Mostrar el registro sencillo del ítem

dc.contributor.authorMontes G., Diana
dc.date.accessioned2017-03-23T19:03:03Z
dc.date.available2017-03-23T19:03:03Z
dc.date.issued2015
dc.identifier.citationTD616.99249 / M764es
dc.identifier.urihttps://hdl.handle.net/11227/4259
dc.identifier.urihttp://dx.doi.org/10.57799/11227/153
dc.descriptionTesis (Doctor en Toxicología Ambiental) - Universidad de Cartagena, Facultad de Ciencias Farmacéuticas. Programa de Toxicología Ambiental, 2015es
dc.description.abstractThesis was to evaluate the plausibility of EDCs to bind breast cancer proteins, through a three-steps approach: creation of a database of EDCs with three-dimensional structure available, an inverse virtual screening of bisphenol A (BPA) -one of the xenoestrogens to which we are most frequently exposed to- against proteins involved in different signaling pathways, and a virtual high-throughput screening (vHTS) among EDCs and proteins involved in this disease with an evaluation of the interactions of a protein-ligand complex through spectroscopic methods.es
dc.format.mediumapplication/pdf
dc.language.isoenges
dc.publisherUniversidad de Cartagenaes
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectEndocrinologíaes
dc.subjectMamas - Tumoreses
dc.titleEndocrine disruptors as ligands of breast cancer proteinses
dc.typeTrabajo de grado - Doctoradospa
dcterms.referencesBonefeld-Jørgensen, E. C.; Ghisari, M.; Wielsøe, M.; Bjerregaard-Olesen, C.; Kjeldsen, L. S.; Long, M., Biomonitoring and Hormone-Disrupting Effect Biomarkers of Persistent Organic Pollutants In vitro and Ex Vivo. Basic Clin. Pharmacol. 2014, 115 (1), 118-128.
dcterms.referencesYang, M.; Ryu, J.-H.; Jeon, R.; Kang, D.; Yoo, K.-Y., Effects of bisphenol A on breast cancer and its risk factors. Arch Toxicol 2009, 83 (3), 281-285.
dcterms.referencesBergman, A.; Heindel, J. J.; Kasten, T.; Kidd, K. A.; Jobling, S.; Neira, M.; Zoeller, R. T.; Becher, G.; Bjerregaard, P.; Bornman, R., The impact of endocrine disruption a consensus statement on the state of the science. Environ. Health Perspect. 2013, 121 (4), A104.
dcterms.references(a) Lomenick, J. P.; Calafat, A. M.; Castro, M. S. M.; Mier, R.; Stenger, P.; Foster, M. B.; Wintergerst, K. A., Phthalate exposure and precocious puberty in females. J. Pediatr. 2010, 156 (2), 221-225; (b) MacLusky, N. J.; Hajszan, T.; Leranth, C., The environmental estrogen bisphenol A inhibits estradiol-induced hippocampal synaptogenesis. Environ. Health Perspect. 2005, 675-679.
dcterms.referencesMacon, M. B.; Fenton, S. E., Endocrine disruptors and the breast: early life effects and later life disease. J. Mammary Gland Biol. 2013, 18 (1), 43-61.
dcterms.referencesSoto, A. M.; Sonnenschein, C., Environmental causes of cancer: endocrine disruptors as carcinogens. Nat Rev Endocrinol 2010, 6 (7), 363-370.
dcterms.referencesTeitelbaum, S. L.; Belpoggi, F.; Reinlib, L., Advancing research on endocrine disrupting chemicals in breast cancer: Expert panel recommendations. Reprod. Toxicol. 2015, 54 (0), 141- 147.
dcterms.referencesIhara, M.; Ihara, M. O.; Kumar, V.; Narumiya, M.; Hanamoto, S.; Nakada, N.; Yamashita, N.; Miyagawa, S.; Iguchi, T.; Tanaka, H., Co-occurrence of Estrogenic and Antiestrogenic Activities in Wastewater: Quantitative Evaluation of Balance by in vitro ERα Reporter Gene Assay and Chemical Analysis. Environ. Sci. Technol. 2014, 48 (11), 6366-6373.
dcterms.references(a) Wu, R. S. S.; Zhou, B. S.; Randall, D. J.; Woo, N. Y. S.; Lam, P. K. S., Aquatic Hypoxia Is an Endocrine Disruptor and Impairs Fish Reproduction. Environ. Sci. Technol. 2003, 37 (6), 1137- 1141; (b) Kanno, J.; Kato, H.; Iwata, T.; Inoue, T., Phytoestrogen-Low Diet for Endocrine Disruptor Studies. J. Agric. Food Chem. 2002, 50 (13), 3883-3885; (c) Benotti, M. J.; Trenholm, R. A.; Vanderford, B. J.; Holady, J. C.; Stanford, B. D.; Snyder, S. A., Pharmaceuticals and Endocrine Disrupting Compounds in U.S. Drinking Water. Environ. Sci. Technol. 2009, 43 (3), 597-603; (d) Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E., Fate of Endocrine-Disruptor, Pharmaceutical, and Personal Care Product Chemicals during Simulated Drinking Water Treatment Processes. Environ. Sci. Technol. 2005, 39 (17), 6649-6663; (e) Guenther, K.; Heinke, V.; Thiele, B.; Kleist, E.; Prast, H.; Raecker, T., Endocrine Disrupting Nonylphenols Are Ubiquitous in Food. Environ. Sci. Technol. 2002, 36 (8), 1676-1680; (f) Park, B. J.; Palace, V.; Wautier, K.; Gemmill, B.; Tomy, G., Thyroid Axis Disruption in Juvenile Brown Trout (Salmo trutta) Exposed to the Flame Retardant β-Tetrabromoethylcyclohexane (β-TBECH) via the Diet. Environ. Sci. Technol. 2011, 45 (18), 7923-7927.
dcterms.referencesDoerge, D. R.; Twaddle, N. C.; Vanlandingham, M.; Fisher, J. W., Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats. Toxicol. Appl. Pharmacol. 2010, 247 (2), 158-165.
dcterms.references(a) Becker, K.; Güen, T.; Seiwert, M.; Conrad, A.; Pick-Fuß, H.; Müller, J.; Wittassek, M.; Schulz, C.; Kolossa-Gehring, M., GerES IV: Phthalate metabolites and bisphenol A in urine of German children. Int. J. Hyg. Environ. Health. 2009, 212 (6), 685-692; (b) Li, D.-K.; Zhou, Z.; Miao, M.; He, Y.; Wang, J.; Ferber, J.; Herrinton, L. J.; Gao, E.; Yuan, W., Urine bisphenol-A (BPA) level in relation to semen quality. Fertil Steril. 2011, 95 (2), 625-630.e4
dcterms.references(a) Balakrishnan, A.; Stearns, A. T.; Rounds, J.; Irani, J.; Giuffrida, M.; Rhoads, D. B.; Ashley, S. W.; Tavakkolizadeh, A., Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose cotransporter (SGLT1). Surgery 2008, 143 (6), 813-818; (b) Berger, R. G.; Foster, W. G.; deCatanzaro, D., Bisphenol-A exposure during the period of blastocyst implantation alters uterine morphology and perturbs measures of estrogen and progesterone receptor expression in mice. Reprod. Toxicol. 2010, 30 (3), 393-400.
dcterms.references(a) Alamdari, A.; Nasab, S. S.; Jahanmiri, A., Kinetic study of adductive crystallization of bisphenol-A. Chem. Eng. Res. Des. 2010, 88 (12), 1615-1623; (b) Avissar-Whiting, M.; Veiga, K. R.; Uhl, K. M.; Maccani, M. A.; Gagne, L. A.; Moen, E. L.; Marsit, C. J., Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod. Toxicol. 2010, 29 (4), 401-406; (c) Ballesteros, O.; Zafra, A.; Navalón, A.; Vílchez, J. L., Sensitive gas chromatographic–mass spectrometric method for the determination of phthalate esters, alkylphenols, bisphenol A and their chlorinated derivatives in wastewater samples. J. Chromatogr. A. 2006, 1121 (2), 154-162.
dcterms.references(a) Cantonwine, D.; Meeker, J.; Hu, H.; Sanchez, B.; Lamadrid-Figueroa, H.; Mercado-Garcia, A.; Fortenberry, G.; Calafat, A.; Tellez-Rojo, M., Bisphenol a exposure in Mexico City and risk of prematurity: a pilot nested case control study. Environ. Health 2010, 9 (1), 62; (b) Crain, D. A.; Eriksen, M.; Iguchi, T.; Jobling, S.; Laufer, H.; LeBlanc, G. A.; Guillette Jr, L. J., An ecological assessment of bisphenol-A: Evidence from comparative biology. Reprod. Toxicol. 2007, 24 (2), 225-239.
dcterms.referencesCabaton, N. J.; Wadia, P. R.; Rubin, B. S.; Zalko, D.; Schaeberle, C. M.; Askenase, M. H.; Gadbois, J. L.; Tharp, A. P.; Whitt, G. S.; Sonnenschein, C.; Soto, A. M., Perinatal Exposure to Environmentally Relevant Levels of Bisphenol A Decreases Fertility and Fecundity in CD-1 Mice. Environ. Health Perspect. 2010, 119 (4).
