. These

interactions cannot easily be separated out or treated without approximation.

4.1 PAW vs. all-electron

Due to the extensive acceptance of density functional theory, there are a large amount of

dedicated codes that are available for the scientific community for calculating physical

properties of crystals and molecules. Thus, it is only natural to expect that they

exhibit some level of differences between them in terms of implementation of the DFT

formalism by the developers. This technical discrepancy was a major issue a decade ago

given the lack of a consensus on the results obtained with older DFT implementations.

Fortunately, this situation seems to be overcame with the release of the latest versions

of packages and suites, in which the most commonly used DFT codes and methods have

proven to predict essentially the same results, regardless the code used [47].

This new scenario has shed some peace of mind on the selection of the DFT com-

puter code for performing the calculations. However, there is still the concern regard-
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ing the numerical solution scheme for solving the Kohn-Sham equations. All-electron

approaches are traditionally considered as the gold-standard for DFT calculations, be-

cause the ionic potential is implemented without any pseudization of the core electrons.

Therefore, this approach implies, of course, a higher computational cost, when com-

pared to other methods such as pseudopotentials. Nevertheless, since both all-electron

and pseudopotential methods have their own intrinsic advantages, it is highly desirable

to achieve high precision for both methods [48].

Since there is not an absolute reference against which to compare different methods

for performing DFT calculations, Lejaeghere et al. [47] performed DFT computations

for five distinct sets of material properties, divided into energetic (∆Ecoh)
10 and elastic

quantities (V0, B0, B1, Cij)
11, on 71 elemental crystals. However, they realized that is

not convenient to compare this properties directly because different units are involved.

Therefore, they presented a criterion (the ∆ gauge) for pairwise code comparison in an

unequivocal way. For each element i, of the 71 elements that they studied, they defined

the ∆i quantity as the root-mean-square difference between the Ei(V ) profile from the

equation of state of two different methods (a and b) over a ±6% interval around the

equilibrium volume V i
0 :

∆i(a, b) =

√√√√∫ 1.06V i0
0.94V i0

(Ei
b(V )− Ei

a(V ))
2
dV

0.12V i
0

. (4.1)

Thus, the ∆i value contains the information regarding the deviation between equilib-

rium volumes, bulk moduli, and any other EOS-derived observables in a single number.

Now, if we want to determine how accurate are the pseudopotential methods when

compared with all-electron approaches, we can then calculate the ∆ value to obtain

information regarding the error bar associated with the pseudization scheme for the

different elements of the periodic table. A small error is then related with a small value

of ∆, so at this point, it is necessary to establish which values of ∆ can be considered

as ”small”.

From a more recent study performed again by Lejaeghere et al. [48] they compared

10Cohesive energy.
11Volume, bulk modulus, derivative of the bulk modules, and other elastic constants, respectively.
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Figure 4.1: ∆ values between all-electron codes and different potential sets of Quantum ESPRESSO,
namely PAW, ultrasoft (USPP), and norm-conserving (NCPP) pseudopotential methods. The tags of
the different all-electron codes stand for code/specification. Adapted from [48].

high-quality experimental data against high-precision measurements of EOS from all-

electron calculations, and the differences between codes in terms of commonly reported

EOS parameters. They concluded that a ∆ value of 1 or even 2 meV per atom is

sufficient to state that the EOS is indistinguishable for all purposes.

In this work, we used the Quantum ESPRESSO suite [22, 23] for calculating the

physical properties of carbon, oxygen, and carbon dioxide. The values of ∆ between

different all-electron codes, namely Elk, exciting, FHI-aims, FLEUR, FPOLT, RSPt,

and WIEN2k, and the potential sets that are available in Quantum ESPRESSO (PAW,

ultrasoft, and norm–conserving pseudopotential methods), are displayed in Fig. 4.1.

Finally, a recent study [49] tested up to eight pseudopotentials for the PBE functional
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with the PWscf and PHonon codes of the Quantum ESPRESSO suite. All the libraries

include the three main pseudization approaches: norm-conserving (NC), ultrasoft (US),

and projector-augmented wave (PAW). For the case of PAW, they include the following

libraries: pslibrary.0.3.1 [50], pslibrary.1.0.0 [51], and the library proposed by Topsakal

and Wentzcovitch for the rare-earth elements [52]. They compared the equation of state

calculated with the pseudopotential simulations with reference all-electron results. This

all-electron calculations used as reference were performed with the WIEN2k code.

The information regarding different pseudotentials that are available in Quantum

ESPRESSO, specifically for carbon and oxygen, are in table 4.1.

Table 4.1: Pseudopotential testing protocol applied to carbon and oxygen. The valence number (Z)
of the pseudotential and the ∆ factor (in meV/atom) with respect to the reference all-electron results
are displayed.

Carbon

Pseudopotential Z ∆
SG15 4 2.365

Goedecker 4 0.137
GBRV-1.2 4 0.279

031US 4 1.620
031PAW 4 0.443
100US 4 0.787

100PAW 4 0.424

Oxygen

Pseudopotential Z ∆
SG15 6 0.391

Goedecker 6 0.991
GBRV-1.2 6 2.425

031US 6 1.633
031PAW 6 1.116
100US 6 5.124

100PAW 6 4.877

In this work, we used PAW pseudopotentials from the pslibrary.0.3.1 for both car-

bon and oxygen. Detailed information regarding their performance is described in the

following subsections.

4.1.1 Equation of state

The Birch-Murnaghann fit of the energy as a function of volume for carbon and oxygen

made with the pslibrary.0.3.1 of the PAW pseudopotential with the reference all-electron

results, is shown in Fig. 4.2.
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(a) (b)

Figure 4.2: Comparison of the Birch-Murnaghan fit of the pseudopotential EOS (green line) with
the reference all-electron results (black line) for (a) carbon and (b) oxygen. Taken from: https:

//www.materialscloud.org as stated in Ref. [49].

4.1.2 Phonon frequencies

The information related to the different phonon frequencies are condensed into a single

parameter δω [49], that represents the relative average deviation (in percentage) among

all the phonon frequencies ω calculated at q = 1
2
, 1
2
, 1
2

for each wavefunction cutoff Ec.

Figure 4.3: Relative average deviation of phonon frequencies with respect to the reference all-electron
results for carbon (red) and oxygen (blue). Taken from: https://www.materialscloud.org as stated
in Ref. [49].
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4.1.3 Stress tensor

The convergence of the stress is not evaluated by checking the convergence of the

pressure itself, but as monitoring its conversion into an equivalent volume. Thus, the

parameter δVpress [49] is defined as the relative volume deviation (in percentage) due

to the residual pressure of a calculation performed at the cutoff Ec.

Figure 4.4: Relative volume deviation with respect to the reference all-electron results for carbon (red)
and oxygen (blue). Taken from: https://www.materialscloud.org as stated in Ref. [49].

4.1.4 Cohesive energy

The quantity δEcoh (in meV/atom) [49] is defined as the absolute difference between

the cohesive energy at a given cutoff Ec an the one at the reference wavefunction cutoff

Eref
c .
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Figure 4.5: Absolute difference of the cohesive energy with respect to the reference all-electron results
for carbon (red) and oxygen (blue). Taken from: https://www.materialscloud.org as stated in Ref.
[49].

4.2 Exchange-Correlation Functional

The Kohn-Sham density functional theory is the most used method for the theoretical

modeling of solids, surfaces, and molecules at the quantum level, and its accuracy

depends on the chose approximation of the exchange-correlation functional (Exc): since

the exact form of this functional is still unknown, there are a large number of available

functionals for solid-state physics [53, 54, 55, 56, 57] and quantum chemistry [53, 58,

59, 60, 61]. Multiple developments have made the functionals more sophisticated and

accurate, and the majority of these functionals belong to one of the rungs of Jacob’s

ladder [62, 63].

For practical reasons, pseudopotentials are the method of choice for modelling mate-

rials and it has been shown that pseudopotentials can reproduce quite well the results

obtained with an all-electron approach, with a substantially smaller computational cost

[48, 49], however as we go up the rungs of the Jacob’s ladder the functional form gets

more complex and more expensive to compute. Therefore, it is necessary to chose the

rung appropriate to the required accuracy and computational resources available for

the calculations.
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Figure 4.6: Jacob’s ladder of density functional approximations.

A recent study [64] tested a large number of exchange-correlation functional that

span the first four rungs of Jacob’s ladder. They computed several solid-state properties

(lattice constant, bulk modulus, and cohesive energy) in strongly bound solids and

weakly bound solids, separately. One of their most important observations in that

work was that for the solids bound by strong interactions it does not seem to be really

necessary to go beyond the GGA approximation since several of these functionals are

overall as accurate as the more expensive meta-GGA (MGGA) and hybrid functionals.

In the study of materials at high-pressure it has been stated that the transition pres-

sure between solid phases depends on the choice of the exchange-correlation functional.

Nevertheless, PBE still is a good enough approximation, based on the agreement of the

experimentally observed EOS [65, 66] and DFT calculations, although there remains a

small error in the transition pressure where it is shifted to lower pressures by less than

10%, when the vibrational contribution to the free energy is included [67]. Moreover,

when PBE is compared with the BLYP paramerization for GGA, similar total energies

and stress anisotropy are obtained [66].

The choice of PBE for our work is motivated by the performed benchmarks [64] and
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multiple high-pressure works that shows a good agreement between PBE and theoretical

and experimental equation of state [67, 66, 68, 69].

Figure 4.7: The mean error in (ME, black), mean absolute error (MAE, red), mean relative error
(MRE, blue), mean absolute relative error (MARE, green), and maximum relative error (MAXRE,
orange) on the testing set of the strongly bound solids reported in Ref. [64] for the (a) lattice constant
a0, (b) bulk modulus B0, and (c) cohesive energy Ecoh, when computed with LDA (full circles), GGA
(full squares), MGGA (full diamonds), hybrid-LDA (open circles), hybrid-GGA (open squares), and
hybrid-MGGA (open diamonds) functionals. The units of the ME and MAE are Å, GPa, and eV/atom
for a0, B0, and Ecoh, respectively, and % for the MRE, MARE, and MAXRE. Adapted from Ref. [64].
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4.3 Equations of State

A large number of equations in the literature are suitable for expressing the isothermal

pressure-volume relationship. Since the bulk module (B0), its first derivative (B0),

and the deformation of the volume with respect to the reference volume (V/V0) can

be measured precisely in the laboratory, they are available to define the isothermal

equation of state (EoS). Thus, any isothermal EoS with only three arbitrary constants

can be defined completely.

Though the isothermal equation of state is strictly applicable only at absolute zero,

it is often used to describe the EoS of geophysical materials at room temperature or to

duplicate the experimental data of materials taken at the room temperature isotherm.

The justification of this rests on the similarity of the bulk modulus values of oxides and

silicates at room temperature and at absolute zero, i.e., for minerals with a high Debye

temperature [70]: for hard solid of geophysics and planetary sciences, room temperature

is well below de the Debye temperature, and B0 changes little between 0 K and 273 K.

However, this statement cannot be made for soft solids like alkali metals.

The most widely used isothermal equation of state in solid geophysics is known as

the third order Birch-Murnaghan EoS [71], given by:
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3B0
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The long use and wide application of the Birch-Murnaghan EoS has engendered for

it a certain authority in the literature. However, its validity in the limit of the extreme

compression has been questioned. A recent study [72] discussed the Shanker [73], Tait
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[74, 75], Vinet [76], and Birch-Murnaghan [71] equation of states to check their validity

a very large pressures. All these EOSs where compared with experimental data and

also tested for the basic criteria which must be satisfied by an EOS for its validity and

applicability as suggested by Stacy [77, 78, 79]:

1. In the limit →∞, V/V0 → 0.

2. With the increase in pressure isothermal bulk modulus must increase continuously

and in the limit of infinity pressure B →∞.

3. B′0 must decrease progressively with the increase in pressure such that B′0 remains

greater than 5/3 in the limit of infinite pressure.

Finally, in their work, Kholiya et al. [72] conclude that Tait, Vinet, and Birch-

Murnaghan EOSs give the results compatible with the experimental findings but Tait

Figure 4.8: (a) Compression behavior V/V0, (b) bulk modulus B0, and (c) first order pressure derivative
of bulk modulus B′0 at ultrahigh pressure using different EoSs. Taken from [72].
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and Vinet EOSs fail to satisfy the basic criteria of an equation of state.

In general, for most applications of the equations of state there is little justification

for choosing one EoS over another strictly on the basis of fundamentals. The choice is

made on basis of convenience and tradition [70].
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5 Diamond and Post-Diamond Carbon

Phases

In this section we perform density functional perturbation theory for diamond and

post-diamond phases up to 3.50 TPa. Our goal is to reproduce the reported phase

boundaries and to estimate the melting line varying the temperature up to 10000K and

using corrections beyond the harmonic approximation.

5.1 Introduction

Given its importance to the sustainability of life on our planet, carbon is one of the

most extensively studied materials. It has an extraordinary flexibility thanks to its

oxidation range that goes from −4 to +4 allowing it to bond to itself and more than 80

elements. The two well-known stable phases of solid carbon are graphite and diamond,

where the first is the most stable form at ambient conditions and the latter is stable

at higher pressures, up to roughly 1 TPa. However, carbon exhibits a rich variety

of solid structures [80, 81] like graphene [82], nanotubes [83], fullerenes [84], and the

controversial carbynes [85, 86].

In the context of planetary sciences, it is expected that in the interior of super-Earths

diamond transforms into other solid phases. This hypothesis has motivated theoretical

studies that have proposed several post-diamond phases. The first one is found at

around ∼ 0.9 TPa: a body-centered cubic phase composed by eight atoms in the unit

cell (BC8) [87, 88, 89, 90, 91], which is followed by a simple cubic (SC) phase above ∼
2.5 TPa [90, 91]. These phase transformations affect the electric conductivity of carbon

at high pressures. The BC8 phase maintains the sp3 bonding from the diamond phase,

but with some of its bond angles distorted, implying that the BC8 phase exhibit a

reduced band gap, in comparison to diamond, and eventually becoming a weak metal

54



Chapter 5 Diamond and Post-Diamond Carbon Phases

within the DFT formalism. Moreover, the six-coordinated SC phase is a metallic one,

in which the covalent bond present in the two previous phases does not exist any longer.

Furthermore, in the multi-terapascal regime more phases have been proposed theo-

retically [90], with the following sequence: simple hexagonal (sh)→ face-centered cubic

(fcc) → double hexagonal closed packed (DHCP) → body-centered cubic (bcc), with

transition pressures 6.4, 21, 270, and 650 TPa, respectively. These phases have been

included in proposed phase diagrams [92, 89, 90, 91, 93], since there is no experimental

evidence of the stability of the mentioned phases. Knowing the properties of carbon

under extreme conditions of pressure and temperature is essential not only to compre-

hend the models of astrophysical bodies such as solar [94, 95, 96, 97] and extra-solar

[98, 99] planets with carbon-rich interiors, white dwarf stars [100, 101, 102] and their

interiors [103, 104], but also to understand the physics and chemistry of mono-atomic

materials in general.

Given the enormous pressures that are required for the experimental study of the

solid-liquid interface, the estimation of the melting curve from experimental data is

challenging [105, 106]. Nevertheless, due to recent technical developments in dynamic

shock-wave (ramp) compression it might be possible to achieve temperature and pres-

sure conditions in the laboratory that are within the solid portion of selected phase

diagrams [107, 108, 109], implying that reliable data from experiments may soon be

able to study the properties of this element at planetary conditions. As a result, sev-

eral attempts to determine the melting line of carbon at very high pressures have been

Figure 5.1: Studied high-pressure carbon phases: (a) Diamond at 0.5 TPa, (b) BC8 at 2.0 TPa, and
(c) SC at 3.0 TPa.
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made theoretically trying to include small anharmonic contributions [87, 92, 89, 91, 93].

However, the results are susceptible to the selected methodology for computing the free

energy. Therefore, there is not a consensus on the theoretical work existing so far,

that should be refined using more sophisticated, accurate methods until experimental

information becomes available.

5.2 Computational Details

Carbon was examined in the pressure range from 0.25 to 3.50 TPa, which includes

diamond, BC8, and SC. We performed variable-cell optimization calculation at steps of

0.25 TPa to obtain the structural parameters for all the phases using Density Functional

Theory (DFT) as implemented in the Quantum ESPRESSO [22, 23] suite using pro-

jector augmented waves pseudopotential [21] with six electrons per atom. Generalized

gradient approximation (GGA) of the exchange-correlation functional approximation

of DFT of the Perdew-Burke-Ernzerhof (PBE) [18] form was used. The kinetic energy

cutoff was set to 200 Ry12, and k-points grids of 8× 8× 8, 4× 4× 4, and 32× 32× 32,

were used for diamond, BC8, and SC, respectively, for integrating the Brillouin zone

with the Monkhorst-Pack method [24]. These parameters ensure an energy convergence

better than 1 meV/atom.

At T = 0K, harmonic dynamical matrices were obtained within Density Functional

Perturbation Theory (DFPT) in the linear response regime [30] with a q-points grid of

2× 2× 2 for diamond and BC8, and 6× 6× 6 for SC. Finite temperature contributions

to the Helmholtz free energy were computed by means of QHA [39, 38] from 0 to

10000 K. We fitted the Helmholtz free energy and the volume of each phase at different

temperatures to a 3rd order Birch-Murnaghan equation of state with a variance (χ2) of

order 10−6 or better, for all fits. Finally, the Gibbs free energy was calculated as:

G(P, T ) = F [V (P, T ), T ] + PV (P, T ). (5.1)

12Data regarding convergence calculations can be found in the Appendix A
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Figure 5.2: Pressure-volume relation of diamond (blue solid line), BC8 (red solid lines), and SC (solid
green line), obtained from the 3rd order Birch-Murnaghan equation of state at room temperature. For
each phase, calculated values from Ref. [90] are displayed in circles.

5.3 Phase transition boundaries

We begin our analysis by comparing the volume obtained from our equation of state with

the data collected by Martinez-Canales et al. [90]. In their work, they used accurate

pseudopotentials with small core radii and with all six electrons included explicitly.