dcterms.referencesRezg, R.; El-Fazaa, S.; Gharbi, N.; Mornagui, B., Bisphenol A and human chronic diseases: Current evidences, possible mechanisms, and future perspectives. Environ. Int. 2014, 64, 83- 90.
dcterms.referencesKemsley, J., Rethinking breast cancer toxicology. Chem. Eng. News 2010, 88 (10), 40-41.
dcterms.references(a) Hauser, R.; Skakkebaek, N. E.; Hass, U.; Toppari, J.; Juul, A.; Andersson, A. M.; Kortenkamp, A.; Heindel, J. J.; Trasande, L., Male Reproductive Disorders, Diseases, and Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union. J. Clin. Endocrinol. Metab. 2015, 100 (4), 1267-1277; (b) Bellanger, M.; Demeneix, B.; Grandjean, P.; Zoeller, R. T.; Trasande, L., Neurobehavioral Deficits, Diseases, and Associated Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union. J. Clin. Endocrinol. Metab. 2015, 100 (4), 1256-1266; (c) Bedia, C.; Dalmau, N.; Jaumot, J.; Tauler, R., Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors. Environ. Res. 2015, 140 (0), 18-31; (d) Prins, G. S., Endocrine disruptors and prostate cancer risk. Endocr. Relat. Cancer 2008, 15 (3), 649-656.
dcterms.referencesBrody, J. T., Breast cancer risk in relation to occupations with exposure to carcinogens and endocrine disruptors: a Canadian case-control study. National Network on Environments and Women's Health: 2012.
dcterms.referencesLee, H.-R.; Hwang, K.-A.; Nam, K.-H.; Kim, H.-C.; Choi, K.-C., Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem. Res. Toxicol. 2014, 27 (5), 834-842.
dcterms.referencesHulka, B. S.; Moorman, P. G., Breast cancer: hormones and other risk factors. Maturitas 2001, 38 (1), 103-113.
dcterms.referencesErickson, B. E., EPA RETOOLS ENDOCRINE PROGRAM. Chem. Eng. News 2013, 91 (11), 30-32.
dcterms.referencesJusto, N.; Wilking, N.; Jönsson, B.; Luciani, S.; Cazap, E., A review of breast cancer care and outcomes in Latin America. Oncologist 2013, 18 (3), 248-256.
dcterms.referencesNashev, L. G.; Schuster, D.; Laggner, C.; Sodha, S.; Langer, T.; Wolber, G.; Odermatt, A., The UV-filter benzophenone-1 inhibits 17β-hydroxysteroid dehydrogenase type 3: Virtual screening as a strategy to identify potential endocrine disrupting chemicals. Biochem. Pharmacol. 2010, 79 (8), 1189-1199
dcterms.referencesJenkins, S.; Betancourt, A. M.; Wang, J.; Lamartiniere, C. A., Endocrine-active chemicals in mammary cancer causation and prevention. J. Steroid. Biochem. Mol. Biol. 2012, 129 (3), 191- 200.
dcterms.referencesSakurai, K.; Kawazuma, M.; Adachi, T.; Harigaya, T.; Saito, Y.; Hashimoto, N.; Mori, C., Bisphenol A affects glucose transport in mouse 3T3-F442A adipocytes. Br. J. Pharmacol. 2004, 141 (2), 209-214.
dcterms.references(a) Lee, H.-R.; Hwang, K.-A.; Nam, K.-H.; Kim, H.-C.; Choi, K.-C., Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem. Res. Toxicol. 2014, 27 (5), 834-842; (b) Knower, K. C.; To, S. Q.; Leung, Y.- K.; Ho, S.-M.; Clyne, C. D., Endocrine disruption of the epigenome: a breast cancer link. Endocr. Relat. Cancer 2014, 21 (2), T33-T55; (c) Martos, S. N.; Tang, W.-y.; Wang, Z., Elusive inheritance: Transgenerational effects and epigenetic inheritance in human environmental disease. Prog. Biophys. Mol. Biol. 2015, 118 (1–2), 44-54; (d) Anway, M. D.; Cupp, A. S.; Uzumcu, M.; Skinner, M. K., Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility. Science 2005, 308 (5727), 1466-1469; (e) Izzotti, A.; Kanitz, S.; D‘Agostini, F.; Camoirano, A.; De Flora, S., Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice. Mutat. Res. 2009, 679 (1–2), 28-32.
dcterms.referencesJung, H.; Hong, Y.; Lee, D.; Pang, K.; Kim, Y., The association between some endocrine disruptors in human plasma and the occurrence of congenital hypothyroidism. Environ. Toxicol. Pharmacol. 2013, 35 (2), 278-283.
dcterms.references(a) Sharan, S.; Nikhil, K.; Roy, P., Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells. Toxicol. Appl. Pharmacol. 2013, 269 (2), 176-186; (b) Macon, M. B.; Fenton, S. E., Endocrine disruptors and the breast: early life effects and later life disease. J. Mammary Gland Biol. 2013, 18 (1), 43-61; (c) Scholz, S.; Renner, P.; Belanger, S. E.; Busquet, F.; Davi, R.; Demeneix, B. A.; Denny, J. S.; Leonard, M.; McMaster, M. E.; Villeneuve, D. L., Alternatives to in vivo tests to detect endocrine disrupting chemicals (EDCs) in fish and amphibians–screening for estrogen, androgen and thyroid hormone disruption. Critical reviews in toxicology 2013, 43 (1), 45- 72.
dcterms.referencesFutran Fuhrman, V.; Tal, A.; Arnon, S., Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond. J. Hazard. Mater. 2015, 286 (0), 589-611
dcterms.referencesKumar, A.; Xagoraraki, I., Pharmaceuticals, personal care products and endocrinedisrupting chemicals in U.S. surface and finished drinking waters: A proposed ranking system. Sci. Total Environ. 2010, 408 (23), 5972-5989.
dcterms.referencesGore, A.; Balthazart, J.; Bikle, D.; Carpenter, D.; Crews, D.; Czernichow, P.; DiamantiKandarakis, E.; Dores, R.; Grattan, D.; Hof, P., Reprint of: Policy decisions on endocrine disruptors should be based on science across disciplines: A response to Dietrich, et al. Front. Neuroendocrinol. 2014, 35 (1), 2.
dcterms.referencesGutendorf, B.; Westendorf, J., Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology 2001, 166 (1–2), 79-89.
dcterms.references(a) Xi, Y.; Li, D.; San, W., Exposure to the endocrine disruptor nonylphenol alters structure and function of thyroid gland in rats. Regul. Pept. 2013, 185, 52-56; (b) Prins, G. S., Endocrine disruptors and prostate cancer risk. Endocr. Relat. Cancer 2008, 15 (3), 649-656; (c) Bellanger, M.; Demeneix, B.; Grandjean, P.; Zoeller, R. T.; Trasande, L., Neurobehavioral Deficits, Diseases, and Associated Costs of Exposure to EndocrineDisrupting Chemicals in the European Union. J. Clin. Endocrinol. Metab. 2015, 100 (4), 1256-1266; (d) Hauser, R.; Skakkebaek, N. E.; Hass, U.; Toppari, J.; Juul, A.; Andersson, A. M.; Kortenkamp, A.; Heindel, J. J.; Trasande, L., Male Reproductive Disorders, Diseases, and Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union. J. Clin. Endocrinol. Metab. 2015, 100 (4), 1267-1277; (e) Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L. C.; Hauser, R.; Prins, G. S.; Soto, A. M.; Zoeller, R. T.; Gore, A. C., Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30 (4), 293-342.
dcterms.references(a) Patisaul, H. B., Effects of environmental endocrine disruptors and phytoestrogens on the kisspeptin system. In Kisspeptin Signaling in Reproductive Biology, Springer: 2013; pp 455-479; (b) Addis, A.; Moretti, M. E.; Ahmed Syed, F.; Einarson, T. R.; Koren, G., Fetal effects of cocaine: an updated meta-analysis. Reprod. Toxicol. 2001, 15 (4), 341-369.
dcterms.referencesStasinakis, A. S.; Gatidou, G.; Mamais, D.; Thomaidis, N. S.; Lekkas, T. D., Occurrence and fate of endocrine disrupters in Greek sewage treatment plants. Water Res. 2008, 42 (6–7), 1796-1804.
dcterms.referencesRousselle, C.; Ormsby, J.; Schaefer, B.; Lampen, A.; Platzek, T.; Hirsch-Ernst, K.; Warholm, M.; Oskarsson, A.; Nielsen, P.; Holmer, M., Meeting report: International workshop on endocrine disruptors: Exposure and potential impact on consumers health. Regul. Toxicol. Pharmacol. 2013, 65 (1), 7-11.
dcterms.referencesMeeker, J. D., Exposure to environmental endocrine disrupting compounds and men's health. Maturitas 2010, 66 (3), 236-241.
dcterms.referencesBirnbaum, L. S., State of the science of endocrine disruptors. Environ. Health Perspect. 2013, 121 (4), a107.
dcterms.referencesStojić, N.; Erić, S.; Kuzmanovski, I., Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counter-propagation artificial neural networks. J. Mol. Graph. Model. 2010, 29 (3), 450-460.
dcterms.referencesde Wit, C. A., An overview of brominated flame retardants in the environment. Chemosphere 2002, 46 (5), 583-624.
dcterms.references. Watanabe, I.; Sakai, S.-i., Environmental release and behavior of brominated flame retardants. Environ. Int. 2003, 29 (6), 665-682.
dcterms.referencesLegler, J.; Brouwer, A., Are brominated flame retardants endocrine disruptors? Environ. Int. 2003, 29 (6), 879-885.
dcterms.referencesNewton, S.; Sellström, U.; de Wit, C. A., Emerging Flame Retardants, PBDEs, and HBCDDs in Indoor and Outdoor Media in Stockholm, Sweden. Environ. Sci. Technol. 2015, 49 (5), 2912-2920.
dcterms.referencesSafe, S., Polychlorinated Biphenyls (PCBs), Dibenzo-p-Dioxins (PCDDs), Dibenzofurans (PCDFs), and Related Compounds: Environmental and Mechanistic Considerations Which Support the Development of Toxic Equivalency Factors (TEFs). Crit. Rev. Toxicol. 1990, 21 (1), 51-88.
dcterms.referencesArrebola, J.; Mutch, E.; Cuellar, M.; Quevedo, M.; Claure, E.; Mejía, L.; FernándezRodríguez, M.; Freire, C.; Olea, N.; Mercado, L., Factors influencing combined exposure to three indicator polychlorinated biphenyls in an adult cohort from Bolivia. Environ. Res. 2012, 116, 17-25.
dcterms.referencesKorell, J.; Paur, H.-R.; Seifert, H.; Andersson, S., Simultaneous removal of mercury, PCDD/F, and fine particles from flue gas. Environ. Sci. Technol. 2009, 43 (21), 8308-8314.
dcterms.referencesLanting, C. I.; Patandin, S.; Fidler, V.; Weisglas-Kuperus, N.; Sauer, P. J. J.; Boersma, E. R.; Touwen, B. C. L., Neurological condition in 42-month-old children in relation to preand postnatal exposure to polychlorinated biphenyls and dioxins. Early Hum. Dev. 1998, 50 (3), 283-292.
dcterms.referencesChandra, R.; Chaudhary, S., Persistent organic pollutants in environment and their health hazards. IJBio. 2013, 2 (09), 1232-1238.
dcterms.referencesTakayanagi, S.; Tokunaga, T.; Liu, X.; Okada, H.; Matsushima, A.; Shimohigashi, Y., Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity. Toxicol. lett. 2006, 167 (2), 95-105.
dcterms.referencesRosenmai, A. K.; Dybdahl, M.; Pedersen, M.; Alice van Vugt-Lussenburg, B. M.; Wedebye, E. B.; Taxvig, C.; Vinggaard, A. M., Are Structural Analogues to Bisphenol A Safe Alternatives? Toxicol. Sci. 2014, 139 (1), 35-47.
dcterms.referencesManikkam, M.; Tracey, R.; Guerrero-Bosagna, C.; Skinner, M. K., Plastics Derived Endocrine Disruptors (BPA, DEHP and DBP) Induce Epigenetic Transgenerational Inheritance of Obesity, Reproductive Disease and Sperm Epimutations. PLoS ONE 2013, 8 (1), e55387.
dcterms.referencesSchug, T. T.; Janesick, A.; Blumberg, B.; Heindel, J. J., Endocrine disrupting chemicals and disease susceptibility. The Journal of steroid biochemistry and molecular biology 2011, 127 (3), 204-215.
dcterms.referencesDavis, L. K.; Visitacion, N.; Riley, L. G.; Hiramatsu, N.; Sullivan, C. V.; Hirano, T.; Grau, E. G., Effects of o, p'-DDE, heptachlor, and 17β-estradiol on vitellogenin gene expression and the growth hormone/insulin-like growth factor-I axis in the tilapia, Oreochromis mossambicus. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 2009, 149 (4), 507-514.
dcterms.referencesBirkett, J. W.; Lester, J. N., Endocrine Disrupters in Wastewater and Sludge Treatment Processes. Taylor & Francis: 2002.
dcterms.referencesAhn, H.-J.; An, B.-S.; Jung, E.-M.; Yang, H.; Choi, K.-C.; Jeung, E.-B., Parabens inhibit the early phase of folliculogenesis and steroidogenesis in the ovaries of neonatal rats. Mol. Reprod. Dev. 2012, 79 (9), 626-636.
dcterms.referencesChen, B.-S.; Yen, J.-H., Effect of endocrine disruptor nonylphenol on physiologic features and proteome during growth in Arabidopsis thaliana. Chemosphere 2013, 91 (4), 468-474.
dcterms.referencesIshibashi, H.; Matsumura, N.; Hirano, M.; Matsuoka, M.; Shiratsuchi, H.; Ishibashi, Y.; Takao, Y.; Arizono, K., Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat. Toxicol. 2004, 67 (2), 167-179.
dcterms.referencesUmland, E. M.; Cauffield, J. S.; Kirk, J. K.; Thomason, T. E., Phytoestrogens as therapeutic alternatives to traditional hormone replacement in postmenopausal women. Pharmacotherapy 2000, 20 (8), 981-990.
dcterms.referencesEden, J. A., Phytoestrogens for menopausal symptoms: A review. Maturitas 2012, 72 (2), 157-159.
dcterms.referencesBratton, M. R.; Martin, E. C.; Elliott, S.; Rhodes, L. V.; Collins-Burow, B. M.; McLachlan, J. A.; Wiese, T. E.; Boue, S. M.; Burow, M. E., Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer. The Journal of Steroid Biochemistry and Molecular Biology 2015, 150, 17-23.
dcterms.referencesCassidy, A.; Albertazzi, P.; Nielsen, I. L.; Hall, W.; Williamson, G.; Tetens, I.; Atkins, S.; Cross, H.; Manios, Y.; Wolk, A.; Steiner, C.; Branca, F., Critical review of health effects of soyabean phyto-oestrogens in post-menopausal women. Proc. Nutr. Soc. 2006, 65 (01), 76- 92
dcterms.references(a) Anderson, L. N.; Cotterchio, M.; Boucher, B. A.; Kreiger, N., Phytoestrogen intake from foods, during adolescence and adulthood, and risk of breast cancer by estrogen and progesterone receptor tumor subgroup among Ontario women. International Journal of Cancer 2013, 132 (7), 1683-1692; (b) Salvo, V. A.; Boué, S. M.; Fonseca, J. P.; Elliott, S.; Corbitt, C.; Collins-Burow, B. M.; Curiel, T. J.; Srivastav, S. K.; Shih, B. Y.; CarterWientjes, C.; Wood, C. E.; Erhardt, P. W.; Beckman, B. S.; McLachlan, J. A.; Cleveland, T. E.; Burow, M. E., Antiestrogenic Glyceollins Suppress Human Breast and Ovarian Carcinoma Tumorigenesis. Clinical Cancer Research 2006, 12 (23), 7159-7164.
dcterms.referencesZaineddin, A. K.; Buck, K.; Vrieling, A.; Heinz, J.; Flesch-Janys, D.; Linseisen, J.; ChangClaude, J., The Association Between Dietary Lignans, Phytoestrogen-Rich Foods, and Fiber Intake and Postmenopausal Breast Cancer Risk: A German Case-Control Study. Nutrition and Cancer 2012, 64 (5), 652-665.
dcterms.referencesRice, S.; Whitehead, S., Targets for the Action of Phytoestrogens in Breast Cancer—Focus on Isoflavones and Resveratrol. Curr Breast Cancer Rep 2014, 6 (2), 88-95.
dcterms.referencesHunter, D. J.; Kraft, P.; Jacobs, K. B.; Cox, D. G.; Yeager, M.; Hankinson, S. E.; Wacholder, S.; Wang, Z.; Welch, R.; Hutchinson, A.; Wang, J.; Yu, K.; Chatterjee, N.; Orr, N.; Willett, W. C.; Colditz, G. A.; Ziegler, R. G.; Berg, C. D.; Buys, S. S.; McCarty, C. A.; Feigelson, H. S.; Calle, E. E.; Thun, M. J.; Hayes, R. B.; Tucker, M.; Gerhard, D. S.; Fraumeni, J. F.; Hoover, R. N.; Thomas, G.; Chanock, S. J., A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 2007, 39 (7), 870-874.
dcterms.referencesBosviel, R.; Dumollard, E.; Déchelotte, P.; Bignon, Y.-J.; Bernard-Gallon, D., Can Soy Phytoestrogens Decrease DNA Methylation in BRCA1 and BRCA2 Oncosuppressor Genes in Breast Cancer? OMICS: A Journal of Integrative Biology 2012, 16 (5), 235-244.
dcterms.referencesTong, L.; Chuang, C.-C.; Wu, S.; Zuo, L., Reactive oxygen species in redox cancer therapy. Cancer Letters 2015.