Thus, their proposed equation of state of carbon at high pressure is a good reference

for evaluating our data. In Fig. 5.2 we show the volumes of the different phases as a

function of pressure, indicating a good agreement between both equations of state.

Carbon has been studied widely, and the boundaries between phases have been cal-

culated in several theoretical works, Refs. [87, 92, 89, 91, 93], some of which included

small anharmonic corrections that refined the phase diagram of carbon at extreme con-

ditions of pressure and temperature. We started by performing a comparison between

our calculations from the quasi-harmonic approximation and proposed phase bound-
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aries. The phase boundaries obtained using the finite temperature contribution to the

free energy calculated using QHA are in excellent agreement with those including an-

harmonic effects as seen in Fig. 5.3. These results indicate that the quasi-harmonic

approximation might be sufficient for calculating thermodynamical properties for dia-

mond and post-diamond phases.

5.4 Melting Line for High-Pressure Carbon

In the temperature range used for our thermal calculations, we expect that at the

highest values carbon becomes fluid for all phases. Initially we can estimate the possible

solid-to-liquid transition region based on the Lindemann criteria. For each set of solid-

phase simulations, we computed the ratio of the root-mean-squared displacement of the

atoms to the nearest-neighbor distance. The melting lines assuming different critical

Figure 5.3: Proposed phase diagram for carbon at extreme conditions of pressure and temperature.
Our calculated phase boundaries (black solid lines) are compared with previous theoretical calculations.
The small anharmoic corrections performed by Schöttler et al. [93] are displayed in red dashed lines.

58



Chapter 5 Diamond and Post-Diamond Carbon Phases

Figure 5.4: Estimated melting lines for phases of carbon in the terapascal regime for different critical
Lindemann ratios.

Lindemann ratios are displayed in Fig. 5.4.

Although the Lindemann ratio of a solid phase is a quantity that for any given

material normally reaches values between 0.10 and 0.15 at melting, in Fig. 5.4 we can

observe that for carbon at this range of critical values the expected melting temperatures

can span several thousand Kelvin. Thus, the right critical value of the Lindemann ratio

for describing the transition to liquid in this chemical element, at high pressures, should

be set close to 0.12. This critical value is supported by a comparison against recent

results by Bendict et al. [91] for the melting line. Moreover, we can corroborate this

by considering that, in the vicinity of melting, the entropy change for carbon’s solid

→ liquid transition is estimated between 20 and 30 J · mol / K [92, 110]. Using that

criteria, we were able to find a melting line using a threshold of 20 J · mol / K, as shown

in Fig. 5.5. These results, point to the selection of 0.12 for the Lindemann ratio as a

reasonable critical value to closely estimate melting curves, which, used with caution,

could potentially be useful for post-SC phases of carbon as well.

Although we managed to reproduce the shape for the melting line using two different
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Figure 5.5: Estimated melting line for diamond and post-diamond phases using the difference of
entropy as a criteria.

criteria, it is important to stress that only anharmonic effects could properly describe

the melting line, since in the vicinity of the region of the solid-to-fluid transition non-

harmonic behavior is crucial. However, due to technical challenges, we were unable

to include as part of this report all the calculations that are required to incorporate

anharmonic contributions using the stochastic self-consistent harmonic approximation,

described earlier.

5.5 Conclusions

Using the quasi-harmonic approximation, the proposed solid-to-solid transition bound-

aries between diamond and subsequent phases that involve small non-harmonic correc-

tions can be reproduced. Lindemann ratios in solids provide a reasonable approximation

for finding the presence of melting transitions, at least qualitatively. Melting temper-
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atures obtained with this method can be placed in a sufficiently restricted region of

the P-T phase diagram by tuning the ratio’s critical value that is used as a threshold,

through comparison with alternative methods. Here, a Lindemann ratio around 0.12 is

suggested as the best critical value to determine melting in carbon. Finally, in future

studies, it is important to include non-harmonic effects into the Gibbs free energy in

order to estimate the melting line more precisely, since QHA is not accurate enough for

studying solid phases close to their transition into fluid. However, as shown here, QHA

provides a reasonably good starting point.

61



Chapter 6 Post-ζ Phases of Solid Oxygen

6 Post-ζ Phases of Solid Oxygen

In this chapter we perform an exhaustive analysis of the electronic and the vibrational

properties of the non-molecular phases of solid oxygen in the 1 to 10 TPa pressure range

and within the quasi-harmonic approximation (QHA). These phases were proposed

theoretically by Sun et al. [111], but they only reported the enthalpy-pressure relation.

Our goal is to elucidate the impact of the finite temperature effects in the relative

stability of those phases.

6.1 Introduction

Owing to the magnetic character of the O2 molecule, the element oxygen exhibits a

richer phase diagram than other low-Z diatomic molecules such as H2, N2, CO or F2.

Six phases of solid oxygen have been observed experimentally so far: half of them (α,

β, and γ) exist under equilibrium vapor pressure, and the other three (δ, ε, and ζ)

are obtained in the high-pressure regime. As pressure increases, oxygen shows a wide

range of physical properties that go from insulating [112] to metallic [113], including

also anti-ferromagnetic [114, 115, 116, 117] and superconducting [118, 119] phases. At

the highest pressure reached for this element in the laboratory, about 130 GPa under

diamond-anvil cell compression, it remains molecular[119]. In the ε-O2 phase, which

is stable between 8 and 96 GPa at ambient temperature[113], the oxygen molecules

associate into clusters composed of four molecules, but they fully retain their molecular

character as confirmed by vibrational spectroscopy and X-ray diffraction[120, 121].

All other group-VI elements develop non-molecular and eventually monoatomic struc-

tures at much lower pressure. Sulfur transforms into a chain-like polymeric phase at

about 15 GPa and eventually becomes monoatomic, with a rhombohedral β-Po struc-

ture at 153 GPa[122]. Phases with a β-Po structure are also reported for Se at 60

GPa [123], for Te at 11 GPa [124], and for Po at ambient pressure [125]. Moreover,

62



Chapter 6 Post-ζ Phases of Solid Oxygen

Figure 6.1: Phase diagram of solid oxygen. Taken from Ref. [112]
.

both selenium and tellurium exhibit a body-centered cubic (bcc) structure as a post

β-Po phase [123, 126, 127]. For oxygen, however, an earlier theoretical study has shown

that the monoatomic β-Po structure is less stable than molecular phases at multi-

megabar pressures [128]. The reluctance of oxygen to give up its molecular character

has been attributed in a recent study by Sun et al. to the strong electron lone-pair

repulsion in the non-molecular phases. This resembles, we notice, the reluctance of

the electron-richer halogen elements to lose their molecular character. For instance,

Fluorine is molecular up to the highest pressures experimentally achieved so far in this

element [129], while Cl2, Br2, and I2 dissociate around 157, 115, and 43 GPa respectively

[130, 131, 132, 133, 134, 135, 136, 137, 138].

In the same work, Sun et al.[111] show that oxygen remains molecular up to 1.9 TPa

before transforming into a semiconducting square-spiral-like polymeric structure with

symmetry I41/acd and oxygen in two-fold coordination. This phase is then reported to

transform at 3.0 TPa into a phase with Cmcm symmetry, consisting of zigzag chains

that pack atoms more efficiently than the square-spiral chains. Finally, when pressure

reaches 9.3 TPa, the in-plane zigzag chains merge into a layered structure with Fmmm

symmetry and four equidistant nearest neighbors for each oxygen atom[111].

Temperature can have profound effects on the stability of molecular phases, both

in their liquid and solid forms. Shock-compression experiments indicate that at about
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Figure 6.2: Enthalpy-pressure for proposed post-ζ phases for solid oxygen. Taken from Ref. [111]
.

100 GPa the oxygen molecule dissociates in the fluid when the temperature exceeds

4000 K [139]; whereas theoretical studies based on ab initio molecular dynamics place

molecular dissociation above 80 GPa at temperatures that exceed 5000 K [140]. Un-

fortunately, nothing is known about the temperature effects on the phase diagram of

solid oxygen at extreme pressures. A crude extrapolation of the oxygen melting line,

based on theoretical and experimental data [141, 142], yields a melting temperature of

about 26000 K at 1.9 TPa. Although this extrapolation is based on data below 100

GPa and is, therefore, to be taken with caution, this provides a hint that solid oxygen

phases could indeed be the stable forms of this element in some planetary interiors.

Hence, the understanding of the effects of temperature on the solid portion of oxygen’s

phase diagram at multi–megabar pressures is not only relevant from a fundamental

perspective, but also for its potential relevance to planetary studies. Moreover, recent

technical developments in dynamic shock-wave (ramp) compression have made it pos-

sible to achieve temperature and pressure conditions in the laboratory that are within
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the solid portion of selected phase diagrams [107, 108, 109], suggesting that experiments

may soon be able to study the properties of this element at planetary conditions.

The ground state calculations performed by Sun et al. [111] show that the tran-

sitions from molecular to polymeric and finally to 4-fold coordinated have dramatic

effects on the vibrational properties of solid oxygen. Finite-temperature contributions

to the free energy should, therefore, differ substantially between different phases and

the phase transitions at high temperature may, as a consequence, differ quantitatively

and qualitatively from the ones calculated at zero temperature. In this work, by per-

forming density functional theory (DFT) together with quasi-harmonic approximation

(QHA) calculations for the determination of vibrational free energies, we extend the

current theoretical knowledge on the ultra-high-pressure region of the phase diagram of

solid oxygen to temperatures up to 8000 K. We find that temperature has a remarkable

effect on the phase diagram of this element indeed, resulting in the disappearance of

two previously reported non-molecular forms at sufficiently high temperature.

6.2 Computational Details

Out of the several crystalline structures considered in the earlier theoretical work by Sun

et al.[111], we select here the ones that were found to be stable in the range of pressure 1-

10 TPa: a molecular structure with symmetry R3̄m, and three non-molecular structures

with symmetry I41/acd, Cmcm, and Fmmm, respectively. Enthalpy differences among

the different molecular structures considered in Ref. [111] (P63/mmc, C2/m, C2/c, and

R3̄m) are small compared to enthalpy differences between molecular and non-molecular

structures, so we expect transition pressures between molecular and non-molecular

phases to be to largely independent of the specific molecular structure considered.

The structural properties were calculated using DFT as implemented in Quantum

ESPRESSO [22, 23]. The electron-ion interactions were treated using a projector aug-

mented wave [21] pseudopotential with six valence electrons. The valence electron

wavefunctions are expanded in a plane-wave basis set with a kinetic energy cutoff of
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Figure 6.3: Some of the proposed post-ζ phases of solid oxygen: (a) R3̄m at 1.5 TPa, (b) I41/acd at
2.0 TPa, (c) Cmcm at 3.5 TPa, and (d) Fmmm at 8.0 TPa.

400 Ry13. The exchange-correlation functional was approximated by the generalized

gradient approximation (GGA) of the Perdew-Burke-Ernzerhof form [18]. Brillouin

zone integrations were carried out using k-point grids generated with the Monkhorst–

Pack method [24]. The size of these grids are 18 × 18 × 18, 4 × 4 × 12, 8 × 16 × 16

and 8 × 16 × 16 for the primitive cells of the four phases of oxygen considered in this

study; these choices provided a total-energy-difference convergence of 2 meV per atom

or better. The structural parameters for all the structures were obtained by performing

variable cell optimization at various values of pressure. Note that the energies and elec-

tronic structures of the four structures have been already studied by Sun et al. [111];

they showed that at T = 0 K, all the phases are metallic at the terapascal regime,

except for I41/acd which is a wide-gap semiconductor. For the metallic phases, the

calculations were done using the Fermi-Dirac smearing technique with a width of 43

meV, in order to take into account the electronic entropy at 500 K. This width was

13Data regarding convergence calculations are in the Appendix B
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kept fixed while calculating the vibrational properties at all temperatures, as justified

by the lack of sensitivity of our free energy results with respect to this parameter.

The vibrational properties at T = 0 K were calculated using density functional

perturbation theory (DFPT) in the linear response regime [30]. The q-point grids used

to obtain the dynamical matrices were as follows: 4 × 4 × 4 for R3̄m, 2 × 2 × 6 for

I41/acd, 2× 4× 4 for Cmcm, and 2× 4× 4 for Fmmm.

Finite-temperature contributions to the Helmholtz free energy were obtained using

the QHA [39, 38]. As we are interested in determining the pressure-temperature (P–

T ) phase diagram, we have calculated the Gibbs free energy as set in equation 5.1.

The value of the P is obtained by fitting Eq. 5.1 to a 3rd order Birch-Murnaghan

equation of state for each of the phases at different temperatures and their corresponding

parameters are specified in the Appendix B. All fits had a variance (χ2) of order 10−5

or better.

6.3 Proposed Phase Diagram for Ultra-High Pres-

sure Phases of Solid Oxygen

We begin our analysis by considering the case T = 0 K, with and without the zero-

point energy contributions. In the low-pressure region of this study we find that the

contribution of the ZPE is marginal, moving the transition pressures 0.08 TPa and

0.02 TPa higher than those reported without ZPE when going from R3̄m to I41/acd

and from I41/acd to Cmcm respectively (see Fig.6.4). In the high-pressure region, our

enthalpy-pressure relations show that the transition from Cmcm to Fmmm at 0 K is

located near 8.6 TPa if ZPE is not included; this is 0.7 TPa lower than the transition

pressure found by Sun et al. with the same approximations [111]. Our equations of state

were fitted on a broader set of volumes than Sun et al., usually fifteen or more volumes

per structure. We believe that this could be one of the reasons for the discrepancy.

Moreover, when the ZPE contribution is included, it has a noticeable effect, shifting

the transition pressure from 8.6 TPa to 7.5 TPa.
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Figure 6.4: Enthalpy-pressure relations without (solid lines) and with (dashed) with ZPE for post-ζ
phases of solid oxygen in (a) the low-pressure region which includes R3̄m (reference, black), I41/acd
(red), and Cmcm (blue), and in (b) the high-pressure region where Cmcm (reference, black) and
Fmmm (red) are represented. Transition-pressure reported by Sun et al. are in green dots.

We now consider the effects of finite temperature on the Gibbs free energies and

transition pressures. Our calculations are based on the QHA and may suffer from the

incomplete consideration of anharmonicities, in particular when the system approaches

the melting temperature, therefore, our analysis is restricted here to temperatures below

8000 K.

The finite temperature contribution to the free energy has dramatic consequences

on the relative stability of the crystalline phases (Fig.6.5). For instance, the pressure

location for the R3̄m to I41/acd phase boundary is shifted towards higher pressures

by approximately 1 TPa when the temperature is raised from 0 to 5000 K, indicating

that the molecular R3̄m phase enlarges its region of stability with respect to the poly-

meric I41/acd, as temperature increases. However, the finite temperature contribution

hardly changes the transition boundary between the phases I41/acd and Cmcm, as

we observed an increment of just 0.05 TPa at 5000 K with respect to the transition

pressure calculated at 0 K. We observe that the region that encompassed the I41/acd

phase narrows down as temperature increases until, at 2.9 TPa and 5200 K, there is a

triple point above which this phase disappears completely. Thus, the picture of I41/acd

as an insulating solid phase lying between two metallic ones (R3̄m and Cmcm) is only

valid at relatively low temperatures. Unlike the previous two cases, the shift seen in the

case of the Cmcm-to-Fmmm transition is towards lower pressures and is much more

pronounced, leading to a second triple point at 3.2 TPa and 7800 K, where the R3̄m,
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Figure 6.5: Proposed finite temperature phase diagram for solid oxygen at extreme conditions of
pressure and temperature. The transition pressures PT, at zero temperature without taking into
account the zero-point energy (ZPE), reported by Sun et al. [111] and calculated in the present study,
are marked as orange and green circles, respectively. The phase boundaries at finite temperature,
corresponding to calculations including ZPE and using an electronic temperature of 500 K, are shown
by solid black lines.

Cmcm, and Fmmm phases meet. This indicates that above 8000 K Oxygen transforms

directly from a molecular to a four-fold coordinated form.

So far our analysis has been restricted to a single molecular structure (R3̄m) as a

representative of the stable solid molecular oxygen form before polymerization. In order

to test the validity of our assumption that R3̄m can be considered as representative of

the stable molecular structure, we repeated the calculations with a different molecular

structure, of symmetry C2/m. This structure was found to possess the second lowest

enthalpy after R3̄m, among the structures considered by Sun et al. [111]. We find that

the transition line between C2/m and the other structures is indistinguishable from the

transition line of R3̄m (see Fig. 6.6, suggesting that not only enthalpy, but also entropy

is very similar among different molecular forms.

As already mentioned, an extrapolation of the measured melting line of Oxygen to

TPa pressures yields a melting temperature exceeding 25000 K at 2 TPa. An indepen-
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Figure 6.6: Proposed phase diagram for solid oxygen at extreme conditions of pressure and tempera-
ture. The phase boundaries between molecular phases R3̄m and C2/m and the non-molecular phases
I41/acd and Cmcm, are shown in black solid line and red dashed line, respectively.

Figure 6.7: Lindemann ratio of the molecular phase R3̄m as a function of temperature at different
pressures. The dashed line indicates the value in which the system is expected to become liquid.
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dent estimate of the melting temperature can be obtained by calculating the Lindemann

ratio of the solid phases, a quantity that normally reaches values between 0.1 and 0.15

at melting. We calculated the Lindemann ratio for the R3̄m molecular structure and

for the Fmmm structure within the QHA approximation. In the case of the molecular

structure we assumed that melting takes place between a molecular solid and a molecu-

lar liquid and evaluated the Lindemann ratio based on the mean-square displacement of

the center of mass of the molecules. We found that calculated values of LR are always

below 0.095, for both phases, in the temperature range from 0 K to 8000 K, as seen in

Fig. 6.7. Our calculations therefore rule out the presence of a liquid in the pressure

and temperature region considered in this work.

We were also able to confirm that strongly localized lone pairs persist into the poly-

meric phases with an OX2E2 bent shape, as already noted by Sun et al. [111]. This,

together with an electron counting argument, can explain the reluctance of oxygen to

take higher coordinated structures. The formation in I41/acd of one additional covalent

bond and the lone pair repulsion between chains, contribute to making it stiffer and less

flexible than the molecular R3̄m phase. At temperatures below 4000 K the contribution

to the entropy of the high frequency vibron in Fig.6.8a is limited by quantum effects.