dcterms.referencesSung, M.-K.; Bae, Y.-J., Chapter 13 - Iron, Oxidative Stress, and Cancer. In Cancer, Preedy, V., Ed. Academic Press: San Diego, 2014; pp 139-149.
dcterms.referencesHartmann, N. Environmental exposure to estrogenic mycotoxins. Diss., Umweltnaturwissenschaften, Eidgenössische Technische Hochschule ETH Zürich, Nr. 17751, 2008, 2008.
dcterms.referencesGrosse, Y.; Chekir-Ghedira, L.; Huc, A.; Obrecht-Pflumio, S.; Dirheimer, G.; Bacha, H.; Pfohl-Leszkowicz, A., Retinol, ascorbic acid and α-tocopherol prevent DNA adduct formation in mice treated with the mycotoxins ochratoxin A and zearalenone. Cancer Lett. 1997, 114 (1), 225-229.
dcterms.referencesBarouki, R.; Gluckman, P. D.; Grandjean, P.; Hanson, M.; Heindel, J. J., Developmental origins of non-communicable disease: implications for research and public health. Environ. Health 2012, 11 (42), 10-1186.
dcterms.referencesBergman, A.; Heindel, J. J.; Kasten, T.; Kidd, K. A.; Jobling, S.; Neira, M.; Zoeller, R. T.; Becher, G.; Bjerregaard, P.; Bornman, R., The impact of endocrine disruption a consensus statement on the state of the science. Environ. Health Perspect. 2013, 121 (4), A104
dcterms.referencesBrisken, C., Endocrine disruptors and breast cancer. CHIMIA Int. J. Chem. 2008, 62 (5), 406-409.
dcterms.referencesSafea, S., Endocrine disruptors and human health: is there a problem. Toxicology 2004, 205 (1), 3-10
dcterms.referencesYang, M.; Ryu, J.-H.; Jeon, R.; Kang, D.; Yoo, K.-Y., Effects of bisphenol A on breast cancer and its risk factors. Arch Toxicol 2009, 83 (3), 281-285.
dcterms.referencesTakaku, M.; Adomas, A.; Grimm, S. A.; Takashi, S.; Wade, P. A., GATA3 mutations in breast cancer. Cancer Res. 2014, 74 (19 Supplement), 475-475
dcterms.referencesIzzotti, A.; Kanitz, S.; D‘Agostini, F.; Camoirano, A.; De Flora, S., Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2009, 679 (1–2), 28-32.
dcterms.referencesDarbre, P. D.; Fernandez, M. F., Environmental oestrogens and breast cancer: long-term low-dose effects of mixtures of various chemical combinations. J. Epidemiol. Community Health 2012.
dcterms.referencesHopp, T. A.; Weiss, H. L.; Parra, I. S.; Cui, Y.; Osborne, C. K.; Fuqua, S. A., Low levels of estrogen receptor β protein predict resistance to tamoxifen therapy in breast cancer. Clin. Cancer Res. 2004, 10 (22), 7490-7499.
dcterms.referencesNwozo, S. O.; Solomon, O.; Abimbola, O. O.; Kikelomo, D. O., Comparative study of biochemical and nutritional status of breast cancer patients on chemotherapy/radiotherapy in ibadan. Am. J. Cancer. 2013, 2 (1), 51-60.
dcterms.referencesBidgoli, S. A.; Ahmadi, R.; Zavarhei, M. D., Role of hormonal and environmental factors on early incidence of breast cancer in Iran. Sci. Total Environ. 2010, 408 (19), 4056-4061.
dcterms.referencesHan, D.; Nie, J.; Bonner, M.; Ambrosone, C.; Marian, C.; Shields, P.; Trevisan, M.; Edge, S.; Freudenheim, J., Clustering of place of birth for women with breast cancer: differences by tumor characteristics. Cancer Cause. Control 2013, 24 (3), 587-594.
dcterms.referencesWeigelt, B.; Geyer, F. C.; Reis-Filho, J. S., Histological types of breast cancer: How special are they? Mol. Oncol. 2010, 4 (3), 192-208.
dcterms.referencesCarey, L. A.; Perou, C. M.; Livasy, C. A.; et al., Race, breast cancer subtypes, and survival in the carolina breast cancer study. JAMA 2006, 295 (21), 2492-2502.
dcterms.referencesEroles, P.; Bosch, A.; Alejandro Pérez-Fidalgo, J.; Lluch, A., Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer. Treat. Rev. 2012, 38 (6), 698- 707.
dcterms.referencesDas, P.; Siegers, G. M.; Postovit, L.-M., Illuminating luminal B: QSOX1 as a subtypespecific biomarker. Breast Cancer Res. 2013, 15 (3), 104.
dcterms.referencesVaca-Paniagua, F.; Alvarez-Gomez, R.; Maldonado-Martínez, H.; Pérez-Plasencia, C.; Fragoso-Ontiveros, V.; Lasa-Gonsebatt, F.; Herrera, L.; Cantú, D.; Bargallo-Rocha, E.; Mohar, A., Revealing the Molecular Portrait of Triple Negative Breast Tumors in an Understudied Population through Omics Analysis of Formalin-Fixed and ParaffinEmbedded Tissues. PloS one 2015, 10 (5), e0126762.
dcterms.referencesHanahan, D.; Weinberg, Robert A., Hallmarks of Cancer: The Next Generation. Cell 2011, 144 (5), 646-674.
dcterms.referencesGiancotti, V., Breast cancer markers. Cancer Lett. 2006, 243 (2), 145-159.
dcterms.referencesChen, Y.; Guggisberg, N.; Jorda, M.; Gonzalez-Angulo, A.; Hennessy, B.; Mills, G. B.; Tan, C.-K.; Slingerland, J. M., Combined Src and aromatase inhibition impairs human breast cancer growth in vivo and bypass pathways are activated in AZD0530-resistant tumors. Clin. Cancer Res. 2009, 15 (10), 3396-3405.
dcterms.referencesDi Leo, A.; Curigliano, G.; Diéras, V.; Malorni, L.; Sotiriou, C.; Swanton, C.; Thompson, A.; Tutt, A.; Piccart, M., New approaches for improving outcomes in breast cancer in Europe. Breast 2015, 24 (4), 321-330.
dcterms.referencesTrott, O.; Olson, A. J., AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31 (2), 455-461.
dcterms.references. Wolber, G.; Langer, T., LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2005, 45 (1), 160-169.
dcterms.referencesNose, T.; Tokunaga, T.; Shimohigashi, Y., Exploration of endocrine-disrupting chemicals on estrogen receptor α by the agonist/antagonist differential-docking screening (AADS) method: 4-(1-Adamantyl)phenol as a potent endocrine disruptor candidate. Toxicol. Letters 2009, 191 (1), 33-39.
dcterms.referencesAzam, S. S.; Abbasi, S. W., Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor. Biol. Med. Model. 2013, 10, 63-63.
dcterms.referencesGad, S. C., Drug Discovery Handbook. Wiley: 2005.
dcterms.referencesSeifert, M. H. J.; Wolf, K.; Vitt, D., Virtual high-throughput in silico screening. Biosilico 2003, 1 (4), 143-149
dcterms.referencesScrima, M.; Lauro, G.; Grimaldi, M.; Di Marino, S.; Tosco, A.; Picardi, P.; Gazzerro, P.; Riccio, R.; Novellino, E.; Bifulco, M., Structural Evidence of N 6-Isopentenyladenosine As a New Ligand of Farnesyl Pyrophosphate Synthase. J. Med. Chem. 2014, 57 (18), 7798- 7803.
dcterms.referencesCastro, J. E. Z., Manual de Técnicas Básicas de Biología Molecular. UADY: 2005.
dcterms.referencesSandhu, S. S., Recombinant DNA Technology. I.K. International Publishing House Pvt., Limited: 2010.
dcterms.referencesMahesh, S.; Vedamurthy, A. B., Biotechnology-4: Including Recombinant DNA Technology, Environmental Biotechnology, Animal Cell Culture. New Age International (P) Limited: 2003.
dcterms.referencesMazzotta, G. C., Identificación Por ADN. Ediciones Jurídicas Cuyo: 2000
dcterms.referencesVallejo, F. G., El nómada molecular: la historia molecular del virus linfotrópico humano tipo (HTLV-1). Universidad del Valle: 2004.
dcterms.referencesHausman, G.; Cooper, G. M.; Hausman, R. E., The Cell: A Molecular Approach. Sinauer Associates Incorporated: 2009.
dcterms.referencesCorchero, J. L.; Villaverde, A., Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol. 2009, 27 (8), 468-476.
dcterms.referencesSeidel, S. A. I.; Dijkman, P. M.; Lea, W. A.; van den Bogaart, G.; Jerabek-Willemsen, M.; Lazic, A.; Joseph, J. S.; Srinivasan, P.; Baaske, P.; Simeonov, A.; Katritch, I.; Melo, F. A.; Ladbury, J. E.; Schreiber, G.; Watts, A.; Braun, D.; Duhr, S., Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 2013, 59 (3), 301-315.
dcterms.referencesCorin, K.; Baaske, P.; Ravel, D. B.; Song, J.; Brown, E.; Wang, X.; Geissler, S.; Wienken, C. J.; Jerabek-Willemsen, M.; Duhr, S.; Braun, D.; Zhang, S., A Robust and Rapid Method of Producing Soluble, Stable, and Functional G-Protein Coupled Receptors. PLoS ONE 2011, 6 (10), e23036.
dcterms.referencesWienken, C. J.; Baaske, P.; Rothbauer, U.; Braun, D.; Duhr, S., Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 2010, 1, 100.
dcterms.referencesWhitmore, L.; Woollett, B.; Miles, A. J.; Klose, D. P.; Janes, R. W.; Wallace, B. A., PCDDB: the protein circular dichroism data bank, a repository for circular dichroism spectral and metadata. Nucleic Acids Res. 2011, 39 (suppl 1), D480-D486.
dcterms.referencesMcReynolds, K. D.; Gervay-Hague, J., Examining the secondary structures of unnatural peptides and carbohydrate-based compounds utilizing circular dichroism. Tetrahedron Asymmetry 2000, 11 (2), 337-362.
dcterms.referencesRodger, A.; Marrington, R.; Roper, D.; Windsor, S., Circular Dichroism Spectroscopy for the Study of Protein-Ligand Interactions. In Protein-Ligand Interactions, Ulrich Nienhaus, G., Ed. Humana Press: 2005; Vol. 305, pp 343-363.
dcterms.references(a) Markey, C. M.; Rubin, B. S.; Soto, A. M.; Sonnenschein, C., Endocrine disruptors: from Wingspread to environmental developmental biology. J. Steroid Biochem. Mol. Biol. 2002, 83 (1–5), 235-244; (b) Mezcua, M.; Martínez-Uroz, M.; Gómez-Ramos, M.; Gómez, M.; Navas, J.; Fernández-Alba, A., Analysis of synthetic endocrine-disrupting chemicals in food: A review. Talanta 2012, 100, 90-106; (c) Muncke, J., Endocrine disrupting chemicals and other substances of concern in food contact materials: An updated review of exposure, effect and risk assessment. J. Steroid Biochem. Mol. Biol. 2011, 127 (1–2), 118-127.
dcterms.referencesStojić, N.; Erić, S.; Kuzmanovski, I., Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counter-propagation artificial neural networks. J. Mol. Graph. Model. 2010, 29 (3), 450-460.
dcterms.referencesStojić, N.; Erić, S.; Kuzmanovski, I., Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counter-propagation artificial neural networks. J. Mol. Graph. Model. 2010, 29 (3), 450-460.
dcterms.referencesO'Boyle, N.; Banck, M.; James, C.; Morley, C.; Vandermeersch, T.; Hutchison, G., Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3 (1), 33
dcterms.referencesO'Boyle, N.; Banck, M.; James, C.; Morley, C.; Vandermeersch, T.; Hutchison, G., Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3 (1), 33
dcterms.referencesBolton, E. E.; Wang, Y.; Thiessen, P. A.; Bryant, S. H., Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities. In Annu. Rep. Comput. Chem., Ralph, A. W.; David, C. S., Eds. Elsevier: 2008; Vol. Volume 4, pp 217-241.
dcterms.referencesWexler, P., TOXNET: An evolving web resource for toxicology and environmental health information. Toxicology 2001, 157 (1–2), 3-10.
dcterms.referencesJudson, R.; Richard, A.; Dix, D.; Houck, K.; Elloumi, F.; Martin, M.; Cathey, T.; Transue, T. R.; Spencer, R.; Wolf, M., ACToR—aggregated computational toxicology resource. Toxicol. Appl. Pharmacol. 2008, 233 (1), 7-13.
dcterms.referencesDix, D. J.; Houck, K. A.; Martin, M. T.; Richard, A. M.; Setzer, R. W.; Kavlock, R. J., The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol. Sci. 2007, 95 (1), 5-12.
dcterms.referencesSarkar, I. N.; Schenk, R.; Miller, H.; Norton, C. N. In LigerCat: using ―MeSH clouds‖ from journal, article, or gene citations to facilitate the identification of relevant biomedical literature, AMIA Annual Symposium Proceedings, American Medical Informatics Association: 2009; p 563.
dcterms.referencesTetko, I. V., Computing chemistry on the web. Drug Discov. Today 2005, 10 (22), 1497- 1500
dcterms.referencesShen, J.; Xu, L.; Fang, H.; Richard, A. M.; Bray, J. D.; Judson, R. S.; Zhou, G.; Colatsky, T. J.; Aungst, J. L.; Teng, C., EADB: an estrogenic activity database for assessing potential endocrine activity. Toxicol. Sci. 2013, 135 (2), 277-291.
dcterms.referencesLauria, A.; Ippolito, M.; Almerico, A. M., Principal component analysis on molecular descriptors as an alternative point of view in the search of new Hsp90 inhibitors. Comp. Biol. Chem. 2009, 33 (5), 386-390.
dcterms.referencesSafe, S. H., Endocrine disruptors and human health--is there a problem? An update. Environ. Health. Perspect. 2000, 108 (6), 487.
dcterms.referencesDing, D.; Xu, L.; Fang, H.; Hong, H.; Perkins, R.; Harris, S.; Bearden, E. D.; Shi, L.; Tong, W., The EDKB: an established knowledge base for endocrine disrupting chemicals. BMC bioinformatics 2010, 11 (Suppl 6), S5.
dcterms.referencesNashev, L. G.; Schuster, D.; Laggner, C.; Sodha, S.; Langer, T.; Wolber, G.; Odermatt, A., The UV-filter benzophenone-1 inhibits 17β-hydroxysteroid dehydrogenase type 3: Virtual screening as a strategy to identify potential endocrine disrupting chemicals. Biochemical pharmacology 2010, 79 (8), 1189-1199.
dcterms.referencesNashev, L. G.; Vuorinen, A.; Praxmarer, L.; Chantong, B.; Cereghetti, D.; Winiger, R.; Schuster, D.; Odermatt, A., Virtual Screening as a Strategy for the Identification of Xenobiotics Disrupting Corticosteroid Action. PLoS ONE 2012, 7 (10), e46958.
dcterms.referencesNakata, K.; Takai, T.; Kaminuma, T., Development of the receptor database (RDB): application to the endocrine disruptor problem. Bioinformatics 1999, 15 (7), 544-552.
dcterms.referencesBaldi, F.; Mantovani, A., A new database for food safety: EDID (endocrine disrupting chemicals–diet interaction database). Reprod. Toxicol. 2008, 26 (1),
dcterms.referencesHaighton, L. A.; Hlywka, J. J.; Doull, J.; Kroes, R.; Lynch, B. S.; Munro, I. C., An evaluation of the possible carcinogenicity of bisphenol A to humans. Regul. Toxicol. Pharmacol. 2002, 35 (2), 238-254.
dcterms.referencesBrugnera, M. F.; Rajeshwar, K.; Cardoso, J. C.; Zanoni, M. V. B., Bisphenol A removal from wastewater using self-organized TIO2 nanotubular array electrodes. Chemosphere 2010, 78 (5), 569-575.
dcterms.referencesSakuma, S.; Nakanishi, M.; Morinaga, K.; Fujitake, M.; Wada, S.-i.; Fujimoto, Y., Bisphenol A 3,4-quinone induces the conversion of xanthine dehydrogenase into oxidase in vitro. Food Chem. Toxicol. 2010, 48 (8–9), 2217-2222.
dcterms.referencesAvissar-Whiting, M.; Veiga, K. R.; Uhl, K. M.; Maccani, M. A.; Gagne, L. A.; Moen, E. L.; Marsit, C. J., Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod. Toxicol. 2010, 29 (4), 401-406.
dcterms.referencesAvissar-Whiting, M.; Veiga, K. R.; Uhl, K. M.; Maccani, M. A.; Gagne, L. A.; Moen, E. L.; Marsit, C. J., Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod. Toxicol. 2010, 29 (4), 401-406.
dcterms.referencesBerger, R. G.; Shaw, J.; deCatanzaro, D., Impact of acute bisphenol-A exposure upon intrauterine implantation of fertilized ova and urinary levels of progesterone and 17βestradiol. Reprod. Toxicol. 2008, 26 (2), 94-99.
dcterms.referencesBredhult, C.; Sahlin, L.; Olovsson, M., Gene expression analysis of human endometrial endothelial cells exposed to Bisphenol A. Reprod. Toxicol. 2009, 28 (1), 18-25.
dcterms.referencesBalakrishnan, A.; Stearns, A. T.; Rounds, J.; Irani, J.; Giuffrida, M.; Rhoads, D. B.; Ashley, S. W.; Tavakkolizadeh, A., Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose cotransporter (SGLT1). Surgery 2008, 143 (6), 813-818.
dcterms.referencesRezg, R.; El-Fazaa, S.; Gharbi, N.; Mornagui, B., Bisphenol A and human chronic diseases: Current evidences, possible mechanisms, and future perspectives. Environ. Int. 2014, 64, 83-90.
dcterms.referencesChen, H.; Sharp, B., Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinformatics 2004, 5 (1), 147.