The remaining modes show a frequency increase across the transition, which implies

a decrease of the vibrational entropy. This is consistent with the positive slope of the

transition line at finite temperature (see Fig.6.5). Similarly, the I41/acd and Cmcm

phases are characterized by having two covalent bonds per oxygen and very similar

lone pair repulsion between chains. Therefore, one does not expect important changes

Figure 6.8: Phonon dispersions of oxygen in (a) R3̄m with the vibron mode in dashed line and (b)
I41/acd phases at 2.0 TPa.
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in terms of bonding and stiffness, which justifies why we observe an almost vertical

transition line between these two polymeric forms in the P-T phase diagram (Fig. 6.5).

6.4 The Cmcm-to-Fmmm phase transition

As pressure increases above 4 TPa and keeps approaching the vicinity of the Cmcm→
Fmmm transition, the bent shape of the lone pairs in Cmcm starts to allow for a non-

symmetrical four-fold coordination, which brings the formation of two additional weak

covalent bonds per each oxygen prior to the final transition towards the fully symmetric

Fmmm configuration; this is shown in Fig 6.9(a) by the charge density profiles. This

process causes a gradual merging of the so-called zigzag chains into a layered structure.

For instance, at T = 0 K and 7.0 TPa, the four shortest links for each oxygen consist of

two sets of bonds with lengths 1.04 Å and 1.18 Å, respectively. Instead, when Cmcm

transforms into Fmmm above 7.5 TPa not only the coordination of the oxygen atoms

becomes symmetrical, with an equal length of 1.10 Å, but also we can see now that

the lone pairs adopt the OX4E2 square planar shape, as a consequence of the higher

symmetry of this phase as Fig. 6.9(b) shows.

Figure 6.9: Electronic charge densities along the [100] direction and electron lone pairs of (a) Cmcm
and (b) Fmmm at 7.5 TPa. The color scales indicate the values of the charge density in e/Bohr3. On
the left panel, the isosurface of red and orange regions are electron poor; while blue and violet regions
are electron rich. Additionally, isosurface contours are shown by solid black lines. On the right panel,
the lone pairs are represented by transparent gray colors; the corresponding isosurface value is +1.25
e/Bohr3. The oxygen atoms are represented by red spheres and the Cmcm zigzag chains are shown
in red and pink.
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Figure 6.10: Pressure dependence of (a) bond lengths for Cmcm (B1 and B2, red and pink solid lines,
respectively) and Fmmm (B3, blue solid line), (b) internal angles (α1 and α2, red and blue solid lines,
respectively) of Cmcm and Fmmm, and (c) the layer separation d (red solid line) for Cmcm and
Fmmm are shown. The vertical black dashed line corresponds to the calculated transition pressure
between these two phases. The average of B1 and B2 are also shown by a dotted blue line in (a).

From a space-group point of view, Cmcm is a subgroup of Fmmm so that the tran-

sition can be classified in principle as a second-order phase transition. Coupling of the

strain with the internal degrees of freedom, however, introduces a slight discontinuity in

the structural parameters (see Fig. 6.10), similarly to the case of the stishovite(rutile)

to the CaCl2-type phase transition in SiO2 [143]. Further evidence for the quasi-second-

order nature of the transition comes from the phonon dispersions of the two phases.

Figure 6.11: Evolution of a Fmmm phonon
mode at the zone boundary as a function of
pressure. The normal mode is along the [100]
direction, and its frequencies (ω) are plotted
in red. A linear relation between the squared
phonon frequencies (ω2) and pressure (blue) is
observed and indicates that the phonon soft-
ening occurs near 4.7 TPa. The normal mode
is represented as blue arrows on the atoms of
the Fmmm structure.

Figure 6.12: Phonon dispersions of oxygen in
(a) Cmcm (in cyan) and (b) Fmmm (in or-
ange) phases at 8.0 TPa. Note that the super-
cell size has been used in both the cases.
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Figure 6.13: Electronic DOS of oxygen in (a) Cmcm (in red) and (b) Fmmm (in blue) phases as a
function of pressure.

In Fig. 6.11 we show the pressure-dependence of the frequency of the phonon mode at

the Brillouin Zone vector of the Fmmm phase corresponding to the reciprocal lattice

vector of the Cmcm phase. The mode becomes unstable when pressure is decreased

below 4.7 TPa, indicating a lattice instability of the Fmmm phase towards Cmcm, as

also confirmed by the pattern of the unstable mode, shown in the inset of Fig. 6.11.

A characteristic feature of second-order phase transitions is the higher entropy of the

high-symmetry phase with respect to the low-symmetry phase. This is consistent with

the pronounced left-turning of the Cmcm to Fmmm phase transition line at finite tem-

peratures in Fig. 6.5, and it is confirmed by the phonon dispersions of the two phases

calculated at the transition pressure of 8.0 TPa (Fig. 6.12). Contrary to the naive

expectation that frequencies become stiffer in the high-pressure (Fmmm) phase with

respect to the low-pressure (Cmcm) phase, the phonon dispersion of the Cmcm phase

has modes that are marginally higher in energy than those of the Fmmm phase. This

is consistent with the lower entropy of the Cmcm phase with respect to the Fmmm

phase.

To gain further insight into the driving force of the quasi-second-order transition, we

show in Fig. 6.13 the electronic density of states (DOS) of the two phases in the vicinity

of the pressure where Fmmm becomes unstable. Interestingly, the DOS of the Fmmm

phase shows a pronounced peak that crosses the Fermi level between 4.5 and 5.0 TPa,

the same pressure of the phonon instability reported in Fig. 6.11. The distortion leading

to the Cmcm structure causes a lowering of the DOS at the Fermi level. We, there-
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fore, argue that the Cmcm to Fmmm transition is driven by an electronic instability

qualitatively similar to a commensurate charge-density-wave transition. A similar phe-

nomenology has been observed in other chalcogen elements, where it has been shown

to be connected with the emergence of a superconducting state in the undistorted state

(Fmmm in this case) close to the transition pressure to the distorted phase [122].

6.5 Conclusions

Our theoretically predicted phase diagram of Oxygen at extreme pressures and tem-

peratures extends earlier calculation at high pressure and zero temperature and shows

that temperature has a profound effect on the phase diagram. At finite temperatures,

the molecular phase expands its stability range to pressures exceeding 3 TPa at the

highest temperatures considered in this work (8000 K). On the contrary, the range of

stability of the first non-molecular phase, I41/acd, shrinks with temperature and the

phase is no longer thermodynamically stable above 5000 K. Interesting physics under-

lies the transition between the Cmcm and the Fmmm non-molecular phases. Our

calculations indicate a quasi-second-order transition between the two phases and show

that the transition is driven by an electronic instability causing a softening of the corre-

sponding phonon mode. We argue that this may imply a superconducting state which

is beyond the scope of this work but which certainly deserves further attention. The

range of pressures and temperatures examined in this work are now within reach of

ramp-compression experiments which we hope will soon shed additional light on the

intriguing aspects of the pressure-induced demise of molecular oxygen as reported in

this and other recent theoretical studies.
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7 Molecular and Non-Molecular Carbon

Dioxide

In this chapter we show the results of our ab initio analysis of the vibrational properties

of some of the phases of carbon dioxide (CO2), including molecular and non-molecular

ones, up to 70 GPa and 2000 K. Our goal is to provide useful information that leads

to diminish the uncertainty in the currently accepted phase diagram, where the phase

boundaries are still a matter of discussion.

7.1 Introduction

Widely studied during the past years, carbon dioxide (CO2) is a fascinating system

that exhibits up to seven solid phases despite its simple molecular form (see Fig. 7.1),

that is, a linear structure made of two covalent bonds between each oxygen and the

carbon atom, with a bond length of 1.16 Å under ambient conditions [144]. At room

temperature the CO2 gas transforms into a liquid at 7.5 MPa, and at 0.5 GPa it solidifies

into the face-centered cubic phase I (Pa3̄) [145, 146]. Remaining at room temperature,

but going above 10 GPa, phase I transforms to the orthorhombic phase III (Cmca),

with a minimal volume change associated to the Pa3̄ → Cmca transition [147]. A

recent theoretical study has provided insight on the mechanism of the polymorphic

Pa3̄-to-Cmca transition, showing this transition as a concerted distortion process in

which the CO2 molecules rearrange by distorting the CO2-I lattice anisotropically [148].

By heating phase III above 16 GPa and ∼ 500 K [149, 150], phase II can be obtained.

However, CO2-II can be recovered at ambient temperature suggesting that the CO2

III-to-II transition is not only irreversible, but also that CO2-III is a metastable phase

that can only be obtained by compressing the phase I at low temperatures [149, 151].

Initially presented as a pseudo-six-fold phase, it was thought that phase II was an

intermediate state between the molecular and the extended solid form of CO2 [152].
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Figure 7.1: High-pressure CO2 phase diagram adapted from Ref. [158]. Yellow, green, blue, red,
and gray areas correspond to the molecular, non-molecular, fluid, dissociated, and amorphous forms
of CO2. Solid lines correspond to thermodynamic phase boundaries, while dashed lines are kinetic
boundaries. The dot-dashed line represents the fluid curve, and the dotted lines indicate the regions
where carbon dioxide decomposed into carbon and oxygen. The selected names in italic stated the
metastable phases.

However, experimental results disproved the existence of an intermediate bonding state

and identified the structure of phase II as P42/mnm [153]. When CO2-II is heated in the

500 – 720 K range, depending on the pressure [149, 151], phase II transforms into CO2-

IV. As occurred with phase II, phase IV was designated as intermediate bonding state

[154]. However, it was shown experimentally that CO2-IV is still composed of linear

molecules and its crystalline structure is the rhombohedral R3̄c [155]. Interestingly,

an intermediate phase between CO2-I and CO2-IV was observed by heating CO2-I and

going up to 20 GPa at 950 K, this was identified as a molecular high-temperature

stable Cmca phase [156]. Given the fact that this phase (CO2-VII) and CO2-III have

the same space group, it was thought that these two phases were indeed identical.

However, differences between their Raman spectra suggested that they were different

[156]. Nevertheless, a recent theoretical study based on crystal structure prediction via

evolutionary algorithms has shown that CO2-III relaxes into CO2-VII. Therefore they

propose that these two phases are in fact the same [157].

The non-molecular CO2-V phase was first synthesized by laser heating CO2-III above
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40 GPa and 1800 K [159], and its crystalline structure was determined to be a partially

collapsed cristobalite structure, with space group I 4̄2d [160, 161]. Employing an isother-

mal compression of CO2-II at temperatures between 530 and 650 K, and going above

50 GPa, another non-molecular form of carbon dioxide (CO2-VI) was synthesized [154]

and it is interpreted as a layered tetrahedral phase [162]. In addition to the molecu-

lar and polymeric phases, an amorphous form of carbon dioxide (a-CO2) was observed

after compressing CO2-III in the pressure range 40 – 48 GPa at room temperature

[151]. Moreover, at pressures between 30 and 80 GPa, and temperatures above 1700 K,

CO2-V dissociates into elemental carbon (diamond) and oxygen (ε-O2) [163, 164]. The

currently accepted phase diagram that includes all the mentioned forms of solid CO2

along with the region where it becomes into a fluid is shown in Fig. 7.1.

Thus, theoretical and experimental studies have proven that CO2 owns a very com-

plex phase diagram made of molecular, non-molecular, and amorphous forms, as shown

in Fig. 7.1. Nevertheless, the phase boundaries are still a matter of discussion given

the presence of several kinetic boundaries, that may differ to each other depending on

the P −T path followed. Particular attention has been directed towards the molecular-

to-non-molecular boundary, where in the past decade the proposed kinetic barriers

have been essentially different. Santoro et al. [165] transformed CO2-II and CO2-III

into CO2-V and using Raman spectroscopy proposed a phase diagram where the CO2

transformation to a non-molecular form started around 21 GPa at T = 0K at room

temperature, and the boundary between the molecular and the non-molecular struc-

tures exhibits a positive slope. Nonetheless, a later study by Santoro and Gorelli [166]

proposed a new kinetic border with negative slope from infrared spectroscopy mea-

surements based on the formation of amorphous carbonia from the molecular CO2.

Therefore, given the difficulty to experimentally determine the thermodynamic phase

boundary between the molecular and non-molecular forms, due to the large metasta-

bility exhibited by CO2 in the high-pressure regime, in the present work we present

a theoretical phase boundary between the molecular phases II, III, and IV, and the

non-molecular phase V.
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Figure 7.2: Studied phases of carbon dioxide: (a) CO2-II (P42/mnm), (b) CO2-III (Cmcm), (c)
CO2-IV (R3̄c) at 18 GPa, and (d) CO2-V (I 4̄2d) at 26 GPa. Carbon atoms are represented as yellow
spheres, while oxygen atoms corresponds to the red ones.
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7.2 Computational Details

Ab initio electronic structure calculations were carried out using density functional

theory (DFT) and the projector augmented wave (PAW) method, as implemented in

the Quantum ESPRESSO suite [22, 23] with a kinetic energy cutoff of 200 Ry for the

plane-wave basis set14. Generalized gradient approximation (GGA) for the exchange-

correlation energy was implemented using the Perdew-Burke-Ernzerhof functional [18].

The Monkhorst-Pack method [24] was used to generate the k-points grids for sampling

the Brillouin zone. Selected grids for the primitive cells of the phases P42/mnm,

Cmca, R3̄c, and I 4̄2d, namely CO2-II, CO2-III, CO2-IV, and CO2-V, respectively were

chosen to ensure an energy convergence better than 1 meV per formula unit (f.u.) of

CO2. Variable-cell optimization calculations were performed to obtain the structural

parameters for all phases within a range from 10 to 70 (GPa) at steps of 4 GPa.

Density functional perturbation theory (DFPT) within the linear response scheme

[30] was used to calculate the vibrational properties of the three different CO2 phases at

zero temperature. By means of the quasi-harmonic approximation (QHA) [39, 38] the

finite-temperature contributions to the Helmholtz free energy were computed. For the

construction of the pressure-temperature (P-T) phase diagram, we first obtained for

each phase the value of P , and subsequently V , by fitting the Helmholtz free energy at

different temperatures to a 3rd order Birch-Murnaghan equation of state. The variance

(χ2) of all fits were of order 10−5 or better. Finally, the Gibbs free energy was calculated

as set in equation 5.1.

7.3 Phase Boundaries and Phase Diagram of solid

CO2

We start making a comparison of the volumes reported from predicted and experi-

mental structures for phases CO2-II, CO2-III, CO2-IV, and CO2-V, with our relaxed

14Data regarding convergence calculations are in the Appendix C
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Figure 7.3: Pressure-volume relation of phases (a) II, (b) III, (c) IV, and (d) V of CO2 obtained from
the 3rd order Birch-Murnaghan equation of state at room temperature are shown in black solid lines.
For each case, reported values from experimental (red circles) and theoretical (blue squares, purple
diamonds and yellow crosses) studies for the different phases are displayed as well.

structures. The variation of volume as a function of the pressure of the molecular and

non-molecular phases at room temperature was computed using the 3rd order Birch-

Murnaghan equation of state is reported in Fig. 7.3. Calculated unit cell volumes are

in excellent agreement with values reported in theoretical and experimental studies.

7.3.1 Molecular to non-molecular phase transitions

Finite temperature contributions to the Gibbs free energy were calculated based on

QHA. The phase boundaries between each of the molecular phases of CO2 phases II,

III and IV, and the non-molecular phase V, are shown in Fig. 7.4. The phase transition

between the molecular phases and phase V, were in the range between 20 and 35 GPa,

and 0 to 1600K. Around 25.5 GPa and for temperatures below ∼ 600K, the CO2-II
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Figure 7.4: Phase boundaries between molecular phases CO2-II (blue), CO2-III (red), and CO2-IV
(green), and the non-molecular phase CO2-V. Proposed boundaries in previous works are also included:
Ref. [165] (violet dashed line) and Ref. [166] (indigo circles).

(blue solid line in Fig. 7.4) is the most stable phase given, while CO2-IV becomes more

stable at higher temperatures (green solid line in Fig. 7.4). This is in agreement with

the reported thermodynamic phase boundary between phase III and IV (black solid

line in Fig. 7.4), however, our calculations suggest that CO2-III is a metastable phase

at all temperatures (red solid line in Fig. 7.4) in the solid portion of the phase diagram

where the transition from molecular phases to the non-molecular CO2-V was studied.

In a first attempt to determine the boundary between the molecular and the non-

molecular phases, Santoro et al. [165] proposed the beginning of the phase V around

21 GPa at room temperature as a middle point in the region between 12 and 30, where

CO2-V is expected to be metastable when is decompressed into CO2-I (violet dashed

line in Fig. 7.4). It is important to emphasize that phase V was not yet established

in 2004, when this work was published, therefore the transition pressure that they

proposed at room temperature around 21 GPa did not have any other justification

than an educated guess. Before the crystalline structure of CO2-V was unequivocally

determined, theoretical studies suggested that above ∼ 20 GPa this phase becomes

stable [167, 168]. These theoretical works predicted transition pressures from CO2-
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II and CO2-III to the non-molecular forms based on enthalpy relations in the range

between 18 and 21 GPa [167, 168, 169]. Our data suggests 21.5 and 20.8 GPa for the

transition into CO2-V from CO2-II and CO2-III, respectively, which are in agreement

with previous theoretical works. Nonetheless, in a latter work, Santoro and Gorelli

[166] dramatically redefined the previous kinetic border based on infrared spectroscopy

measurements (indigo dots in Fig. 7.4), leading to a new boundary with negative

slope. They suggested that the non-molecular forms of CO2 are expected to be after

the kinetic boundary and the phase boundary between molecular and non-molecular

forms should not intersect the non-molecular P-T region delimited by the kinetic line.