dcterms.referencesBerman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E., The protein data bank. Nucleic Acids Res. 2000, 28 (1), 235-242.
dcterms.referencesHetényi, C.; van der Spoel, D., Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci. 2002, 11 (7), 1729-1737.
dcterms.referencesSarsam, S. W.; Nutt, D. R.; Strohfeldt, K.; Watson, K. A., Titanocene anticancer complexes and their binding mode of action to human serum albumin: A computational study. Metallomics 2011, 3 (2), 152-161
dcterms.referencesMaldonado-Rojas, W.; Olivero-Verbel, J.; Ortega-Zuñiga, C., Searching of protein targets for alpha lipoic acid. J. Braz. Chem. Soc. 2011, 22, 2250-2259.
dcterms.referencesMorris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J., AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30 (16), 2785-2791
dcterms.referencesLim, S. V.; Rahman, M. B.; Tejo, B., Structure-based and ligand-based virtual screening of novel methyltransferase inhibitors of the dengue virus. BMC Bioinformatics 2011, 12 (Suppl 13), S24.
dcterms.referencesFrisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Laham, A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian 03, Revision C.02. 2003.
dcterms.referencesGuha, R.; Howard, M. T.; Hutchison, G. R.; Murray-Rust, P.; Rzepa, H.; Steinbeck, C.; Wegner, J.; Willighagen, E. L., The Blue ObeliskInteroperability in Chemical Informatics. J. Chem. Inf. Model. 2006, 46 (3), 991-998.
dcterms.referencesRanjan, N.; Andreasen, K. F.; Kumar, S.; Hyde-Volpe, D.; Arya, D. P., Aminoglycoside Binding to Oxytricha nova Telomeric DNA. Biochemistry 2010, 49 (45), 9891-9903.
dcterms.referencesTrott, O.; Olson, A. J., AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31 (2), 455-461.
dcterms.referencesWolber, G.; Langer, T., LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2004, 45 (1), 160-169.
dcterms.referencesDurdagi, S.; Duff, H. J.; Noskov, S. Y., Combined Receptor and Ligand-Based Approach to the Universal Pharmacophore Model Development for Studies of Drug Blockade to the hERG1 Pore Domain. J. Chem. Inf. Model. 2011, 51 (2), 463-474.
dcterms.referencesTakayanagi, S.; Tokunaga, T.; Liu, X.; Okada, H.; Matsushima, A.; Shimohigashi, Y., Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity. Toxicol. lett. 2006, 167 (2), 95-105.
dcterms.referencesNashev, L. G.; Schuster, D.; Laggner, C.; Sodha, S.; Langer, T.; Wolber, G.; Odermatt, A., The UV-filter benzophenone-1 inhibits 17β-hydroxysteroid dehydrogenase type 3: Virtual screening as a strategy to identify potential endocrine disrupting chemicals. Biochem. Pharmacol. 2010, 79 (8), 1189-1199.
dcterms.referencesRosenthal, A. S.; Tanega, C.; Shen, M.; Mott, B. T.; Bougie, J. M.; Nguyen, D.-T.; Misteli, T.; Auld, D. S.; Maloney, D. J.; Thomas, C. J., Potent and selective small molecule inhibitors of specific isoforms of Cdc2-like kinases (Clk) and dual specificity tyrosinephosphorylation-regulated kinases (Dyrk). Bioorg. Med. Chem. Lett. 2011, 21 (10), 3152- 3158.
dcterms.referencesOgawa, Y.; Hagiwara, M., Challenges to congenital genetic disorders with ―RNAtargeting‖ chemical compounds. Pharmacol. Ther. 2012, 134 (3), 298-305.
dcterms.referencesHuang, Z.; Chen, G.; Shi, P., Emodin-induced apoptosis in human breast cancer BCap-37 cells through the mitochondrial signaling pathway. Arch. Pharm. Res. 2008, 31 (6), 742- 748.
dcterms.referencesRodgers, J. T.; Haas, W.; Gygi, S. P.; Puigserver, P., Cdc2-like Kinase 2 Is an InsulinRegulated Suppressor of Hepatic Gluconeogenesis. Cell Metab. 2010, 11 (1), 23-34
dcterms.references(a) Neel, B. A.; Sargis, R. M., The paradox of progress: environmental disruption of metabolism and the diabetes epidemic. Diabetes 2011, 60 (7), 1838-1848; (b) Jubendradass, R.; D'Cruz, S. C.; Mathur, P. P., Short‐term exposure to nonylphenol induces pancreatic oxidative stress and alters liver glucose metabolism in adult female rats. J. Biochem. Mol. Toxicol. 2011, 25 (2), 77-83.
dcterms.referencesIwamuro, S.; Yamada, M.; Kato, M.; Kikuyama, S., Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor α and β and downregulation of retinoid X receptor γ in Xenopus tail culture. Life Sci. 2006, 79 (23), 2165- 2171
dcterms.referencesLee, H.-S.; Kim, Y.-D.; Na, B.-R.; Kim, H.-R.; Choi, E.-J.; Han, W.-C.; Choi, H.-K.; Lee, S.- H.; Jun, C.-D., Phytocomponent p-Hydroxycinnamic acid inhibits T-cell activation by modulation of protein kinase C-θ-dependent pathway. Int. Immunopharmacol. 2012, 12 (1), 131-138.
dcterms.referencesChu, P.-Y.; Hsu, N. C.-H.; Tai, H.-C.; Yeh, C.-M.; Lin, S.-H.; Hou, M.-F.; Yeh, K.-T., High nuclear protein kinase Cθ expression may correlate with disease recurrence and poor survival in oral squamous cell carcinoma. Hum. Pathol. 2012, 43 (2), 276-281.
dcterms.referencesMatasi, J. J.; Caldwell, J. P.; Hao, J.; Neustadt, B.; Arik, L.; Foster, C. J.; Lachowicz, J.; Tulshian, D. B., The discovery and synthesis of novel adenosine receptor (A 2A) antagonists. Bioorg. Med. Chem. Lett. 2005, 15 (5), 1333-1336.
dcterms.referencesFukushima, A.; Funabashi, T.; Kawaguchi, M.; Mitsushima, D.; Kimura, F., Bisphenol A induces transforming growth factor-β3 mRNA in the preoptic area: A cDNA expression array and Northern blot study. Neurosci. Lett. 2007, 411 (1), 81-85.
dcterms.referencesFogarasi, M.; Janssen, A.; Weber, B. H. F.; Stöhr, H., Molecular dissection of TIMP3 mutation S156C associated with Sorsby fundus dystrophy. Matrix Biol. 2008, 27 (5), 381- 392.
dcterms.referencesKeller, T. H.; Pichota, A.; Yin, Z., A practical view of ‗druggability‘. Curr. Opin. Chem. Biol. 2006, 10 (4), 357-361.
dcterms.references(a) Chen, Y.; Tang, Y.; Guo, C.; Wang, J.; Boral, D.; Nie, D., Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem. Pharmacol. 2012, 83 (8), 1112-1126; (b) Dring, A. M.; Anderson, L.E.; Qamar, S.; Stoner, M. A., Rational quantitative structure–activity relationship (RQSAR) screen for PXR and CAR isoform-specific nuclear receptor ligands. Chem. Biol. Interact. 2010, 188 (3), 512-525.
dcterms.referencesHuang, Y. Q.; Wong, C. K. C.; Zheng, J. S.; Bouwman, H.; Barra, R.; Wahlström, B.; Neretin, L.; Wong, M. H., Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ. Int. 2012, 42, 91-99.
dcterms.referencesBrody, J. T., Breast cancer risk in relation to occupations with exposure to carcinogens and endocrine disruptors: a Canadian case-control study. National Network on Environments and Women's Health: 2012.
dcterms.references(a) Hauser, R.; Skakkebaek, N. E.; Hass, U.; Toppari, J.; Juul, A.; Andersson, A. M.; Kortenkamp, A.; Heindel, J. J.; Trasande, L., Male Reproductive Disorders, Diseases, and Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union. J. Clin. Endocrinol. Metab. 2015, 100 (4), 1267-1277; (b) Bellanger, M.; Demeneix, B.; Grandjean, P.; Zoeller, R. T.; Trasande, L., Neurobehavioral Deficits, Diseases, and Associated Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union. J. Clin. Endocrinol. Metab. 2015, 100 (4), 1256-1266; (c) Bedia, C.; Dalmau, N.; Jaumot, J.; Tauler, R., Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors. Environ. Res. 2015, 140 (0), 18-31; (d) Prins, G. S., Endocrine disruptors and prostate cancer risk. Endocr. Relat. Cancer 2008, 15 (3), 649-656.
dcterms.referencesStojić, N.; Erić, S.; Kuzmanovski, I., Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counter-propagation artificial neural networks. J. Mol. Graph. Model. 2010, 29 (3), 450-460.
dcterms.referencesErickson, B. E., EPA RETOOLS ENDOCRINE PROGRAM. Chem. Eng. News 2013, 91 (11), 30-32.