The proposed boundary not only does not intersect the non-molecular region, but it

also respects the region assigned to the non-molecular, crystalline phase V. However,

phase V is denser than the molecular phases and also lower in entropy, then, according

to the Claperyon equation: dP/dT = ∆S/∆V , where ∆S and ∆V are the variation of

entropy and volume, respectively between two phases that coexist at thermodynamic

equilibrium, it is expected that the slope of the phase boundary is positive, as shown

in table 7.1. Additionally, our calculations shows a triple point between phases IV and

V, and the liquid phase at 35 GPa and 1600 K.

Table 7.1: Thermodynamic properties of carbon dioxide from the molecular phases P42/mnm (CO2-
II) and R3̄c (CO2-IV) to the non-molecular phase I 4̄2d (CO2-V). ∆SCO2−V and ∆SCO2−V are the
volume and the entropy difference, respectively, between the molecular phase and phase V. Subscript
T states for transition.

PT TT V ∆VCO2−V S ∆SCO2−V dT/dP
GPa K a.u.3/atom J·mol/K K/GPa

P
4 2
/m

n
m

21.95 200 4.0610 0.9538 -5.7145 -5.6997 0.0159
22.57 300 4.0513 0.9508 -7.0807 -7.0598 0.0243
23.50 400 4.0296 0.9394 -10.7455 -10.7160 0.0334
24.41 500 4.0094 0.9284 -15.3715 -15.3345 0.0389
25.33 600 3.9896 0.9172 -20.3605 -20.3167 0.0427

R
3̄c

25.06 600 3.3852 0.3090 -20.3900 -20.3462 0.1265
25.39 800 3.3714 0.2999 -20.7385 -20.6944 0.1302
26.45 1000 3.3520 0.2941 -21.2663 -21.2211 0.1355
31.27 1200 3.3436 0.2922 -22.0603 -22.0127 0.1460
33.10 1400 3.3285 0.2904 -22.5765 -22.5265 0.1572
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Figure 7.5: Enthalpy-pressure relations without (solid lines) and with (dashed) ZPE for studied
phases of carbon dioxide: P42/mnm (reference, black), Cmcm (red), R3̄c (green), and Cmcm (blue).
Transition-pressure reported by Santoro et al. [165], Oganov et al. [167], Gohr et al. [168], and Yong
et al. [169], are in orange, brown, violet, and cyan dots, respectively.

7.3.2 Boundaries between molecular phases

In the region below 35 GPa and up to 1600K, the molecular phases I, II, III, and IV,

co-exist. In the present section we focused in the pressure range from 15 to 35 GPa.

According to the enthalpy-pressure relations shown in Fig. 7.5, with and without the

zero-point energy contribution, at T = 0 K, CO2-II is the most stable phase until the

transition to CO2-V. This indicates that the orthorhombic phase Cmca obtained after

the compression of phase I is metastable, as it was already reported [149, 170]. The

kinetic barrier between CO2-II and CO2-III is overcome when the system is heated,

where phase III becomes thermodynamically stable at finite temperature (blue solid

line in Fig. 7.6).

After the inclusion of phase IV to delimit its stability region, CO2-II’s is reduced

in temperature. The calculated phase boundary between phases II and IV (green solid
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Figure 7.6: Phase boundaries between (a) CO2-II and CO2-III (blue), (b) CO2-II and CO2-IV (green),
and (c) CO2-III and CO2-IV (red). Suggested boundaries reported by Iota et al. [149] (experimental)
and Bonev [170] (theoretical), are shown in magenta and orange dot-dashed lines, respectively.

line in Fig. 7.6) is in agreement with its known thermodynamic transition line [155].

Additionally, the region of stability of phase III narrows down to a much smaller one

limited up to 18 GPa (blue solid line in Fig. 7.6). Our findings are in agreement with

previous studies that suggested Cmcm phase as a temperature stabilized phase [170].

However, the work of Bonev et al. does not include CO2-IV since its structure was still

a matter of debate at the time of their publication, therefore their results propose a

wide region for CO2-III. Interestingly, the refined region for CO2-III obtained in our

calculations is actually in the P–T vicinity of the so-called phase VII. There has been

controversy around weather phases III and VII are or not likely identical. A recent

theoretical work has shown that they are in fact the same, but our data shows that the

phase III is limited only to the region where phase VII was observed.

85



Chapter 7 Molecular and Non-Molecular Carbon Dioxide

Figure 7.7: Proposed finite temperature phase diagram for carbon dioxide at high pressure. The phase
boundaries at finite temperature, corresponding to calculations including ZPE and using an electronic
temperature of 500 K, are shown by solid black lines, while previously reported thermodynamic bound-
aries are set in gray. Yellow, green, blue and red areas correspond to the molecular, non-molecular,
fluid, and dissociated forms of CO2.

7.4 Conclusions

In summary, we have presented theoretical calculations that redefined the transition

boundary from molecular to non-molecular phases of carbon dioxide. The proposed

line now has a positive slope starting at 21.5 GPa at T = 0, reaching a triple point

between phase IV, V, and the liquid phase at 35 GPa and 1600 K, indicating that

non-molecular phases have a wider region of stability. Moreover, it was shown that

phase II is the most stable molecular phase at low temperatures, instead of phase III.

Additionally, we were able to confirm the thermodynamic boundary line between CO2-

II and CO2-IV. Interestingly, since our results show that CO2-III is stabilized at high

temperature, its stability region was narrowed down to the P – T vicinity were phase

VII was reported, implying not only that phase III and phase VII are indeed the same,

but that the portion of the phase diagram corresponding to phase III is in fact beloging

to CO2-II. It is necessary to study theoretically other metastable phases that were not

taken into account in this study, namely CO2-VI and the amorphous phase, to evaluate
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their impact in the phase diagram.
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Closing remarks

The primary goal of this thesis report was to provide an accurate description from the

theoretical point of view of carbon, oxygen, and one of their mixtures, namely carbon

dioxide. In all cases, we focused on the high-pressure region of their phase diagram,

where there are open questions and controversy around them. With this in mind, we

have presented a vibrational analysis of several phases for each system. Our calculations

were performed within the density functional theory framework, and the inclusion of

the thermal contribution to the Gibbs free energy was done using the quasi-harmonic

approximation.

Since we have already concluded at the end of every chapter that dealt with a

different system, here we will give some remarks about some relevant findings that

emerged under pressure. In ”Persistence and Eventual Demise of Oxygen Molecules

at Terapascal Pressures”, Sun et al. performed computational searches for structures

of solid oxygen under high pressure in the multi-TPa region. They found how oxygen

remained molecular almost up to 2 TPa, and as long as pressure increases, its electronic

properties exhibit a complex evolution, swapping between insulation, semiconducting,

and metallic. It is above 9 TPa when oxygen finally forms a four-fold coordinated phase

of space group Fmmm. Nevertheless, that work stated that temperature might have

a significant effect on the transition from molecular to polymeric oxygen phases, and

that was our starting point for the work on oxygen. Our finite temperature calculations,

based on the quasi-harmonic approximation, and therefore also on phonon frequencies,

gave us the first behavior that drew our attention: phonon frequencies are expected

to increase with pressure. This is due to when the interatomic distances are reduced,

the forces on the atoms get stronger. However, in the case of phase Fmmm of solid

oxygen, this was not the case: its phonon softening reduces when pressure is applied,

which has a profound effect on the phase boundary between Cmcm and Fmmm, where

a negative slope is exhibited. Moreover, at finite temperatures, the molecular phase

expands its stability range to pressures exceeding 3 TPa at the highest temperatures

considered in this work (8000 K). On the contrary, the range of stability of the first

non-molecular phase, I41/acd, shrinks with temperature and the phase is no longer
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thermodynamically stable above 5000 K, and the same behavior is observed for Cmcm

above 7800 K.

On the other hand, the work on carbon dioxide has been strongly influenced by

two experimental papers that span the P − T where should lies the boundary between

the molecular and the non-molecular phases of CO2. Santoro et al., in the work ”In

situ high P − T Raman spectroscopy and laser heating of carbon dioxide”, proposed

a phase diagram where the boundary between molecular and non-molecular phases at

room temperature is located at 20 GPa, roughly half-way between the lowest pres-

sure of quenching and the pressure of synthesis for phase V. Later, in ”Constraints on

the phase diagram of nonmolecular CO2 imposed by infrared spectroscopy”, Santoro and

Gorelli stated that the kinetic boundary between CO2-III and the a-CO2 non-molecular

structure, i.e., the P − T region where the transformation occurs upon compression,

has a negative slope, while basic thermodynamic considerations suggest that the slope

of the true phase boundary should be positive. These two works set a pressure range of

approximately 30 GPa in which the molecular/non-molecular boundary at zero temper-

ature should be located. Via ab-initio techniques, we were able to provide theoretical

insight into the long-term discussion around the boundary between molecular and non-

molecular phases of carbon dioxide. Our results suggest that the boundary between the

molecular phases and the non-molecular phase V has a positive slope. Moreover, we

found a triple point between phase IV, V, and the liquid phase at 35 GPa and 1600 K,

indicating that CO2-V has a broader region of stability than previously reported. Also,

it was shown that phase II is the most stable molecular phase at low temperatures,

extending its region of stability to every P − T condition where phase III has been

reported experimentally. Nevertheless, our results also show that CO2-III is instead

stabilized at high temperature and its stability region coincides with the P − T condi-

tions where phase VII has been reported experimentally, implying that phase III and

phase VII are indeed the same.

On the technical side, we were able to reproduce the phase boundaries transition

between phases of carbon can be reproduced with a minimum amount of computational

cost by using the quasi-harmonic approximation. Although QHA is enough to replicate

these transitions that include small anharmonic corrections, for the study of the melting

line the quasi-harmonic approximation is not accurate enough, and it is necessary to

add the anharmonic correction to the free energy in order to estimate the solid-to-fluid
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transition accurately.
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Appendix A Carbon

A Carbon

A.1 Convergence calculations

A.1.1 Electronic structure parameters

Diamond

(a) Ecut (b) k-points

Figure A.1: Electronic energy convergence as a function of (a) Kinetic energy cutoff and (b) k-points
grid for Diamond at 1.25 TPa

BC8

(a) Ecut (b) k-points

Figure A.2: Electronic energy convergence as a function of (a) Kinetic energy cutoff and (b) k-points
grid for BC8 at 3.00 TPa
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Simple Cubic

(a) Ecut (b) k-points

Figure A.3: Electronic energy convergence as a function of (a) Kinetic energy cutoff and (b) k-points
grid for SC at 3.50 TPa

A.1.2 q-points grid

Diamond

Figure A.4: Phonon dispersion for Diamond at 1.25 TPa with q-points grid of 2 × 2 × 2 (blue solid
line), 4× 4× 4 (red solid line), and 6× 6× 6 (green dots).
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BC8

Figure A.5: Phonon dispersion for BC8 at 3.00 TPa with q-points grid at Gamma point (blue solid
line), 2× 2× 2 (red solid line), and 4× 4× 4 (green dots).

Simple Cubic

Figure A.6: Phonon dispersion for SC at 3.50 TPa with q-points grid for 2× 2× 2 (black solid line),
4× 4× 4 (red solid line), 6× 6× 6 (blue solid line) and 8× 8× 8 (green dots).
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A.1.3 Zero-point energy

Table A.1: Zero-point energy convergence for (a) Diamond at 1.25 TPa, (b) BC8 at 3.00 TPa, and (c)
SC at 3.00 TPa. All the energy values of F0(q) are in Ry.

q-points grid F0(q)
2× 2× 2 0.19866
4× 4× 4 0.19960
6× 6× 6 0.19976

(a) Diamond

q-points grid F0(q)
Γ 0.46470

2× 2× 6 0.46914
4× 4× 4 0.46942

(b) BC8

q-points grid F0(q)
4× 4× 4 0.02622
6× 6× 6 0.02512
8× 8× 8 0.02513

(c) SC

A.2 Structural parameters

Diamond

Table A.2: Lattice parameters and atomic positions of Diamond. Symmetry group: 227. Wyckoff
letter: a.

P Lattice parameters
(TPa) (a.u.; °)
0.25 a = b = c = 6.06111 α = β = γ = 90.0000
0.50 a = b = c = 5.74014 α = β = γ = 90.0000
0.75 a = b = c = 5.52638 α = β = γ = 90.0000
1.00 a = b = c = 5.36583 α = β = γ = 90.0000
1.25 a = b = c = 5.23734 α = β = γ = 90.0000

BC8

Table A.3: Lattice parameters and atomic positions of BC8. Symmetry group: 206. Wyckoff letter: c.

P Lattice parameters Atomic
(TPa) (a.u.; °) coordinates
0.75 a = b = c = 6.88929 α = β = γ = 90.0000 x = 0.10219
1.00 a = b = c = 6.69059 α = β = γ = 90.0000 x = 0.10309
1.25 a = b = c = 6.53183 α = β = γ = 90.0000 x = 0.10379
1.50 a = b = c = 6.39974 α = β = γ = 90.0000 x = 0.10435
1.75 a = b = c = 6.28674 α = β = γ = 90.0000 x = 0.10481
2.00 a = b = c = 6.18815 α = β = γ = 90.0000 x = 0.10519
2.25 a = b = c = 6.10070 α = β = γ = 90.0000 x = 0.10552
2.50 a = b = c = 6.02218 α = β = γ = 90.0000 x = 0.10581
2.75 a = b = c = 5.95099 α = β = γ = 90.0000 x = 0.10606
3.00 a = b = c = 5.88591 α = β = γ = 90.0000 x = 0.10629
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Simple Cubic

Table A.4: Lattice parameters and atomic positions of SC. Symmetry group: 221. Wyckoff letter: a.

P Lattice parameters
(TPa) (a.u.; °)
2.50 a = b = c = 2.35816 α = β = γ = 90.0000
2.75 a = b = c = 2.33055 α = β = γ = 90.0000
3.00 a = b = c = 2.30531 α = β = γ = 90.0000
3.25 a = b = c = 2.28208 α = β = γ = 90.0000
3.50 a = b = c = 2.26052 α = β = γ = 90.0000

A.3 EOS parameters

Diamond

Table A.5: 3rd order Birch-Murnaghan EOS parameters for diamond from 0.25 to 1.00 TPa.

T V0 B0 B′0 E0

0 3.31978 6496.630 2.474 -18.411
500 3.31720 6629.190 2.444 -18.415
1000 3.31937 6515.890 2.470 -18.411
1500 3.31428 6794.330 2.409 -18.422
2000 3.31121 6978.780 2.370 -18.432
2500 3.30810 7173.290 2.330 -18.445
3000 3.30503 7374.180 2.290 -18.459
3500 3.30197 7580.630 2.249 -18.474
4000 3.29896 7791.500 2.208 -18.491
4500 3.29598 8007.060 2.167 -18.509
5000 3.29302 8227.320 2.126 -18.529

T V0 B0 B′0 E0

5500 3.29013 8450.370 2.084 -18.549
6000 3.28728 8677.410 2.043 -18.570
6500 3.28447 8908.230 2.002 -18.591
7000 3.28167 9143.540 1.960 -18.614
7500 3.27894 9382.100 1.919 -18.637
8000 3.27624 9624.050 1.877 -18.661
8500 3.27355 9871.340 1.836 -18.685
9000 3.27094 10119.900 1.794 -18.710
9500 3.26834 10373.900 1.752 -18.735
10000 3.26576 10632.200 1.710 -18.761
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BC8

Table A.6: 3rd order Birch-Murnaghan EOS parameters for BC8 from 0.75 to 3.00 TPa.

T V0 B0 B′0 E0

0 3.22716 7985.040 2.375 -18.336
500 3.22756 7978.570 2.374 -18.337
1000 3.23045 7928.690 2.373 -18.342
1500 3.23441 7868.790 2.371 -18.351
2000 3.23858 7812.280 2.368 -18.363
2500 3.24278 7759.300 2.365 -18.377
3000 3.24699 7709.040 2.361 -18.393
3500 3.25118 7661.140 2.358 -18.410
4000 3.25534 7615.260 2.354 -18.429
4500 3.25948 7571.200 2.350 -18.449
5000 3.26359 7528.730 2.346 -18.470

T V0 B0 B′0 E0

5500 3.26768 7487.740 2.342 -18.492
6000 3.27174 7448.200 2.338 -18.515
6500 3.27577 7410.130 2.334 -18.539
7000 3.27979 7373.060 2.330 -18.563
7500 3.28377 7337.400 2.325 -18.589
8000 3.28773 7302.820 2.321 -18.614
8500 3.29167 7269.280 2.317 -18.641
9000 3.29558 7236.970 2.312 -18.668
9500 3.29947 7205.450 2.308 -18.695
10000 3.30333 7175.270 2.304 -18.723

Simple Cubic

Table A.7: 3rd order Birch-Murnaghan EOS parameters for simple cubic from 2.50 to 3.50 TPa.

T V0 B0 B′0 E0

0 3.43918 3870.790 2.529 -18.321
500 3.45802 3694.410 2.533 -18.329
1000 3.49195 3458.090 2.521 -18.354
1500 3.60039 2750.320 2.511 -18.414
2000 3.79760 1842.670 2.500 -18.506
2500 3.95756 1362.620 2.490 -18.576
3000 4.30814 728.691 2.480 -18.683
3500 5.00453 242.563 2.470 -18.810
4000 5.26226 170.735 2.460 -18.859
4500 5.29161 167.548 2.451 -18.889
5000 5.30537 168.122 2.441 -18.918

T V0 B0 B′0 E0

5500 5.31068 170.680 2.431 -18.947
6000 5.31269 174.077 2.421 -18.977
6500 5.30796 179.242 2.411 -19.008
7000 5.31219 182.443 2.400 -19.041
7500 5.31325 186.441 2.390 -19.073
8000 5.31215 190.575 2.381 -19.106
8500 5.31326 195.074 2.370 -19.141
9000 5.31329 199.596 2.360 -19.176
9500 5.37081 188.868 2.351 -19.216
10000 5.68703 129.361 2.340 -19.280
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B Solid Oxygen

B.1 Convergence calculations

B.1.1 Electronic structure parameters

R3̄m

(a) Ecut (b) k-points

Figure B.1: Electronic energy convergence as a function of (a) Kinetic energy cutoff and (b) k-points
grid for R3̄m at 4.0 TPa

I41/acd

(a) Ecut (b) k-points

Figure B.2: Electronic energy convergence as a function of (a) Kinetic energy cutoff and (b) k-points
grid for I41/acd at 4.0 TPa
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Cmcm

(a) Ecut (b) k-points

Figure B.3: Electronic energy convergence as a function of (a) Kinetic energy cutoff and (b) k-points
grid for Cmcm at 10.0 TPa

Fmmm

(a) Ecut (b) k-points

Figure B.4: Electronic energy convergence as a function of (a) Kinetic energy cutoff and (b) k-points
grid for Fmmm at 10.0 TPa
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C2/m

(a) Ecut (b) k-points

Figure B.5: Electronic energy convergence as a function of (a) Kinetic energy cutoff and (b) k-points
grid for C2/m at 4.0 TPa

B.1.2 q-points grid

R3̄m

Figure B.6: Phonon dispersion for R3̄m at 4.0 TPa with q-points grid of 2 × 2 × 2 (blue solid line),
4× 4× 4 (red solid line), and 6× 6× 6 (green dots).
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I41/acd

Figure B.7: Phonon dispersion for I41/acd at 4.0 TPa with q-points grid of 1× 1× 3 (blue solid line),
2× 2× 6 (red solid line), and 3× 3× 9 (green dots).

Cmcm

Figure B.8: Phonon dispersion for Cmcm at 10.0 TPa with q-points grid of 1× 2× 2 (blue solid line),
2× 4× 4 (red solid line), and 3× 6× 6 (green dots).
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Fmmm

Figure B.9: Phonon dispersion for Cmcm at 10.0 TPa with q-points grid of 1× 2× 2 (blue solid line),
2× 4× 4 (red solid line), and 3× 6× 6 (green dots).

C2/m

Figure B.10: Phonon dispersion for I41/acd at 4.0 TPa with q-points grid of 1×2×2 (blue solid line),
2× 4× 4 (red solid line), and 3× 6× 6 (green dots).
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B.1.3 Zero-point energy

Table B.1: Zero-point energy convergence for (a) R3̄m, (b) I41/acd, and (e) C2m at 4.0 TPa, and (c)
Cmcm and (d) Fmmm at 10.0 TPa. All the energy values of F0(q) are in Ry.

q-points grid F0(q)
2× 2× 2 0.04642
4× 4× 4 0.04732
6× 6× 6 0.04746

(a) R3̄m

q-points grid F0(q)
1× 1× 3 0.40546
2× 2× 6 0.40815
3× 3× 9 0.40843

(b) I41/acd

q-points grid F0(q)
1× 2× 2 0.12951
2× 4× 4 0.13177
3× 6× 6 0.13198

(c) Cmcm

q-points grid F0(q)
1× 2× 2 0.12622
2× 4× 4 0.12694
3× 6× 6 0.12698

(d) Fmmm

q-points grid F0(q)
1× 2× 2 0.09481
2× 4× 4 0.96108
3× 6× 6 0.96282

(e) C2/m

B.2 Structural parameters

R3̄m

Table B.2: Lattice parameters and atomic positions of R3̄m. Symmetry group: 166 (rhombohedral
axes). Wyckoff letter: c.

P Lattice parameters Atomic
(TPa) (a.u.; °) coordinates

1.0 a = b = c = 5.08172 α = β = γ = 36.9128 x = 0.92796
1.5 a = b = c = 4.87032 α = β = γ = 36.7013 x = 0.92687
2.0 a = b = c = 4.72002 α = β = γ = 36.5349 x = 0.92613
2.5 a = b = c = 4.60462 α = β = γ = 36.3724 x = 0.92546
3.0 a = b = c = 4.51307 α = β = γ = 36.1962 x = 0.92490
3.5 a = b = c = 4.43808 α = β = γ = 36.0057 x = 0.92433
4.0 a = b = c = 4.37151 α = β = γ = 35.8670 x = 0.92391
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I41/acd

Table B.3: Lattice parameters and atomic positions of I41/acd. Symmetry group: 142. Wyckoff letter:
f.

P Lattice parameters Atomic
(TPa) (a.u.; °) coordinates

1.0 a = b = 9.46471 c/a = 0.39408 α = β = γ = 90.0000 x = 0.13759
1.5 a = b = 9.07545 c/a = 0.38978 α = β = γ = 90.0000 x = 0.13647
2.0 a = b = 8.79188 c/a = 0.38747 α = β = γ = 90.0000 x = 0.13573
2.5 a = b = 8.56900 c/a = 0.38603 α = β = γ = 90.0000 x = 0.13515
3.0 a = b = 8.38513 c/a = 0.38510 α = β = γ = 90.0000 x = 0.13468
3.5 a = b = 8.22894 c/a = 0.38444 α = β = γ = 90.0000 x = 0.13427
4.0 a = b = 8.09282 c/a = 0.38403 α = β = γ = 90.0000 x = 0.13390

Cmcm

Table B.4: Lattice parameters and atomic positions of Cmcm. Symmetry group: 63. Wyckoff letter:
c.

P Lattice parameters Atomic
(TPa) (a.u.; °) coordinates

1.0 a = 5.93751 b/a = 0.65637 c/a = 0.60385 α = β = γ = 90.0000 y = 0.18769
1.5 a = 5.65141 b/a = 0.64451 c/a = 0.61934 α = β = γ = 90.0000 y = 0.19291
2.0 a = 5.44830 b/a = 0.63897 c/a = 0.62859 α = β = γ = 90.0000 y = 0.19627
2.5 a = 5.29200 b/a = 0.63539 c/a = 0.63530 α = β = γ = 90.0000 y = 0.19915
3.0 a = 5.16426 b/a = 0.63410 c/a = 0.63983 α = β = γ = 90.0000 y = 0.20105
3.5 a = 5.05778 b/a = 0.63371 c/a = 0.64279 α = β = γ = 90.0000 y = 0.20276
4.0 a = 4.96659 b/a = 0.63226 c/a = 0.64612 α = β = γ = 90.0000 y = 0.20497
4.5 a = 4.88802 b/a = 0.63207 c/a = 0.64752 α = β = γ = 90.0000 y = 0.20702
5.0 a = 4.81792 b/a = 0.63195 c/a = 0.64881 α = β = γ = 90.0000 y = 0.20882
5.5 a = 4.75418 b/a = 0.63189 c/a = 0.65015 α = β = γ = 90.0000 y = 0.21074
6.0 a = 4.69714 b/a = 0.63175 c/a = 0.65109 α = β = γ = 90.0000 y = 0.21264
6.5 a = 4.64512 b/a = 0.63184 c/a = 0.65171 α = β = γ = 90.0000 y = 0.21427
7.0 a = 4.59704 b/a = 0.63062 c/a = 0.65342 α = β = γ = 90.0000 y = 0.21698
7.5 a = 4.55193 b/a = 0.63073 c/a = 0.65425 α = β = γ = 90.0000 y = 0.21824
8.0 a = 4.51006 b/a = 0.62944 c/a = 0.65617 α = β = γ = 90.0000 y = 0.22084
8.5 a = 4.47076 b/a = 0.62911 c/a = 0.65721 α = β = γ = 90.0000 y = 0.22270
9.0 a = 4.43705 b/a = 0.63164 c/a = 0.65742 α = β = γ = 90.0000 y = 0.22396
9.5 a = 4.40139 b/a = 0.62201 c/a = 0.66433 α = β = γ = 90.0000 y = 0.23131
10.0 a = 4.36998 b/a = 0.61097 c/a = 0.67616 α = β = γ = 90.0000 y = 0.25000
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Fmmm

Table B.5: Lattice parameters and atomic positions of Fmmm. Symmetry group: 69. Wyckoff letter:
a.

P Lattice parameters
(TPa) (a.u.; °)

5.0 a = 4.83536 b/a = 0.60122 c/a = 0.67047 α = β = γ = 90.0000
5.5 a = 4.76913 b/a = 0.60222 c/a = 0.67202 α = β = γ = 90.0000
6.0 a = 4.70959 b/a = 0.60330 c/a = 0.67301 α = β = γ = 90.0000
6.5 a = 4.65565 b/a = 0.60433 c/a = 0.67368 α = β = γ = 90.0000
7.0 a = 4.60580 b/a = 0.60522 c/a = 0.67445 α = β = γ = 90.0000
7.5 a = 4.55918 b/a = 0.60612 c/a = 0.67529 α = β = γ = 90.0000
8.0 a = 4.51572 b/a = 0.60703 c/a = 0.67601 α = β = γ = 90.0000
8.5 a = 4.47550 b/a = 0.60789 c/a = 0.67650 α = β = γ = 90.0000
9.0 a = 4.43807 b/a = 0.60876 c/a = 0.67672 α = β = γ = 90.0000
9.5 a = 4.40251 b/a = 0.60959 c/a = 0.67708 α = β = γ = 90.0000
10.0 a = 4.37002 b/a = 0.61098 c/a = 0.67614 α = β = γ = 90.0000

C2/m

Table B.6: Lattice parameters and atomic positions of C2/m. Symmetry group: 12 (unique axis b).
Wyckoff letter: i.

P Lattice parameters Atomic
(TPa) (a.u.; °) coordinates

1.0 a = 5.57599 b/a = 0.57689 c/a = 0.91105 x = 0.07199 z = 0.21620
α = γ = 90.0000 β = 111.4403

1.5 a = 5.31650 b/a = 0.57637 c/a = 0.91564 x = 0.07294 z = 0.21943
α = γ = 90.0000 β = 111.2768

2.0 a = 5.12857 b/a = 0.57686 c/a = 0.92004 x = 0.07391 z = 0.22171
α = γ = 90.0000 β = 111.2442

2.5 a = 4.97892 b/a = 0.57748 c/a = 0.92471 x = 0.07465 z = 0.22374
α = γ = 90.0000 β = 111.1611

3.0 a = 4.85559 b/a = 0.57794 c/a = 0.92925 x = 0.07526 z = 0.22550
α = γ = 90.0000 β = 111.0723

3.5 a = 4.75713 b/a = 0.57654 c/a = 0.93236 x = 0.07561 z = 0.22708
α = γ = 90.0000 β = 110.9304

4.0 a = 4.67585 b/a = 0.57432 c/a = 0.93399 x = 0.07561 z = 0.22842
α = γ = 90.0000 β = 110.7216
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B.3 EOS parameters

R3̄m

Table B.7: 3rd order Birch-Murnaghan EOS parameters for R3̄m from 1.0 to 4.0 TPa.

T V0 B0 B′0 E0

0 4.01212 113.831 3.924 -41.403
500 4.03278 108.393 3.926 -41.393
1000 4.09250 94.310 3.930 -41.391
1500 4.17115 78.827 3.934 -41.406
2000 4.26442 64.046 3.939 -41.443
2500 4.37301 50.611 3.944 -41.506
3000 4.49838 38.876 3.949 -41.613
3500 4.64536 28.826 3.955 -41.733
4000 4.81970 20.485 3.960 -41.816

T V0 B0 B′0 E0

4500 4.97984 15.170 3.964 -41.829
5000 5.15071 11.141 3.968 -41.821
5500 5.20817 10.123 3.968 -41.834
6000 5.21827 10.022 3.968 -41.859
6500 5.22393 10.000 3.968 -41.887
7000 5.22838 10.000 3.968 -41.915
7500 5.23278 10.000 3.968 -41.943
8000 5.23717 10.000 3.967 -41.974

I41/acd

Table B.8: 3rd order Birch-Murnaghan EOS parameters for I41/acd from 1.0 to 4.0 TPa.

T V0 B0 B′0 E0

0 3.58415 331.530 3.884 -41.457
500 3.57125 344.476 3.882 -41.455
1000 3.58833 329.709 3.884 -41.465
1500 3.65080 278.257 3.892 -41.488
2000 3.76536 205.013 3.905 -41.523
2500 3.95736 125.801 3.923 -41.570
3000 4.29153 57.387 3.944 -41.628
3500 4.71719 23.382 3.961 -41.684
4000 5.07612 11.805 3.970 -41.728

T V0 B0 B′0 E0

4500 5.17006 10.032 3.971 -41.756
5000 5.17617 10.015 3.970 -41.781
5500 5.18218 10.000 3.970 -41.807
6000 5.18732 10.000 3.970 -41.833
6500 5.19246 10.000 3.970 -41.860
7000 5.19671 10.015 3.969 -41.889
7500 5.20176 10.016 3.969 -41.916
8000 5.20707 10.011 3.968 -41.946

Cmcm

Table B.9: 3rd order Birch-Murnaghan EOS parameters for Cmcm from 1.0 to 4.0 TPa.

T V0 B0 B′0 E0

4000 5.16084 10.000 3.970 -41.697
4500 5.16568 10.000 3.969 -41.745
5000 5.17049 10.000 3.969 -41.770
5500 5.17527 10.000 3.969 -41.795
6000 5.18003 10.000 3.968 -41.822

T V0 B0 B′0 E0

6500 5.18474 10.000 3.968 -41.849
7000 5.18917 10.005 3.968 -41.878
7500 5.19340 10.013 3.968 -41.906
8000 5.19810 10.011 3.968 -41.937
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Table B.10: 3rd order Birch-Murnaghan EOS parameters for Cmcm from 5.0 to 9.0 TPa.

T V0 B0 B′0 E0

0 6.57580 0.981 3.988 -41.593
500 6.60674 0.940 3.988 -41.594
1000 6.61869 0.926 3.989 -41.598
1500 6.64109 0.900 3.989 -41.606
2000 6.64740 0.895 3.989 -41.616
2500 6.66182 0.881 3.989 -41.630
3000 6.68037 0.861 3.989 -41.645
3500 6.69944 0.842 3.989 -41.662
4000 6.89566 0.650 3.990 -41.685

T V0 B0 B′0 E0

4500 7.13688 0.477 3.991 -41.709
5000 7.33095 0.376 3.991 -41.732
5500 7.49259 0.309 3.992 -41.756
6000 7.54730 0.290 3.992 -41.779
6500 7.58073 0.280 3.992 -41.802
7000 7.74203 0.232 3.993 -41.828
7500 7.78986 0.220 3.993 -41.853
8000 7.82937 0.211 3.993 -41.878

Fmmm

Table B.11: 3rd order Birch-Murnaghan EOS parameters for Fmmm from 5.0 to 9.0 TPa.

T V0 B0 B′0 E0

0 6.14390 1.749 3.986 -41.518
500 6.37615 1.248 3.988 -41.526
1000 6.59767 0.917 3.989 -41.538
1500 6.82594 0.676 3.990 -41.554
2000 7.06531 0.497 3.991 -41.574
2500 7.27376 0.384 3.992 -41.595
3000 7.46975 0.303 3.992 -41.617
3500 7.76323 0.215 3.993 -41.642
4000 7.90483 0.184 3.993 -41.667

T V0 B0 B′0 E0

4500 8.01438 0.163 3.994 -41.691
5000 8.05792 0.156 3.994 -41.716
5500 8.17003 0.138 3.994 -41.743
6000 8.25689 0.126 3.994 -41.770
6500 8.30858 0.120 3.994 -41.798
7000 8.33724 0.117 3.994 -41.826
7500 8.45408 0.104 3.994 -41.856
8000 8.48268 0.101 3.995 -41.886

C2/m

Table B.12: 3rd order Birch-Murnaghan EOS parameters for C2/m from 1.0 to 4.0 TPa.

T V0 B0 B′0 E0

0 3.96781 127.123 3.920 -41.411
500 4.00406 116.343 3.923 -41.398
1000 4.06016 101.967 3.927 -41.397
1500 4.13197 86.455 3.931 -41.414
2000 4.21484 71.769 3.936 -41.453
2500 4.30122 59.409 3.940 -41.522
3000 4.41393 46.659 3.945 -41.632
3500 4.53406 36.358 3.950 -41.758
4000 4.67201 27.544 3.955 -41.850

T V0 B0 B′0 E0

4500 4.83189 20.186 3.959 -41.864
5000 5.02147 14.160 3.964 -41.850
5500 5.17016 10.859 3.967 -41.841
6000 5.21882 10.029 3.968 -41.858
6500 5.22399 10.018 3.968 -41.886
7000 5.22877 10.013 3.967 -41.914
7500 5.23377 10.004 3.967 -41.942
8000 5.23846 10.000 3.967 -41.972
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C Carbon dioxide

C.1 Convergence calculations

C.1.1 Electronic structure parameters

Phase II - P42/mnm

(a) Ecut (b) k-points

Figure C.1: Electronic energy convergence as a function of (a) Kinetic energy cutoff and (b) k-points
grid for CO2-II at 70 GPa

Phase III - Cmca

(a) Ecut (b) k-points

Figure C.2: Electronic energy convergence as a function of (a) Kinetic energy cutoff and (b) k-points
grid for CO2-III at 70 GPa
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Phase IV - R3̄c

(a) Ecut (b) k-points

Figure C.3: Electronic energy convergence as a function of (a) Kinetic energy cutoff and (b) k-points
grid for CO2-IV at 70 GPa

Phase V - I4̄2d

(a) Ecut (b) k-points

Figure C.4: Electronic energy convergence as a function of (a) Kinetic energy cutoff and (b) k-points
grid for CO2-V at 70 GPa
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C.1.2 q-points grid

Phase II - P42/mnm

Figure C.5: Phonon dispersion for CO2-II at 70 GPa with q-points grid of 2 × 2 × 2 (red solid line)
and 4× 4× 4 (green dots).

Phase III - Cmca

Figure C.6: Phonon dispersion for CO2-III at 70 GPa with q-points grid of 2 × 2 × 2 (red solid line)
and 4× 4× 4 (green dots).
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Phase IV - R3̄c

Figure C.7: Phonon dispersion for CO2-IV at 42 GPa at Gamma point (red solid line) and with
q-points grid of 2× 2× 2 (green dots).

111



Appendix C Carbon Dioxide

Phase V - I4̄2d

Figure C.8: Phonon dispersion for CO2-V at 70 GPa with q-points grid of 2 × 2 × 2 (red solid line)
and 4× 4× 4 (green dots).