dcterms.referencesRotroff, D. M.; Martin, M. T.; Dix, D. J.; Filer, D. L.; Houck, K. A.; Knudsen, T. B.; Sipes, N. S.; Reif, D. M.; Xia, M.; Huang, R.; Judson, R. S., Predictive Endocrine Testing in the 21st Century Using in Vitro Assays of Estrogen Receptor Signaling Responses. Environ. Sci. Technol. 2014, 48 (15), 8706-8716.
dcterms.referencesWang, N. C. Y.; Jay Zhao, Q.; Wesselkamper, S. C.; Lambert, J. C.; Petersen, D.; HessWilson, J. K., Application of computational toxicological approaches in human health risk assessment. I. A tiered surrogate approach. Regul. Toxicol. Pharmacol. 2012, 63 (1), 10- 19.
dcterms.referencesSchneider, G.; Böhm, H.-J., Virtual screening and fast automated docking methods. Drug Discov. Today 2002, 7 (1), 64-70.
dcterms.referencesKemsley, J., Rethinking breast cancer toxicology. Chem. Eng. News 2010, 88 (10), 40-41.
dcterms.referencesLauro, G.; Masullo, M.; Piacente, S.; Riccio, R.; Bifulco, G., Inverse Virtual Screening allows the discovery of the biological activity of natural compounds. Bioorg. Med. Chem. 2012, 20 (11), 3596-3602.
dcterms.referencesHondermarck, H.; Tastet, C.; El Yazidi-Belkoura, I.; Toillon, R.-A.; Le Bourhis, X., Proteomics of Breast Cancer: The Quest for Markers and Therapeutic Targets. J. Proteome Res. 2008, 7 (4), 1403-1411.
dcterms.references(a) Yu, K.; Toral-Barza, L.; Discafani, C.; Zhang, W. G.; Skotnicki, J.; Frost, P.; Gibbons, J. J., mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr. Relat. Cancer. 2001, 8 (3), 249-258; (b) Lee, H.-R.; Hwang, K.-A.; Nam, K.-H.; Kim, H.-C.; Choi, K.-C., Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem. Res. Toxicol. 2014, 27 (5), 834-842.
dcterms.referencesTrott, O.; Olson, A. J., AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31 (2), 455-461.
dcterms.referencesKolšek, K.; Mavri, J.; Sollner Dolenc, M.; Gobec, S.; Turk, S., Endocrine Disruptome—An Open Source Prediction Tool for Assessing Endocrine Disruption Potential through Nuclear Receptor Binding. J. Chem. Inf. Model. 2014, 54 (4), 1254-1267.
dcterms.referencesMontes-Grajales, D.; Olivero-Verbel, J., Computer-aided identification of novel protein targets of bisphenol A. Toxicol. Lett. 2013, 222 (3), 312-320.
dcterms.referencesMontes-Grajales, D.; Olivero-Verbel, J., EDCs DataBank: 3D-Structure database of endocrine disrupting chemicals. Toxicology 2015, 327 (0), 87-94
dcterms.referencesBerman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E., The Protein Data Bank. Nucleic Acids Res. 2000, 28 (1), 235-242.
dcterms.referencesMorris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J., AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30 (16), 2785-2791.
dcterms.referencesMeunier, B.; Dumas, E.; Piec, I.; Bechet, D.; Hebraud, M.; Hocquette, J.-F., Assessment of hierarchical clustering methodologies for proteomic data mining. J. Proteome Res. 2007, 6 (1), 358-366.
dcterms.referencesWarnes, G. R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S., gplots: Various R programming tools for plotting data. R package version 2009, 2 (4).
dcterms.referencesMaldonado-Rojas, W.; Olivero-Verbel, J., Food-related compounds that modulate expression of inducible nitric oxide synthase may act as its inhibitors. Molecules 2012, 17 (7), 8118-8135.
dcterms.referencesWolber, G.; Langer, T., LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2005, 45 (1), 160-169.
dcterms.referencesLorber, M.; Schecter, A.; Paepke, O.; Shropshire, W.; Christensen, K.; Birnbaum, L., Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures. Environ. Int. 2015, 77, 55-62.
dcterms.referencesFang, X.; Cao, S.; Liu, R., Interaction of Bisphenol A with Bovine Hemoglobin Using Spectroscopic and Molecular Modeling Methods. Appl. Spectrosc. 2011, 65 (11), 1250- 1253.
dcterms.referencesMontgomery, C.; Pei, Z.; Watkins, P. A.; Miziorko, H. M., Identification and Characterization of an Extramitochondrial Human 3-Hydroxy-3-methylglutaryl-CoA Lyase. J. Biol. Chem. 2012, 287 (40), 33227-33236.
dcterms.referencesTzitzilonis, C.; Eichmann, C.; Maslennikov, I.; Choe, S.; Riek, R., Detergent/Nanodisc Screening for High-Resolution NMR Studies of an Integral Membrane Protein Containing a Cytoplasmic Domain. PLoS ONE 2013, 8 (1), e54378.
dcterms.referencesMaruyama, K.; Akiyama, M.; Kokame, K.; Sekiya, A.; Morishita, E.; Miyata, T., ELISABased Detection System for Protein S K196E Mutation, a Genetic Risk Factor for Venous Thromboembolism. PLoS ONE 2015, 10 (7), e0133196.
dcterms.referencesRimmerman, N.; Ben-Hail, D.; Porat, Z.; Juknat, A.; Kozela, E.; Daniels, M. P.; Connelly, P. S.; Leishman, E.; Bradshaw, H. B.; Shoshan-Barmatz, V.; Vogel, Z., Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death. Cell. Death Dis. 2013, 4, e949
dcterms.referencesSeidel, S. A. I.; Dijkman, P. M.; Lea, W. A.; van den Bogaart, G.; Jerabek-Willemsen, M.; Lazic, A.; Joseph, J. S.; Srinivasan, P.; Baaske, P.; Simeonov, A.; Katritch, I.; Melo, F. A.; Ladbury, J. E.; Schreiber, G.; Watts, A.; Braun, D.; Duhr, S., Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 2013, 59 (3), 301-315.
dcterms.referencesXie, X.; Wang, X.; Xu, X.; Sun, H.; Chen, X., Investigation of the interaction between endocrine disruptor bisphenol A and human serum albumin. Chemosphere 2010, 80 (9), 1075-1080.
dcterms.referencesWhitmore, L.; Wallace, B. A., DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 2004, 32 (Web Server issue), W668-W673.
dcterms.referencesSzklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K. P.; Kuhn, M.; Bork, P.; Jensen, L. J.; von Mering, C., STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43 (D1), D447-D452.
dcterms.referencesSong, S.; Ruan, T.; Wang, T.; Liu, R.; Jiang, G., Distribution and Preliminary Exposure Assessment of Bisphenol AF (BPAF) in Various Environmental Matrices around a Manufacturing Plant in China. Environ. Sci. Technol. 2012, 46 (24), 13136-13143.
dcterms.referencesYang, Y.; Yu, J.; Yin, J.; Shao, B.; Zhang, J., Molecularly Imprinted Solid-Phase Extraction for Selective Extraction of Bisphenol Analogues in Beverages and Canned Food. J. Agric. Food. Chem. 2014, 62 (46), 11130-11137.
dcterms.references(a) Lozada, K. W.; Keri, R. A., Bisphenol A increases mammary cancer risk in two distinct mouse models of breast cancer. Biol. Reprod. 2011, 85 (3), 490-497; (b) Starovoytov, O. N.; Liu, Y.; Tan, L.; Yang, S., Effects of the Hydroxyl Group on Phenyl Based Ligand/ERRγ Protein Binding. Chem. Res. Toxicol. 2014, 27 (8), 1371-1379.
dcterms.referencesMoore, K. H.; Bertram, K. A.; Gomez, R. R.; Styner, M. J.; Matej, L. A., Sex hormone binding globulin mRNA in human breast cancer: Detection in cell lines and tumor samples. J. Steroid Biochem. Mol. Biol. 1996, 59 (3–4), 297-304.
dcterms.referencesNaik S L, D.; Hedau, S.; Bahadur, A.; Saha, R.; Kaur, S.; Ray, A., Sex hormone binding globulin in breast cancer. Indian J Clin Biochem 2008, 23 (3), 250-254.
dcterms.referencesMiguel-Queralt, S.; Hammond, G. L., Sex Hormone-Binding Globulin in Fish Gills Is a Portal for Sex Steroids Breached by Xenobiotics. Endocrinology 2008, 149 (9), 4269-4275.
dcterms.referencesCherkasov, A.; Shi, Z.; Fallahi, M.; Hammond, G. L., Successful in Silico Discovery of Novel Nonsteroidal Ligands for Human Sex Hormone Binding Globulin. J. Med. Chem. 2005, 48 (9), 3203-3213.
dcterms.referencesHong, E.-J.; Sahu, B.; Jänne, O. A.; Hammond, G. L., Cytoplasmic accumulation of incompletely glycosylated SHBG enhances androgen action in proximal tubule epithelial cells. Mol. Endocrinol. 2010, 25 (2), 269-281.