C.1.3 Zero-point energy

Table C.1: Zero-point energy convergence for (a) P42/mnm, (b) Cmca, and (d) I 4̄2d at 70 TPa, and
(c) R3̄c, at 42 GPa. All the energy values of F0(q) are in Ry.

q-points grid F0(q)
2× 2× 2 0.06167
4× 4× 4 0.06190

(a) P42/mnm

q-points grid F0(q)
2× 2× 2 0.12346
4× 4× 4 0.12344

(b) Cmca

q-points grid F0(q)
Gamma 0.67072
2× 2× 2 0.6982

(c) R3̄c

q-points grid F0(q)
2× 2× 2 0.13920
4× 4× 4 0.13949

(d) I 4̄2d
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C.2 Structural parameters

Phase II - P42/mnm

Table C.2: Lattice parameters and atomic positions of CO2-II. Symmetry group: 136. Wyckoff letter
for C: a. Wyckoff letter for O: f.

P Lattice parameters Atomic
(GPa) (a.u.; °) coordinates

10 a = b = 7.21112 c/a = 1.14309 α = β = γ = 90.0 y = 0.21581
14 a = b = 7.04109 c/a = 1.14684 α = β = γ = 90.0 y = 0.22074
18 a = b = 6.91560 c/a = 1.14791 α = β = γ = 90.0 y = 0.22449
22 a = b = 6.81652 c/a = 1.14766 α = β = γ = 90.0 y = 0.22752
26 a = b = 6.73484 c/a = 1.14667 α = β = γ = 90.0 y = 0.23005
30 a = b = 6.66556 c/a = 1.14520 α = β = γ = 90.0 y = 0.23223
34 a = b = 6.60535 c/a = 1.14345 α = β = γ = 90.0 y = 0.23414
38 a = b = 6.55228 c/a = 1.14152 α = β = γ = 90.0 y = 0.23584
42 a = b = 6.50488 c/a = 1.13946 α = β = γ = 90.0 y = 0.23736
46 a = b = 6.46211 c/a = 1.13731 α = β = γ = 90.0 y = 0.23875
50 a = b = 6.42304 c/a = 1.13511 α = β = γ = 90.0 y = 0.24003
54 a = b = 6.38726 c/a = 1.13288 α = β = γ = 90.0 y = 0.24120
58 a = b = 6.35418 c/a = 1.13065 α = β = γ = 90.0 y = 0.24229
62 a = b = 6.32344 c/a = 1.12839 α = β = γ = 90.0 y = 0.24330
66 a = b = 6.29480 c/a = 1.12613 α = β = γ = 90.0 y = 0.24425
70 a = b = 6.26795 c/a = 1.12389 α = β = γ = 90.0 y = 0.24515
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Phase III - Cmca

Table C.3: Lattice parameters and atomic positions of CO2-III. Symmetry group: 64. Wyckoff letter
for C: a. Wyckoff letter for O: f.

P Lattice parameters Atomic
(GPa) (a.u.; °) coordinates

10 a = b = 9.05274 c/a = 1.26933 α = β = γ = 90.0 y = 0.28696 z =0.38532
14 a = b = 8.80933 c/a = 1.28288 α = β = γ = 90.0 y = 0.28262 z =0.38342
18 a = b = 8.61185 c/a = 1.29577 α = β = γ = 90.0 y = 0.27917 z =0.38186
22 a = b = 8.46166 c/a = 1.30436 α = β = γ = 90.0 y = 0.27632 z =0.38069
26 a = b = 8.32923 c/a = 1.31317 α = β = γ = 90.0 y = 0.27386 z =0.37965
30 a = b = 8.21960 c/a = 1.31954 α = β = γ = 90.0 y = 0.27172 z =0.37879
34 a = b = 8.12034 c/a = 1.32584 α = β = γ = 90.0 y = 0.26978 z =0.37802
38 a = b = 8.03321 c/a = 1.33133 α = β = γ = 90.0 y = 0.26804 z =0.37735
42 a = b = 7.95214 c/a = 1.33701 α = β = γ = 90.0 y = 0.26645 z =0.37672
46 a = b = 7.88049 c/a = 1.34140 α = β = γ = 90.0 y = 0.26498 z =0.37617
50 a = b = 7.81412 c/a = 1.34536 α = β = γ = 90.0 y = 0.26361 z =0.37566
54 a = b = 7.75273 c/a = 1.34933 α = β = γ = 90.0 y = 0.26232 z =0.37519
58 a = b = 7.69340 c/a = 1.35356 α = β = γ = 90.0 y = 0.26110 z =0.37474
62 a = b = 7.64013 c/a = 1.35692 α = β = γ = 90.0 y = 0.25996 z =0.37434
66 a = b = 7.58929 c/a = 1.36034 α = β = γ = 90.0 y = 0.25888 z =0.37395
70 a = b = 7.54245 c/a = 1.36306 α = β = γ = 90.0 y = 0.25785 z =0.37360
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Phase IV - R3̄c

Table C.4: Lattice parameters and atomic positions of CO2-IV. Symmetry group: 167 (hexagonal
axes). Wyckoff letter for C1: b. Wyckoff letter for C2: e. Wyckoff letter for O1: c. Wyckoff letter for
O2: f.

P Lattice parameters Atomic
(GPa) (a.u.; °) coordinates

10 a = b = 16.90884 c/a = 1.23255 C2: x = 0.25003 – O1: z = 0.10557
α = β = γ = 90.0 O2: x = 0.13820 y = 0.31894 z = 0.20851

14 a = b = 16.53781 c/a = 1.23098 C2: x = 0.24972 – O1: z = 0.10793
α = β = γ = 90.0 O2: x = 0.14130 y = 0.32013 z = 0.20789

18 a = b = 16.25574 c/a = 1.22968 C2: x = 0.24950 – O1: z = 0.10979
α = β = γ = 90.0 O2: x = 0.14374 y = 0.32110 z = 0.20744

22 a = b = 16.02759 c/a = 1.22860 C2: x = 0.24932 – O1: z = 0.11133
α = β = γ = 90.0 O2: x = 0.14577 y = 0.32192 z = 0.20710

26 a = b = 15.83540 c/a = 1.22769 C2: x = 0.24917 – O1: z = 0.11265
α = β = γ = 90.0 O2: x = 0.14752 y = 0.32263 z = 0.20682

30 a = b = 15.66934 c/a = 1.22691 C2: x = 0.24904 – O1: z = 0.11380
α = β = γ = 90.0 O2: x = 0.14906 y = 0.32327 z = 0.20659

32 a = b = 15.52294 c/a = 1.22624 C2: x = 0.24892 – O1: z = 0.11483
α = β = γ = 90.0 O2: x = 0.15043 y = 0.32384 z = 0.20640

36 a = b = 15.39192 c/a = 1.22567 C2: x = 0.24882 – O1: z = 0.11577
α = β = γ = 90.0 O2: x = 0.15168 y = 0.32436 z = 0.20622

42 a = b = 15.27328 c/a = 1.22518 C2: x = 0.24871 – O1: z = 0.11661
α = β = γ = 90.0 O2: x = 0.15283 y = 0.32483 z = 0.20607
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Phase V - I4̄2d

Table C.5: Lattice parameters and atomic positions of CO2-V. Symmetry group: 122. Wyckoff letter
for C: a. Wyckoff letter for O: d.

P Lattice parameters Atomic
(GPa) (a.u.; °) coordinates

10 a = b = 7.28496 c/a = 1.54138 α = β = γ = 90.0 x = 0.17482
14 a = b = 7.21001 c/a = 1.55487 α = β = γ = 90.0 x = 0.17860
18 a = b = 7.13976 c/a = 1.56837 α = β = γ = 90.0 x = 0.18211
22 a = b = 7.07345 c/a = 1.58193 α = β = γ = 90.0 x = 0.18539
26 a = b = 7.01054 c/a = 1.59560 α = β = γ = 90.0 x = 0.18847
30 a = b = 6.95058 c/a = 1.60937 α = β = γ = 90.0 x = 0.19139
34 a = b = 6.89323 c/a = 1.62328 α = β = γ = 90.0 x = 0.19415
38 a = b = 6.83815 c/a = 1.63733 α = β = γ = 90.0 x = 0.19678
42 a = b = 6.78509 c/a = 1.65154 α = β = γ = 90.0 x = 0.19929
46 a = b = 6.73410 c/a = 1.66578 α = β = γ = 90.0 x = 0.20169
50 a = b = 6.68481 c/a = 1.68009 α = β = γ = 90.0 x = 0.20399
54 a = b = 6.63742 c/a = 1.69432 α = β = γ = 90.0 x = 0.20618
58 a = b = 6.59178 c/a = 1.70846 α = β = γ = 90.0 x = 0.20829
62 a = b = 6.54804 c/a = 1.72232 α = β = γ = 90.0 x = 0.21029
66 a = b = 6.50592 c/a = 1.73595 α = β = γ = 90.0 x = 0.21222
70 a = b = 6.46579 c/a = 1.74912 α = β = γ = 90.0 x = 0.21405

C.3 EOS parameters

Phase II - P42/mnm

Table C.6: 3rd order Birch-Murnaghan EOS parameters for Phase II - P42/mnm from 10 to 50 GPa.

T V0 B0 B′0 E0

0 6.80953 125.032 3.760 -101.762
100 6.82206 123.021 3.750 -101.763
200 6.84637 121.023 3.709 -101.767
300 6.87407 119.061 3.663 -101.772
400 6.90334 117.022 3.617 -101.779
500 6.93319 115.028 3.572 -101.787
600 6.96365 113.013 3.529 -101.796
700 6.99412 111.070 3.487 -101.805
800 7.02520 109.078 3.448 -101.816
900 7.05686 107.027 3.410 -101.827
1000 7.08870 105.013 3.375 -101.838
1100 7.12058 103.050 3.340 -101.850
1200 7.15291 101.065 3.308 -101.863

T V0 B0 B′0 E0

1300 7.18581 99.038 3.277 -101.876
1400 7.21894 97.040 3.247 -101.890
1500 7.25228 95.071 3.218 -101.904
1600 7.28638 93.048 3.191 -101.918
1700 7.32093 91.022 3.165 -101.933
1800 7.35554 89.059 3.140 -101.948
1900 7.39100 87.041 3.117 -101.964
2000 7.42684 85.046 3.094 -101.980
2100 7.46326 83.048 3.072 -101.996
2200 7.50029 81.047 3.051 -102.012
2300 7.53790 79.053 3.031 -102.029
2400 7.57642 77.032 3.011 -102.046
2500 7.61567 75.011 2.993 -102.063
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Phase III - Cmca

Table C.7: 3rd order Birch-Murnaghan EOS parameters for Phase III - Cmca from 10 to 50 GPa.

T V0 B0 B′0 E0

0 6.64095 181.136 3.683 -101.755
100 6.65533 177.035 3.677 -101.756
200 6.68902 169.066 3.655 -101.760
300 6.72478 161.953 3.625 -101.766
400 6.76268 154.899 3.595 -101.773
500 6.80058 148.572 3.564 -101.781
600 6.83607 143.637 3.527 -101.791
700 6.88385 135.342 3.505 -101.801
800 6.95221 122.389 3.503 -101.812
900 6.99521 117.323 3.470 -101.824
1000 7.05432 109.099 3.450 -101.837
1100 7.12116 100.316 3.432 -101.850
1200 7.19687 91.125 3.417 -101.864

T V0 B0 B′0 E0

1300 7.28346 81.593 3.403 -101.879
1400 7.38371 71.795 3.391 -101.895
1500 7.50490 61.473 3.380 -101.912
1600 7.53569 61.409 3.335 -101.927
1700 7.53618 62.655 3.326 -101.940
1800 7.54890 65.466 3.250 -101.956
1900 7.55685 67.633 3.203 -101.972
2000 7.58195 68.859 3.143 -101.988
2100 7.60042 69.971 3.100 -102.005
2200 7.61796 71.158 3.060 -102.021
2300 7.72957 63.108 3.047 -102.041
2400 7.87491 53.707 3.040 -102.062
2500 8.09517 41.715 3.041 -102.085

Phase IV - R3̄c

Table C.8: 3rd order Birch-Murnaghan EOS parameters for Phase IV - R3̄c from 10 to 50 GPa.

T V0 B0 B′0 E0

0 6.64095 181.136 3.683 -101.755
100 6.65533 177.035 3.677 -101.756
200 6.68902 169.066 3.655 -101.760
300 6.72478 161.953 3.625 -101.766
400 6.76268 154.899 3.595 -101.773
500 6.80058 148.572 3.564 -101.781
600 6.83607 143.637 3.527 -101.791
700 6.88385 135.342 3.505 -101.801
800 6.95221 122.389 3.503 -101.812
900 6.99521 117.323 3.470 -101.824
1000 7.05432 109.099 3.450 -101.837
1100 7.12116 100.316 3.432 -101.850
1200 7.19687 91.125 3.417 -101.864

T V0 B0 B′0 E0

1300 7.28346 81.593 3.403 -101.879
1400 7.38371 71.795 3.391 -101.895
1500 7.50490 61.473 3.380 -101.912
1600 7.53569 61.409 3.335 -101.927
1700 7.53618 62.655 3.326 -101.940
1800 7.54890 65.466 3.250 -101.956
1900 7.55685 67.633 3.203 -101.972
2000 7.58195 68.859 3.143 -101.988
2100 7.60042 69.971 3.100 -102.005
2200 7.61796 71.158 3.060 -102.021
2300 7.72957 63.108 3.047 -102.041
2400 7.87491 53.707 3.040 -102.062
2500 8.09517 41.715 3.041 -102.085
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Phase V - I4̄2d

Table C.9: 3rd order Birch-Murnaghan EOS parameters for Phase V - I4̄2d from 10 to 50 GPa.

T V0 B0 B′0 E0

0 5.44055 1356.100 3.279 -101.654
100 5.44081 1355.180 3.280 -101.654
200 5.44195 1352.690 3.280 -101.655
300 5.44408 1347.930 3.280 -101.656
400 5.44713 1340.700 3.283 -101.658
500 5.45086 1331.700 3.287 -101.661
600 5.45508 1321.460 3.292 -101.665
700 5.45967 1310.390 3.298 -101.670
800 5.46451 1298.940 3.303 -101.675
900 5.46961 1286.800 3.309 -101.681
1000 5.47486 1274.480 3.316 -101.688
1100 5.48040 1260.790 3.325 -101.695
1200 5.48563 1250.520 3.325 -101.702

T V0 B0 B′0 E0

1300 5.49148 1236.130 3.335 -101.711
1400 5.49729 1222.790 3.342 -101.719
1500 5.50318 1209.490 3.349 -101.728
1600 5.50920 1196.020 3.356 -101.737
1700 5.51531 1182.470 3.363 -101.747
1800 5.52152 1168.760 3.370 -101.757
1900 5.52785 1154.960 3.377 -101.767
2000 5.53432 1140.750 3.385 -101.778
2100 5.54082 1126.990 3.391 -101.789
2200 5.54746 1112.920 3.398 -101.800
2300 5.55422 1098.670 3.406 -101.811
2400 5.56108 1084.390 3.413 -101.823
2500 5.56803 1070.210 3.420 -101.835
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The phase diagram of solid oxygen at terapascal pressures and several thousand Kelvin has been studied
with ab initio density functional theory within the quasiharmonic approximation for the vibrational free energy.
Our work extends previous theoretical studies done at zero temperature and shows that temperature has a
dramatic effect on the sequence of phases. At low temperature, the transition from onefold (molecular) to
fourfold coordination takes place through two intermediate phases with twofold coordination and space groups
I41/acd and Cmcm. Above 8000 K we find that these two intermediate phases are no longer stable, and oxygen
transforms directly from a molecular phase to a fourfold coordinated phase of space group Fmmm. We also
find that the transition between Cmcm and Fmmm can be ascribed as a second-order transition driven by an
electronic instability.

DOI: 10.1103/PhysRevB.98.094103

I. INTRODUCTION

Owing to the magnetic character of the O2 molecule, the
element oxygen exhibits a richer phase diagram than other
low-Z diatomic molecules such as H2, N2, CO, or F2. Six
phases of solid oxygen have been observed experimentally so
far: Half of them (α, β, and γ ) exist under equilibrium vapor
pressure, and the other three (δ, ε, and ζ ) are obtained in the
high-pressure regime. As pressure increases, oxygen shows
a wide range of physical properties that go from insulating
[1] to metallic [2], including also antiferromagnetic [3–6]
and superconducting [7,8] phases. At the highest pressure
reached for this element in the laboratory, about 130 GPa
under diamond-anvil cell compression, it remains molecular
[8]. In the ε-O2 phase, which is stable between 8 and 96 GPa at
ambient temperature [2], the oxygen molecules associate into
clusters composed of four molecules, but they fully retain their
molecular character as confirmed by vibrational spectroscopy
and x-ray diffraction [9,10].

All other group-VI elements develop nonmolecular and
eventually monoatomic structures at much lower pressure.
Sulfur transforms into a chainlike polymeric phase at about
15 GPa and eventually becomes monoatomic, with a rhom-
bohedral β-Po structure at 153 GPa [11]. Phases with a β-Po
structure are also reported for Se at 60 GPa [12], for Te at
11 GPa [13], and for Po at ambient pressure [14]. More-
over, both selenium and tellurium exhibit a body-centered

cubic (bcc) structure as a post β-Po phase [12,15,16]. For
oxygen, however, an earlier theoretical study has shown that
the monoatomic β-Po structure is less stable than molecular
phases at multimegabar pressures [17]. The reluctance of
oxygen to give up its molecular character has been attributed
in a recent study by Sun et al. to the strong electron lone-pair
repulsion in the nonmolecular phases. This resembles, we
notice, the reluctance of the electron-richer halogen elements
to lose their molecular character. For instance, fluorine is
molecular up to the highest pressures experimentally achieved
so far in this element [18], while Cl2, Br2, and I2 dissociate
around 157, 115, and 43 GPa, respectively [19–27].

In the same work, Sun et al. [28] show that oxygen
remains molecular up to 1.9 TPa before transforming into
a semiconducting square-spiral-like polymeric structure with
symmetry I41/acd and oxygen in twofold coordination. This
phase is then reported to transform at 3.0 TPa into a phase
with Cmcm symmetry, consisting of zigzag chains that pack
atoms more efficiently than the square-spiral chains. Finally,
when pressure reaches 9.3 TPa, the in-plane zigzag chains
merge into a layered structure with Fmmm symmetry and
four equidistant nearest neighbors for each oxygen atom [28].

Temperature can have profound effects on the stability of
molecular phases, both in their liquid and solid forms. Shock-
compression experiments indicate that at about 100 GPa the
oxygen molecule dissociates in the fluid when the temperature
exceeds 4000 K [29], whereas theoretical studies based on
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ab initio molecular dynamics place molecular dissociation
above 80 GPa at temperatures that exceed 5000 K [30].
Unfortunately, nothing is known about the temperature effects
on the phase diagram of solid oxygen at extreme pressures.
A crude extrapolation of the oxygen melting line, based on
theoretical and experimental data [31,32], yields a melting
temperature of about 26 000 K at 1.9 TPa. Although this ex-
trapolation is based on data below 100 GPa and is, therefore,
to be taken with caution, this provides a hint that solid oxygen
phases could indeed be the stable forms of this element in
some planetary interiors. Hence, the understanding of the
effects of temperature on the solid portion of oxygen’s phase
diagram at multimegabar pressures is not only relevant from
a fundamental perspective, but also for its potential relevance
to planetary studies. Moreover, recent technical developments
in dynamic shock-wave (ramp) compression have made it
possible to achieve temperature and pressure conditions in the
laboratory that are within the solid portion of selected phase
diagrams [33–35], suggesting that experiments may soon be
able to study the properties of this element at planetary
conditions.

The ground state calculations performed by Sun et al.
[28] show that the transitions from molecular to polymeric
and finally to fourfold coordinated have dramatic effects on
the vibrational properties of solid oxygen. Finite-temperature
contributions to the free energy should, therefore, differ sub-
stantially between different phases and the phase transitions at
high temperature may, as a consequence, differ quantitatively
and qualitatively from the ones calculated at zero tempera-
ture. In this work, by performing density functional theory
(DFT) together with quasiharmonic approximation (QHA)
calculations for the determination of vibrational free energies,
we extend the current theoretical knowledge on the ultra-
high-pressure region of the phase diagram of solid oxygen to
temperatures up to 8000 K. We find that temperature has a
remarkable effect on the phase diagram of this element indeed,
resulting in the disappearance of two previously reported
nonmolecular forms at sufficiently high temperature.

II. METHODS

Out of the several crystalline structures considered in the
earlier theoretical work by Sun et al. [28], we select here the
ones that were found to be stable in the range of pressure 1–10
TPa: a molecular structure with symmetry R3̄m and three
nonmolecular structures with symmetry I41/acd, Cmcm, and
Fmmm, respectively. Enthalpy differences among the differ-
ent molecular structures considered in Ref. [28] (P 63/mmc,
C2/m, C2/c, and R3̄m) are small compared to enthalpy
differences between molecular and nonmolecular structures,
so we expect transition pressures between molecular and
nonmolecular phases to be largely independent of the specific
molecular structure considered. Here we consider the R3̄m

phase as representative of the stable solid molecular oxygen
form before polymerization and tested the validity of this
assumption with a test calculation on a different molecular
structure with symmetry C2/m.

The structural properties were calculated using DFT as
implemented in QUANTUM ESPRESSO [36]. The electron-
ion interactions were treated using a projector augmented

wave pseudopotential with six valence electrons. The valence
electron wave functions are expanded in a plane-wave basis
set with a kinetic energy cutoff of 400 Ry. The exchange-
correlation functional was approximated by the general-
ized gradient approximation (GGA) of the Perdew-Burke-
Ernzerhof form [37]. Brillouin zone integrations were carried
out using k-point grids generated with the Monkhorst-Pack
method [38]. The size of these grids are 18 × 18 × 18, 4 ×
4 × 12, 8 × 16 × 16, and 8 × 16 × 16 for the primitive cells
of the four phases of oxygen considered in this study; these
choices provided a total-energy-difference convergence of
2 meV per atom or better. The structural parameters for all the
structures were obtained by performing variable cell optimiza-
tion at various values of pressure. Note that the energies and
electronic structures of the four structures have been already
studied by Sun et al. [28]; they showed that at T = 0 K, all
the phases are metallic at the terapascal regime, except for
I41/acd which is a wide-gap semiconductor. Our calculations
agree well with those results, as discussed in Sec. III. For the
metallic phases, the calculations were done using the Fermi-
Dirac smearing technique with a width of 43 meV, in order to
take into account the electronic entropy at 500 K. This width
was kept fixed while calculating the vibrational properties at
all temperatures, as justified by the lack of sensitivity of our
free energy results with respect to this parameter.

The vibrational properties at T = 0 K were calculated
using density functional perturbation theory (DFPT) in the
linear response regime [39]. The q-point grids used to obtain
the dynamical matrices were as follows: 4 × 4 × 4 for R3̄m,
2 × 2 × 6 for I41/acd, 2 × 4 × 4 for Cmcm, and 2 × 4 × 4
for Fmmm.

Finite-temperature contributions to the Helmholtz free en-
ergy were obtained using the QHA [40,41]:

F (V, T ) = U0(V ) + 1

2

∑

qs

h̄ωqs

+ kBT
∑

qs

ln[1 − exp(−h̄ωqs/kBT )], (1)

where ωqs is the frequency of the mode s at point q in the
Brillouin zone and a given volume V ; U0(V ) is the ground
state electronic energy of the crystal at volume V , and the
second and third terms on the right-hand-side of the above
equation are the zero-point energy (ZPE) and the thermal
vibrational contribution to the free energy, respectively, at
volume V .

As we are interested in determining the pressure-
temperature (P -T ) phase diagram, we have calculated the
Gibbs free energy as:

G(P, T ) = F [V (P, T ), T ] + PV (P, T ), (2)

where the value of the P is obtained by fitting Eq. (1) to
a third order Birch-Murnaghan equation of state for each of
the phases at different temperatures and their corresponding
parameters are specified in the Supplemental Material [42].
All fits had a variance (χ2) of order 10−5 or better.

III. RESULTS AND DISCUSSION

We begin our analysis by considering the case T = 0 K,
with and without the zero-point energy contributions. In the
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FIG. 1. Proposed finite temperature phase diagram for solid oxy-
gen at extreme conditions of pressure and temperature. The transition
pressures PT, at zero temperature without taking into account the
zero-point energy (ZPE), reported by Sun et al. [28] and calculated
in the present study, are marked as orange and green circles, respec-
tively. The phase boundaries at finite temperature, corresponding to
calculations including ZPE and using an electronic temperature of
500 K, are shown by solid black lines.

low-pressure region of this study we find that the contribu-
tion of the ZPE is marginal, moving the transition pressures
0.08 TPa and 0.02 TPa higher than those reported without
ZPE when going from R3̄m to I41/acd and from I41/acd to
Cmcm, respectively (see Fig. 1). In the high-pressure region,
our enthalpy-pressure relations show that the transition from
Cmcm to Fmmm at 0 K is located near 8.6 TPa if ZPE
is not included; this is 0.7 TPa lower than the transition
pressure found by Sun et al. with the same approximations
[28]. Our equations of state were fitted on a broader set of
volumes than Sun et al., usually fifteen or more volumes per
structure. We believe that this could be one of the reasons
for the discrepancy. Moreover, when the ZPE contribution
is included, it has a noticeable effect, shifting the transition
pressure from 8.6 TPa to 7.5 TPa.

We now consider the effects of finite temperature on the
Gibbs free energies and transition pressures. Our calculations
are based on the QHA and may suffer from the incom-
plete consideration of anharmonicities, in particular when the
system approaches the melting temperature, therefore, our
analysis is restricted here to temperatures below 8000 K.

The finite temperature contribution to the free energy has
dramatic consequences on the relative stability of the crys-
talline phases (Fig. 1). For instance, the pressure location for
the R3̄m to I41/acd phase boundary is shifted towards higher
pressures by approximately 1 TPa when the temperature is
raised from 0 to 5000 K, indicating that the molecular R3̄m

phase enlarges its region of stability with respect to the
polymeric I41/acd, as temperature increases. However, the
finite temperature contribution hardly changes the transition
boundary between the phases I41/acd and Cmcm, as we
observed an increment of just 0.05 TPa at 5000 K with respect
to the transition pressure calculated at 0 K. We observe that the
region that encompassed the I41/acd phase narrows down as
temperature increases until, at 2.9 TPa and 5200 K, there is
a triple point above which this phase disappears completely.
Thus, the picture of I41/acd as an insulating solid phase lying
between two metallic ones (R3̄m and Cmcm) is only valid at
relatively low temperatures. Unlike the previous two cases,
the shift seen in the case of the Cmcm-to-Fmmm transition
is towards lower pressures and is much more pronounced,
leading to a second triple point at 3.2 TPa and 7800 K, where
the R3̄m, Cmcm, and Fmmm phases meet. This indicates that
above 8000 K oxygen transforms directly from a molecular to
a fourfold coordinated form.

So far our analysis has been restricted to a single molec-
ular structure (R3̄m). In order to test the validity of our
assumption that R3̄m can be considered as representative of
the stable molecular structure, we repeated the calculations
with a different molecular structure, of symmetry C2/m. This
structure was found to possess the second lowest enthalpy
after R3̄m, among the structures considered by Sun et al.
[28]. We find that the transition line between C2/m and the
other structures is indistinguishable from the transition line of
R3̄m, suggesting that not only enthalpy but also entropy is
very similar among different molecular forms.

As already mentioned, an extrapolation of the measured
melting line of oxygen to TPa pressures yields a melting
temperature exceeding 25 000 K at 2 TPa. An indepen-
dent estimate of the melting temperature can be obtained
by calculating the Lindemann ratio of the solid phases, a
quantity that normally reaches values between 0.1 and 0.15
at melting. We calculated the Lindemann ratio for the R3̄m

molecular structure and for the Fmmm structure within the
QHA approximation. In the case of the molecular structure we

FIG. 2. Phonon dispersions of oxygen in (a) R3̄m with the vibron mode in dashed line and (b) I41/acd phases at 2.0 TPa.
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FIG. 3. Electronic charge densities along the [100] direction and
electron lone pairs of (a) Cmcm and (b) Fmmm at 7.5 TPa. The
color scales indicate the values of the charge density in e/Bohr3. On
the left panel, the isosurface of red and orange regions are electron
poor, while blue and violet regions are electron rich. Additionally,
isosurface contours are shown by solid black lines. On the right
panel, the lone pairs are represented by transparent gray colors; the
corresponding isosurface value is +1.25 e/Bohr3. The oxygen atoms
are represented by red spheres and the Cmcm zigzag chains are
shown in red and pink.

assumed that melting takes place between a molecular solid
and a molecular liquid and evaluated the Lindemann ratio
based on the mean-square displacement of the center of mass
of the molecules. We found that calculated values of LR are
always below 0.095, for both phases, in the temperature range
from 0 K to 8000 K. Our calculations therefore rule out the

FIG. 5. Evolution of a Fmmm phonon mode at the zone bound-
ary as a function of pressure. The normal mode is along the [100]
direction, and its frequencies (ω) are plotted in red. A linear relation
between the squared phonon frequencies (ω2) and pressure (blue)
is observed and indicates that the phonon softening occurs near
4.7 TPa. The normal mode is represented as blue arrows on the atoms
of the Fmmm structure.

presence of a liquid in the pressure and temperature region
considered in this work.

We were also able to confirm that strongly localized lone
pairs persist into the polymeric phases with an OX2E2 bent
shape, as already noted by Sun et al. [28]. This, together with
an electron counting argument, can explain the reluctance of
oxygen to take higher coordinated structures. The formation
in I41/acd of one additional covalent bond and the lone pair
repulsion between chains, contribute to making it stiffer and
less flexible than the molecular R3̄m phase. At temperatures
below 4000 K the contribution to the entropy of the high
frequency vibron in Fig. 2(a) is limited by quantum effects.
The remaining modes show a frequency increase across the
transition, which implies a decrease of the vibrational entropy.
This is consistent with the positive slope of the transition line
at finite temperature (see Fig. 1). Similarly, the I41/acd and
Cmcm phases are characterized by having two covalent bonds
per oxygen and very similar lone pair repulsion between

FIG. 4. Pressure dependence of (a) bond lengths for Cmcm (B1 and B2, red and pink solid lines, respectively) and Fmmm (B3, blue solid
line), (b) internal angles (α1 and α2, red and blue solid lines, respectively) of Cmcm and Fmmm, and (c) the layer separation d (red solid line)
for Cmcm and Fmmm are shown. The vertical black dashed line corresponds to the calculated transition pressure between these two phases.
The average of B1 and B2 are also shown by a dotted blue line in (a).
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FIG. 6. Phonon dispersions of oxygen in Cmcm (in cyan) and
Fmmm (in orange) phases at 8.0 TPa. Note that the supercell size
has been used in both the cases.

chains. Therefore, one does not expect important changes in
terms of bonding and stiffness, which justifies why we observe
an almost vertical transition line between these two polymeric
forms in the P -T phase diagram (Fig. 1).

As pressure increases above 4 TPa and keeps approaching
the vicinity of the Cmcm → Fmmm transition, the bent
shape of the lone pairs in Cmcm starts to allow for a nonsym-
metrical fourfold coordination, which brings the formation of
two additional weak covalent bonds per each oxygen prior
to the final transition towards the fully symmetric Fmmm

configuration; this is shown in Fig. 3(a) by the charge density
profiles. This process causes a gradual merging of the so-
called zigzag chains into a layered structure. For instance, at
T = 0 K and 7.0 TPa, the four shortest links for each oxygen
consist of two sets of bonds with lengths 1.04 Å and 1.18 Å,
respectively. Instead, when Cmcm transforms into Fmmm

above 7.5 TPa not only the coordination of the oxygen atoms
becomes symmetrical, with an equal length of 1.10 Å, but also
we can see now that the lone pairs adopt the OX4E2 square

planar shape, as a consequence of the higher symmetry of this
phase as Fig. 3(b) shows.

From a space-group point of view, Cmcm is a subgroup
of Fmmm so that the transition can be classified in principle
as a second-order phase transition. Coupling of the strain
with the internal degrees of freedom, however, introduces a
slight discontinuity in the structural parameters (see Fig. 4),
similarly to the case of the stishovite (rutile) to the CaCl2-type
phase transition in SiO2 [43]. Further evidence for the quasi-
second-order nature of the transition comes from the phonon
dispersions of the two phases. In Fig. 5 we show the pressure
dependence of the frequency of the phonon mode at the
Brillouin zone vector of the Fmmm phase corresponding to
the reciprocal lattice vector of the Cmcm phase. The mode
becomes unstable when pressure is decreased below 4.7 TPa,
indicating a lattice instability of the Fmmm phase towards
Cmcm, as also confirmed by the pattern of the unstable
mode, shown in the inset of Fig. 5. A characteristic feature
of second-order phase transitions is the higher entropy of the
high-symmetry phase with respect to the low-symmetry
phase. This is consistent with the pronounced left turning of
the Cmcm to Fmmm phase transition line at finite tempera-
tures in Fig. 1, and it is confirmed by the phonon dispersions
of the two phases calculated at the transition pressure of
8.0 TPa (Fig. 6). Contrary to the naive expectation that fre-
quencies become stiffer in the high-pressure (Fmmm) phase
with respect to the low-pressure (Cmcm) phase, the phonon
dispersion of the Cmcm phase has modes that are marginally
higher in energy than those of the Fmmm phase. This is
consistent with the lower entropy of the Cmcm phase with
respect to the Fmmm phase.

To gain further insight into the driving force of the quasi-
second-order transition, we show in Fig. 7 the electronic
density of states (DOS) of the two phases in the vicinity of
the pressure where Fmmm becomes unstable. Interestingly,
the DOS of the Fmmm phase shows a pronounced peak that
crosses the Fermi level between 4.5 and 5 TPa, the same
pressure of the phonon instability reported in Fig. 5. The
distortion leading to the Cmcm structure causes a lowering
of the DOS at the Fermi level. We, therefore, argue that
the Cmcm to Fmmm transition is driven by an electronic

FIG. 7. Electronic DOS of oxygen in Cmcm (in red) and Fmmm (in blue) phases as a function of pressure.
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instability qualitatively similar to a commensurate charge-
density-wave transition. A similar phenomenology has been
observed in other chalcogen elements, where it has been
shown to be connected with the emergence of a superconduct-
ing state in the undistorted state (Fmmm in this case) close to
the transition pressure to the distorted phase [11].

IV. CONCLUSIONS

Our theoretically predicted phase diagram of oxygen at ex-
treme pressures and temperatures extends earlier calculation
at high pressure and zero temperature and shows that tempera-
ture has a profound effect on the phase diagram. At finite tem-
peratures, the molecular phase expands its stability range to
pressures exceeding 3 TPa at the highest temperatures consid-
ered in this work (8000 K). On the contrary, the range of sta-
bility of the first nonmolecular phase, I41/acd, shrinks with
temperature and the phase is no longer thermodynamically
stable above 5000 K. Interesting physics underlies the tran-
sition between the Cmcm and the Fmmm nonmolecular

phases. Our calculations indicate a quasi-second-order tran-
sition between the two phases and show that the transition
is driven by an electronic instability causing a softening of
the corresponding phonon mode. We argue that this may
imply a superconducting state which is beyond the scope of
this work but which certainly deserves further attention. The
range of pressures and temperatures examined in this work
are now within reach of ramp-compression experiments which
we hope will soon shed additional light on the intriguing
aspects of the pressure-induced demise of molecular oxygen
as reported in this and other recent theoretical studies.
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9 The experimental study of the CO2 phase diagram is hampered by strong kinetic effects leading to wide
10 regions of metastability and to large uncertainties in the location of some phase boundaries. Here, we
11 determine CO2’s thermodynamic phase boundaries by means of ab initio calculations of the Gibbs free
12 energy of several solid phases of CO2 up to 50 Gigapascals. Temperature effects are included in the
13 quasiharmonic approximation. Contrary to previous suggestions, we find that the boundary between
14 molecular forms and the nonmolecular phase V has, indeed, a positive slope and starts at 21.5 GPa at
15 T ¼ 0 K. A triple point between phase IV, V, and the liquid phase is found at 35 GPa and 1600 K,
16 indicating a broader region of stability for the nonmolecular form than previously thought. The
17 experimentally determined boundary line between CO2-II and CO2-IV phases is reproduced by our
18 calculations, indicating that kinetic effects do not play a major role in that particular transition. Our results
19 also show that CO2-III is stabilized at high temperature and its stability region coincides with the P-T
20 conditions where phase VII has been reported experimentally; instead, phase II is the most stable molecular
21 phase at low temperatures, extending its region of stability to every P-T condition where phase III is
22 reported experimentally.