dcterms.referencesOakley, G. G.; Devanaboyina, U.-s.; Robertson, L. W.; Gupta, R. C., Oxidative DNA Damage Induced by Activation of Polychlorinated Biphenyls (PCBs): Implications for PCB-Induced Oxidative Stress in Breast Cancer. Chem. Res. Toxicol. 1996, 9 (8), 1285- 1292.
dcterms.referencesSeewaldt, V. L.; Johnson, B. S.; Parker, M. B.; Collins, S. J.; Swisshelm, K., Expression of retinoic acid receptor beta mediates retinoic acid-induced growth arrest and apoptosis in breast cancer cells. Cell Growth Differ. 1995, 6 (9), 1077-1088.
dcterms.references(a) Bruning, P. F.; Bonfrèr, J. M.; Hart, A. A., Non-protein bound oestradiol, sex hormone binding globulin, breast cancer and breast cancer risk. Br. J. Cancer 1985, 51 (4), 479- 484; (b) Moore, J. W.; Key, T. J.; Bulbrook, R. D.; Clark, G. M.; Allen, D. S.; Wang, D. Y.; Pike, M. C., Sex hormone binding globulin and risk factors for breast cancer in a population of normal women who had never used exogenous sex hormones. Br. J. Cancer 1987, 56 (5), 661-666
dcterms.referencesBauer, K. R.; Brown, M.; Cress, R. D.; Parise, C. A.; Caggiano, V., Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype. Cancer 2007, 109 (9), 1721-1728.
dcterms.references(a) Brachmann, S. M.; Hofmann, I.; Schnell, C.; Fritsch, C.; Wee, S.; Lane, H.; Wang, S.; Garcia-Echeverria, C.; Maira, S.-M., Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (52), 22299-22304; (b) Kalinsky, K.; Jacks, L. M.; Heguy, A.; Patil, S.; Drobnjak, M.; Bhanot, U. K.; Hedvat, C. V.; Traina, T. A.; Solit, D.; Gerald, W.; Moynahan, M. E., PIK3CA Mutation Associates with Improved Outcome in Breast Cancer. Clin. Cancer Res. 2009, 15 (16), 5049-5059.
dcterms.referencesRoche, O.; Schneider, P.; Zuegge, J.; Guba, W.; Kansy, M.; Alanine, A.; Bleicher, K.; Danel, F.; Gutknecht, E.-M.; Rogers-Evans, M.; Neidhart, W.; Stalder, H.; Dillon, M.; Sjögren, E.; Fotouhi, N.; Gillespie, P.; Goodnow, R.; Harris, W.; Jones, P.; Taniguchi, M.; Tsujii, S.; von der Saal, W.; Zimmermann, G.; Schneider, G., Development of a Virtual Screening Method for Identification of ―Frequent Hitters‖ in Compound Libraries. J. Med.Chem. 2002, 45 (1), 137-142
dcterms.references. Ohyama, K.-I.; Satoh, K.; Sakamoto, Y.; Ogata, A.; Nagai, F., Effects of Prenatal Exposure to Styrene Trimers
dcterms.referencesStaskal, D. F.; Diliberto, J. J.; DeVito, M. J.; Birnbaum, L. S., Inhibition of Human and Rat CYP1A2 by TCDD and Dioxin-like Chemicals. Toxicol. Sci. 2005, 84 (2), 225-231
dcterms.referencesThompson, R. C.; Moore, C. J.; vom Saal, F. S.; Swan, S. H., Plastics, the environment and human health: current consensus and future trends. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009, 364 (1526), 2153-2166.
dcterms.referencesDeceuninck, Y.; Bichon, E.; Marchand, P.; Boquien, C.-Y.; Legrand, A.; Boscher, C.; Antignac, J.; Le Bizec, B., Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 2015, 407 (9), 2485-2497.
dcterms.referencesBiscardi, J. S.; Ishizawar, R. C.; Silva, C. M.; Parsons, S. J., Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer Breast Cancer Res. 2000, 2 (3), 203-210.
dcterms.referencesBiscardi, J. S.; Ishizawar, R. C.; Silva, C. M.; Parsons, S. J., Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res. 2000, 2 (3), 203-210.
dcterms.referencesBiscardi, J. S.; Ishizawar, R. C.; Silva, C. M.; Parsons, S. J., Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res. 2000, 2 (3), 203-210.
dcterms.referencesMadhavan, S.; Gusev, Y.; Singh, S.; Riggins, R. B., ERRγ target genes are poor prognostic factors in Tamoxifen-treated breast cancer. J. Exp. Clin. Cancer Res. 2015, 34 (1).
dcterms.referencesSu, N.; Qiu, H.; Chen, Y.; Yang, T.; Yan, Q.; Wan, X., miR-205 promotes tumor proliferation and invasion through targeting ESRRG in endometrial carcinoma. Oncol. Rep. 2013, 29 (6), 2297-2302.
dcterms.referencesFernandez, M. F.; Arrebola, J. P.; Taoufiki, J.; Navalón, A.; Ballesteros, O.; Pulgar, R.; Vilchez, J. L.; Olea, N., Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reprod. Toxicol. 2007, 24 (2), 259-264.
dcterms.referencesEriksen, K. T.; Sørensen, M.; McLaughlin, J. K.; Lipworth, L.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O., Perfluorooctanoate and Perfluorooctanesulfonate Plasma Levels and Risk of Cancer in the General Danish Population. J. Natl. Cancer Inst. 2009, 101 (8), 605-609
dcterms.referencesSeinen, W.; Lemmen, J. G.; Pieters, R. H. H.; Verbruggen, E. M. J.; van der Burg, B., AHTN and HHCB show weak estrogenic — but no uterotrophic activity. Toxicol. Lett. 1999, 111 (1–2), 161-168.
dcterms.referencesSeinen, W.; Lemmen, J. G.; Pieters, R. H. H.; Verbruggen, E. M. J.; van der Burg, B., AHTN and HHCB show weak estrogenic — but no uterotrophic activity. Toxicol. Lett. 1999, 111 (1–2), 161-168.
dcterms.referencesHuang, Z.; Chen, G.; Shi, P., Emodin-induced apoptosis in human breast cancer BCap-37 cells through the mitochondrial signaling pathway. Arch. Pharm. Res. 2008, 31 (6), 742- 748.
dcterms.referencesHuang, Z.; Chen, G.; Shi, P., Emodin-induced apoptosis in human breast cancer BCap-37 cells through the mitochondrial signaling pathway. Arch. Pharm. Res. 2008, 31 (6), 742- 748.
dcterms.referencesSchlumpf, M.; Jarry, H.; Wuttke, W.; Ma, R.; Lichtensteiger, W., Estrogenic activity and estrogen receptor β binding of the UV filter 3-benzylidene camphor: Comparison with 4- methylbenzylidene camphor. Toxicology 2004, 199 (2), 109-120.
dcterms.referencesTarnow, P.; Tralau, T.; Hunecke, D.; Luch, A., Effects of triclocarban on the transcription of estrogen, androgen and aryl hydrocarbon receptor responsive genes in human breast cancer cells. Toxicol. In Vitro 2013, 27 (5), 1467-1475.
dcterms.referencesRundle, A.; Tang, D.; Hibshoosh, H.; Estabrook, A.; Schnabel, F.; Cao, W.; Grumet, S.; Perera, F. P., The relationship between genetic damage from polycyclic aromatic hydrocarbons in breast tissue and breast cancer. Carcinogenesis 2000, 21 (7), 1281-1289.
dcterms.referencesLippold, T. G.; Kohli, N.; Endo, P. D.; Hui, H. K.; Lin, S.-M., Indicator dye for use in the detection of presence of oxidizing agents. Google Patents: 2005.
dcterms.referencesMeerts, I. A.; Letcher, R. J.; Hoving, S.; Marsh, G.; Bergman, A.; Lemmen, J. G.; van der Burg, B.; Brouwer, A., In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds. Environ. Health Perspect. 2001, 109 (4), 399-407.
dcterms.referencesGrishkovskaya, I.; Avvakumov, G. V.; Hammond, G. L.; Catalano, M. G.; Muller, Y. A., Steroid Ligands Bind Human Sex Hormone-binding Globulin in Specific Orientations and Produce Distinct Changes in Protein Conformation. J. Biol. Chem. 2002, 277 (35), 32086- 32093.
dcterms.references(a) Déchaud, H.; Ravard, C.; Claustrat, F.; de la Perrière, A. B.; Pugeat, M., Xenoestrogen interaction with human sex hormone-binding globulin (hSHBG)1. Steroids 1999, 64 (5), 328-334; (b) Gale, W. L.; Patiño, R.; Maule, A. G., Interaction of xenobiotics with estrogen receptors α and β and a putative plasma sex hormone-binding globulin from channel catfish (Ictalurus punctatus). Gen. Comp. Endocrinol. 2004, 136 (3), 338-345.
dcterms.referencesHildebrand, C.; Bocchinfuso, W. P.; Dales, D.; Hammond, G. L., Resolution of the steroidbinding and dimerization domains of human sex hormone-binding globulin by expression in Escherichia coli. Biochemistry 1995, 34 (10), 3231-3238.
dc.rights.accessopenAccess


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-nd/4.0
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-nd/4.0