DOI:23

24 Widely studied during the past years, carbon dioxide
25 (CO2) is a fascinating system that, despite its simple
26 molecular form at ambient conditions, exhibits a rich
27 polymorphism at high pressures and temperatures, with
28 up to seven crystalline structures reported experimentally
29 so far, in addition to an amorphous form (see Fig. 1). At
30 room temperature the molecular gas transforms into a
31 liquid at 7.5 MPa which then solidifies at 0.5 GPa into
32 CO2-I, a molecular crystal with space group Pa3̄ [1,2]. By
33 further increasing pressure at ambient temperature, CO2-I
34 transforms to the orthorhombic phase III (Cmca space
35 group) above 10 GPa, with a minimal volume change [3].
36 A recent theoretical study has provided insights into the
37 microscopic mechanism of the Pa3̄-to-Cmca transition [4].
38 Heating compressed CO2-III above ∼470 K [5,6] leads to
39 the transformation into phase II. However, this transition is
40 not reversible: CO2-II can be recovered at ambient temper-
41 ature while pressurized, suggesting that CO2-III is a kinetic
42 product of the compression of CO2-I and not a stable phase
43 [5,7]. With the exception of a recent theoretical study [8],
44 all previous theoretical work confirms that CO2-II is
45 more stable than CO2-III at ambient temperature and
46 below. Initially described as a structure with carbon in
47 an unconventional sixfold coordination, phase II was
48 interpreted as an intermediate state between the molecular
49 and the extended solid form of CO2 [9], however,
50 subsequent studies disproved the existence of such an

51intermediate bonding state and identified the structure of
52phase II as composed of undistorted molecules, with space
53group P42=mnm [10]. CO2-II transforms into CO2-IV
54when it is heated in the 500–720 K range, depending on

F1:1FIG. 1. CO2 phase diagram adapted from Ref. [15]. Yellow,
F1:2green, blue, and purple areas correspond to the molecular, non-
F1:3molecular, fluid, and amorphous forms of CO2, respectively. Solid
F1:4lines correspond to thermodynamic phase boundaries, while
F1:5dashed lines are kinetic boundaries. Names in bold and italic
F1:6indicate thermodynamic and metastable phases, respectively.
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55 pressure [5,7]. Phase IV, similar to phase II, was also
56 initially interpreted as an intermediate bonding state [11];
57 here again, this interpretation was disproved by showing
58 experimentally that CO2-IV is still composed of well
59 defined linear molecules and that its crystalline structure
60 is rhombohedral with space group R3̄c [12]. At higher
61 temperatures, an intermediate phase between CO2-I and
62 CO2-IV was observed by heating CO2-I to ∼950 K and
63 compressing it up to 20 GPa. The crystal structure of this
64 molecular high-temperature stable phase (CO2-VII)
65 belongs to space group Cmca. [13]. Despite the fact that
66 CO2-VII and CO2-III have the same space group, some
67 differences in their Raman spectra and in their lattice
68 parameters suggested that their structures might be quanti-
69 tatively and qualitatively different [13]. However, a recent
70 theoretical study has shown that CO2-III and CO2-VII
71 belong to the same configurational energy minimum and
72 that CO2-III is a low temperature metastable manifestation
73 of CO2-VII [14].
74 The nonmolecular CO2-V phase was first synthesized by
75 laser heating CO2-III above 40 GPa and 1800 K [16], and
76 its crystalline structure has now been determined as a fully
77 tetrahedral partially collapsed cristobalitelike structure,
78 with space group I4̄2d [17,18]. By compressing CO2-II
79 to 50 GPa at 530 and 650 K, another nonmolecular form of
80 carbon dioxide (CO2-VI) was obtained [11]. Its vibrational
81 spectra is consistent with those of metastable layered
82 tetrahedral structures, as shown in [19]. In addition to
83 the molecular and nonmolecular phases, an amorphous
84 form of carbon dioxide (a-CO2) was observed upon
85 compressing CO2-III in the pressure range from 40 to
86 48 GPa at room temperature [7]. The microscopic structure
87 of a-CO2 has been explained as a frustrated mixture of
88 threefold and fourfold coordinated carbon atoms, in an
89 intermediate metastable form towards fully tetrahedral
90 coordination [20]. Finally, CO2-V has been reported to
91 dissociate into elemental carbon (diamond) and oxygen
92 (ϵ − O2) at pressures between 30 and 80 GPa, and temper-
93 atures above 1700 K, [21,22]. However, more recent
94 theoretical [23] and experimental [24] works have not
95 observed a transition from the nonmolecular CO2-V phase
96 into a dissociated state. Moreover, Dziubek et al. [24]
97 confirmed that CO2-V is the only stable phase among all
98 known nonmolecular forms of carbon dioxide, as already
99 proposed by a previous experimental work [25] as well as

100 by theoretical structural searches in the previous decade.
101 The fate of CO2 at high pressures has important implica-
102 tions for the Earth’s global carbon budget [26]. CO2

103 degassing in the upper mantle affects melting beneath
104 oceanic ridges [27] and carbonate decomposition [28] may
105 have implications for plume formation in the lower mantle
106 [29]. Therefore, a precise assessment of the transition lines
107 between CO2 phases, can offer a better understanding of the
108 dynamics of CO2 within the context of the deep carbon
109 cycle. The goal of defining a complete thermodynamic

110phase diagram for this basic molecular system has been
111elusive to experimentalists due to the unique and incredibly
112strong kinetic limitations and the metastability that are
113present in CO2’s molecular and extended forms, this, in
114addition to diverse interpretations of the experimental
115diffraction data coming from very small samples in diamond
116anvil cell (DAC) experiments. It is, then, problematic that,
117after many decades of research, there is no final thermody-
118namic phase diagram for CO2 in a range of P-T conditions
119that have been accessible in the lab by diamond anvil cell
120experiments since the end of the previous century. In this
121sense, by avoiding uncertainties coming from kinetic
122limitations and metastability, our Letter presents a well
123motivated purely ab initio density functional theory (DFT)-
124based determination of the complete phase diagram of CO2

125in an ample pressure and temperature range.
126The currently accepted phase diagram including all the
127mentioned forms of solid CO2 along with the region where
128it becomes a fluid is shown in Fig. 1.
129In this particular system, strong kinetic effects hinder the
130experimental determination of the phase boundaries, while
131the small size of the samples in high-pressure experiments
132makes structure determinations quite difficult. As a con-
133sequence, several questions remain open regarding the
134nature and location of the phase boundaries and the stability
135of the phases reported in Fig. 1. In the molecular portion of
136the phase diagram, open questions include the relative
137stability of CO2-II and CO2-III at low temperature, and the
138nature of CO2-VII, in particular its structural relationship
139with CO2-III. At higher pressures, one of the fundamental
140questions is the location of the phase boundary between
141molecular and nonmolecular phases. Santoro et al., for
142example, proposed a phase diagram where the boundary
143between molecular and nonmolecular phases at room
144temperature is located at 20 GPa, roughly half-way
145between the lowest pressure of quenching and the pressure
146of synthesis for this phase [30,31]. Moreover, the kinetic
147boundary between CO2-III and the a-CO2 nonmolecular
148structure, i.e., the P-T region where the transformation
149occurs upon compression, has a negative slope [32], while
150basic thermodynamic considerations suggest that the slope
151of the true phase boundary should be positive [31].
152Theoretical determinations of the molecular-nonmolecular
153boundary at zero temperature, based on ab initio electronic
154structure methods, predict transition pressures in the range
155between 18 and 21 GPa when going from both CO2-II and
156CO2-III to the nonmolecular forms [28,30,33].
157In this Letter, we extend the theoretical determination of
158the phase diagram of CO2 to finite temperatures for all
159stable phases except CO2-I. Phase boundaries between the
160molecular phases II, III, and IV, and the nonmolecular
161phase V are calculated based on an ab initio approach;
162for the determination of free energies, the vibrational
163contributions are treated in the quasiharmonic approxima-
164tion (QHA).
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165 Ab initio electronic structure calculations were carried
166 out using DFT and the projector augmented wave method,
167 as implemented in the Quantum ESPRESSO suite [34,35] with
168 a kinetic energy cutoff of 200 Ry for the plane-wave basis
169 set. The generalized gradient approximation was employed
170 for the exchange-correlation energy and implemented using
171 the Perdew-Burke-Ernzerhof functional [36]. Our system is
172 well represented by this approach as shown by previously
173 calculated intramolecular C ¼ O bond lengths of CO2-II at
174 different levels of theory, which are generally consistent
175 with our values [14,37,38]. The Monkhorst-Pack method
176 [39] was used to generate the k point grids for sampling the
177 Brillouin zone. Variable-cell optimization of all structural
178 parameters was performed for the four phases in the range
179 of pressures between 10 and 70 GPa. Density functional
180 perturbation theory within the linear response scheme [40]
181 was used to calculate phonon frequencies at zero temper-
182 ature. The zero-point energy and the finite-temperature
183 contributions to the Helmholtz free energy were computed
184 in the QHA [41,42], which is valid where harmonic effects
185 dominate the material’s properties. It is commonly accepted
186 as a criterion that increasingly relevant contributions
187 coming from anharmonicities are expected to appear at
188 T ∼ 1.2ΘD and above [43,44]. Even more, the range of
189 temperatures in which QHA remains valid is significantly
190 expanded under high pressure [43–45]. For this particular
191 study, the calculated ΘD takes values between 3485 K and
192 3500 K for the three molecular forms considered at the
193 lowest pressure in our work (10 GPa), which are clearly
194 higher than the highest temperature registered in this
195 study, i.e., 1600 K. Thus, the temperature region under
196 consideration in this work spans approximately from
197 0.05 to 0.45ΘD, assuring us of the validity of the quasi-
198 harmonic approximation below the melting curve of CO2

199 for all solid forms. For the construction of the pressure-
200 temperature phase diagram, the Helmholtz free energy at
201 different temperatures was fitted to a third order Birch-
202 Murnaghan equation of state (EOS). Finally, the Gibbs free
203 energy was calculated as

GðP; TÞ ¼ F½VðP; TÞ; T� þ PVðP; TÞ; ð1Þ

204205206 Room-temperature equations of state obtained with the
207 above approximations are compared with experimental data
208 for phases CO2-II, CO2-III, CO2-IV, and CO2-V in Fig. 2.
209 The agreement is good and confirms the validity of the
210 approach. Phase boundaries constructed based on the
211 calculated Gibbs free energies are shown in Fig. 3. It is
212 worth mentioning that although most phases in this
213 study are molecular, the van der Waals approximation
214 was not used since, in simulations under very high
215 pressure, the dispersion function becomes constant at
216 distances much shorter than the standard van der Waals
217 radii, resulting in not affecting the valence geometries or
218 energies [46,47].

219We begin our discussion with an analysis of the
220molecular solid region of the phase diagram. This region
221is indicated in yellow in Fig. 1; it contains the molecular
222phases I, II, III, and IV, and its upper bound in pressure
223coincides with the experimentally reported transitions to
224the nonmolecular phases. Since phase I as well as its
225boundaries with the other phases are well known and
226constrained, we focus specifically on phases II, III, and IV,
227at pressures higher than 12 GPa. According to the enthalpy-
228pressure relations, with and without the zero-point energy
229contribution, at T ¼ 0 K CO2-II is the most stable molecu-
230lar phase in the pressure range considered, until the
231transition to CO2-V. This indicates that the orthorhombic
232Cmca structure (phase III) obtained experimentally from
233the compression of phase I is, indeed, only metastable at
234low temperatures. Notice that this remains true even after
235the inclusion of zero-point contributions, in agreement with
236previous reports [5,48]. At variance with our results as well
237as with previous theoretical work, a recent theoretical study
238[8] proposes a transition boundary between phases II and
239III in which CO2-III is stable up to ∼570 K at 19 GPa. This
240is at odds with experimental observations where the kinetic
241transition from CO2-III to CO2-II occurs at much lower
242temperatures [5]. Instead, our calculations show that
243CO2-III becomes more stable than CO2-II at higher temper-
244atures [solid green line with stars in Fig. 3(a)]. The
245transition temperature between CO2-III and CO2-II has a
246strong pressure dependence and reaches values in excess of
2471000 K close to the boundary with the nonmolecular phase
248V, with respect to its value close to CO2-I. Comparing the
249free energies of CO2-II and CO2-IV, we find that the
250boundary between phases II and IV [solid brown line
251with down triangles in Fig. 3(a)] agrees quite well with

F2:1FIG. 2. Pressure-volume relation of phases (a) II, (b) III, (c) IV,
F2:2and (d) V of CO2 at room temperature are shown in black solid
F2:3lines. For each case, reported values from experimental (red
F2:4circles) and theoretical (blue squares, purple diamonds, and yellow
F2:5crosses) studies for the different phases are displayed as well.
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252 experimental data [12]. The weak pressure dependence of
253 the II-IV boundary reduces the region of stability of phase
254 II with respect to the starred green line in Fig. 3(a), by
255 confining it toward lower temperatures. Finally, we find
256 that the boundary between CO2-III and CO2-IV [solid
257 magenta line with diamonds in Fig. 3(a)] is almost vertical,
258 which restricts the domain of stability of phase III to a
259 narrow window of pressure and to temperatures above
260 400 K. We summarize the results of the free-energy
261 calculations for the three molecular phases II, III, and
262 IV in Fig. 4. Phases I and II emerge as the only stable
263 molecular phases of CO2 from zero to ambient temperature.
264 Phases III and IV are both stabilized by temperature, and
265 phases II, III, and IV coexist at a triple point located at
266 15 GPa and 500 K.
267 Our findings are in agreement with simulations by Bonev
268 et al. [48] which suggested that the Cmca phase is a
269 temperature stabilized form [48]. Because the structure of
270 phase IV was not known at the time, Bonev et al. proposed
271 a wider region of stability for CO2-III. Interestingly, as can
272 be seen in Fig. 3(a), the P-T region of stability of CO2-III
273 obtained from our calculations has a large overlap with the
274 region of stability reported for the so-called phase VII of
275 CO2 [13]. A recent theoretical work has shown that phases
276 III and VII have, in fact, the same crystal structure (space
277 group Cmca)[14]. Therefore, we confirm that phase III is
278 thermodynamically stable in the P-T region where phase
279 VII has been reported. Thus, the observation of phase III
280 outside this region (e.g., at ambient conditions, as a result of
281 the compression of phase I) must be attributed to kinetic
282 effects.
283 Now, we turn to the boundary between the molecular
284 phases and nonmolecular phase V [Fig. 3(b)]. We find that,
285 at zero temperature, the phase boundary between CO2-II

286and CO2-V is located at 21.5 GPa. The transition between
287(metastable) CO2-III and CO2-V would, instead, take place
288at 20.8 GPa in the absence of kinetic effects. This is in good
289agreement with previous theoretical works [28,30,33].
290Phase boundaries between molecular phases and CO2-V
291are rather insensitive to the choice of the molecular
292structure and they all have a positive slope, as already
293suggested [31]. Considering that nonmolecular phases are
294denser than molecular ones, a positive slope implies a
295decrease of entropy in going from molecular to non-
296molecular. This is not unexpected, given the stiffness of

F3:1 FIG. 3. (a) Phase boundaries between CO2-II and CO2-III (green, stars), CO2-II and CO2-IV (brown, down triangles), and CO2-III and
F3:2 CO2-IV (magenta, diamonds). Suggested boundaries reported by Iota et al. [5] (experimental) and Bonev et al. [48] (theoretical), are
F3:3 shown in orange dotted-dashed line and violet dotted line, respectively. (b) Phase boundaries between molecular phases CO2-II (red,
F3:4 circles), CO2-III (blue, up triangles), and CO2-IV (gray, crosses), and the nonmolecular phase CO2-V. Proposed limits of the kinetic
F3:5 region from experimental data from Ref. [32] (orange squares) are also included.

F4:1FIG. 4. Theoretical phase diagram for carbon dioxide at high
F4:2pressure and temperature. Our calculated phase boundaries are
F4:3shown with solid black lines, while previously reported thermo-
F4:4dynamic boundaries are shown in gray. Yellow, green, and blue
F4:5regions correspond to molecular, nonmolecular, and fluid forms
F4:6of CO2.
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297 the nonmolecular structure when compared with the
298 molecular ones. Using the experimentally determined
299 melting line, our calculations show a triple point between
300 phases IV and V, and the liquid phase at 35 GPa and
301 1600 K. Therefore, the calculations suggest that molecular
302 CO2 could be stable up to pressures as high as 35 GPa, at
303 high temperature.
304 In summary, we have presented finite-temperature theo-
305 retical calculations in the quasiharmonic approximation for
306 various molecular and nonmolecular solid forms of CO2.
307 The calculations aimed at resolving experimental uncer-
308 tainties and inconsistencies due to kinetic effects and
309 metastability. We find that the boundary between the
310 molecular phases and phase V has a positive slope, and
311 starts at 21.5 GPa at T ¼ 0 K. We also find that the phase
312 diagram shows a triple point between phases IV, V, and the
313 liquid phase at 35 GPa and 1600 K. This indicates that the
314 nonmolecular phase V has a broader region of stability
315 than previously reported. We were able to reproduce the
316 known thermodynamic boundary line between CO2-II and
317 CO2-IV, confirming that kinetic effects are not relevant in
318 that transition. Finally, it was shown that phase II is the
319 most stable molecular phase at low temperatures, extending
320 its region of stability to every P-T condition where phase
321 III has been reported experimentally. However, our results
322 also show that CO2-III is, instead, stabilized at high
323 temperature and its stability region coincides with the
324 P-T conditions where phase VII has been reported exper-
325 imentally, implying that phase III and phase VII are,
326 indeed, the same.
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